1
|
Huang Y, Zhang J, Li X, Wu Z, Xie G, Wang Y, Liu Z, Jiao M, Zhang H, Shi B, Wang Y, Zhang Y. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development. FASEB J 2023; 37:e23111. [PMID: 37531300 DOI: 10.1096/fj.202300131rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The post-transfer developmental capacity of bovine somatic cell nuclear transfer (SCNT) blastocysts is reduced, implying that abnormalities in gene expression regulation are present at blastocyst stage. Chromatin accessibility, as an indicator for transcriptional regulatory elements mediating gene transcription activity, has heretofore been largely unexplored in SCNT embryos, especially at blastocyst stage. In the present study, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) of in vivo and SCNT blastocysts were conducted to segregate lineages and demonstrate the aberrant chromatin accessibility of transcription factors (TFs) related to inner cell mass (ICM) development in SCNT blastocysts. Pseudotime analysis of lineage segregation further reflected dysregulated chromatin accessibility dynamics of TFs in the ICM of SCNT blastocysts compared to their in vivo counterparts. ATAC- and ChIP-seq results of SCNT donor cells revealed that the aberrant chromatin accessibility in the ICM of SCNT blastocysts was due to the persistence of chromatin accessibility memory at corresponding loci in the donor cells, with strong enrichment of trimethylation of histone H3 at lysine 4 (H3K4me3) at these loci. Correction of the aberrant chromatin accessibility through demethylation of H3K4me3 by KDM5B diminished the expression of related genes (e.g., BCL11B) and significantly improved the ICM proliferation in SCNT blastocysts. This effect was confirmed by knocking down BCL11B in SCNT embryos to down-regulate p21 and alleviate the inhibition of ICM proliferation. These findings expand our understanding of the chromatin accessibility abnormalities in SCNT blastocysts and BCL11B may be a potential target to improve SCNT efficiency.
Collapse
Affiliation(s)
- Yuemeng Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| |
Collapse
|
2
|
Effects of epigenetic modifier on the developmental competence and quantitative expression of genes in male and female buffalo ( Bubalus bubalis) cloned embryos. ZYGOTE 2023; 31:129-139. [PMID: 36622104 DOI: 10.1017/s0967199422000600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adult male and female Murrah buffalo fibroblast cells were used as donors for the production of embryos using handmade cloning. Both donor cells and reconstructed embryos were treated with 50 nM trichostatin-A (TSA) and 7.5 nM 5-aza-2'-deoxycytidine (5-aza-dC). The blastocyst rate of both treated male (40.1% ± 2.05) and female (37.0% ± 0.83) embryos was significantly lower than in untreated control males (49.7% ± 3.80) and females (47.2% ± 2.44) but their apoptotic index was lower (male, control: 5.90 ± 0.48; treated: 4.96 ± 0.31): (female, control: 8.11 ± 0.67; treated: 6.65 ± 0.43) and epigenetic status in terms of global acetylation and methylation of histone was significantly improved. The expression level of hypoxanthine-guanine phosphoribosyltransferase (HPRT) was higher (P < 0.05) and that of PGK, G6PD, OCT 4, IFN-tau and CASPASE3 was significantly lower (P < 0.05) in treated male blastocyst than control and the expression levels of DNMT1, IGF1R and BCL-XL were not significantly different between the two groups. In the female embryos, the relative mRNA abundance of OCT4 was significantly higher (P < 0.05), and that of XIST and CASPASE3 was significantly lower (P < 0.05) in the epigenetic modifier-treated group compared with that of the control group, whereas the expression levels of HPRT, PGK, G6PD, DNMT1, IFN-tau, IGF1R and BCL-XL were not significantly different between the two groups. In both embryos, a similar effect of treatment was observed on genes related to growth and development, but the effect on the expression of X-linked genes varied. These results indicate that not all X-linked genes respond to TSA and 5-aza-dC treatment in the same manner.
Collapse
|
3
|
Saha A, Chauhan MS, Manik RS, Palta P, Singla SK. Comparison the effects of 5-Aza-2'-deoxycytidine and zebularine on the in vitro development, blastocyst quality, methylation pattern and conception rate on handmade cloned buffalo embryos. Reprod Domest Anim 2023; 58:158-167. [PMID: 36214130 DOI: 10.1111/rda.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/09/2022] [Indexed: 01/07/2023]
Abstract
In this study we treated the handmade cloned (HMC) buffalo embryos with the DNA methylation inhibitors; 5-aza-2'-deoxycytidine (AzadC) or Zebularine individually after post-fusion and during in vitro culture till eighth day. The blastocysts production rate significantly improved (p < .01) after treating embryos independently with 5 nM AzadC and 5 nM zebularine compared with 2 and 10 nM AzadC or zebularine groups, respectively. The highest cleavage rates were obtained for 5 nM treatment of AzadC and zebularine compared with other treatments and untreated control group. Quality of blastocysts were evaluated using total cell number (TCN) and the ratio of number of inner cell mass (ICM) cells/total cell number (ICM/TCN). Zebularine treatments (2/5/10 nM) significantly improved both TCN and ICM/TCN ratio compared with AzadC treatments (2/5/10 nM); however, control group TCN and ICM/TCN ratio was found lower. The methylation percentage of pDS4.1 and B. bubalis satellite DNA were comparatively more attenuated with 5 nM zebularine than 5 nM AzadC treatment. The increased in vitro development rates of the treated embryos were correlated with the decreased level of DNA methylation and the improved blastocyst quality. Following transfer of 5 nM zebularine treated embryos to 6 recipients, 4 were found to be pregnant, though the pregnancies were not carried to full term.
Collapse
Affiliation(s)
- Ambikaprasanna Saha
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.,Dum Dum Motijheel College, Kolkata, India
| | - Manmohan S Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Radhey S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh K Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
4
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
5
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
6
|
Chen X, Xing M. Effects of 5-Aza-2'-deoxycytidine on hormone secretion and epigenetic regulation in sika deer ovarian granulosa cells. Reprod Domest Anim 2020; 56:360-369. [PMID: 33254280 DOI: 10.1111/rda.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/14/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
5-Aza-2'-deoxycytidine (5-Aza-dC), an inhibitor of DNA methyltransferases, is an effective treatment for various cancers and has improved the development rate of cloned embryos. Previous studies have reported the effect of 5-Aza-dC on fibroblasts; however, the mechanism whereby 5-Aza-dC affects sika deer granulosa cells and hormone secretion is presently unknown. Here, we showed that the cell cycle after treatment with different doses of 5-Aza-dC was significantly altered. The number of cells in the S phase was significantly increased in response to a concentration of 0.1 μM 5-Aza-dC. The rate of apoptosis was increased when cells were treated with 0.1 μM and 5 μM 5-Aza-dC. We showed that the protein level of H3K9me2 was significantly decreased in response to 5-Aza-dC. The activity levels of DNA methyltransferase were reduced by a moderate dose of 5-Aza-dC. Furthermore, the secretion of E2 and P4 was influenced by different doses of 5-Aza-dC. Our study suggested that 5-Aza-dC affected hormone secretion in sika deer granulosa cells through cell development and epigenetic regulation. The findings of this study lay the foundation for further epigenetic studies in sika deer.
Collapse
Affiliation(s)
- Xiumin Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingjie Xing
- State Key laboratory of Special Economic Animal Molecular Biology, Changchun, China
| |
Collapse
|
7
|
Zhao X, Nie J, Tang Y, He W, Xiao K, Pang C, Liang X, Lu Y, Zhang M. Generation of Transgenic Cloned Buffalo Embryos Harboring the EGFP Gene in the Y Chromosome Using CRISPR/Cas9-Mediated Targeted Integration. Front Vet Sci 2020; 7:199. [PMID: 32426378 PMCID: PMC7212351 DOI: 10.3389/fvets.2020.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Sex control technology is of great significance in the production of domestic animals, especially for rapidly breeding water buffalo (bubalus bubalis), which served as a research model in the present study. We have confirmed that a fluorescence protein integrated into the Y chromosome is fit for sexing pre-implantation embryos in the mouse. Firstly, we optimized the efficiency of targeted integration of exogenous gene encoding enhanced green fluorescent protein (eGFP) and mCherry in Neuro-2a cells, mouse embryonic stem cells, mouse embryonic cells (NIH3T3), buffalo fetal fibroblast (BFF) cells. The results showed that a homology arm length of 800 bp on both sides of the target is more efficient that 300 bp or 300 bp/800 bp. Homology-directed repair (HDR)-mediated knock-in in BFF cells was also significantly improved when cells were supplemented with pifithrin-μ, which is a small molecule that inhibits the binding of p53 to mitochondria. Three pulses at 250 V resulted in the most efficient electroporation in BFF cells and 1.5 μg/mL puromycin was found to be the optimal concentration for screening. Moreover, Y-Chr-eGFP transgenic BFF cells and cloned buffalo embryos were successfully generated using CRISPR/Cas9-mediated gene editing combined with the somatic cell nuclear transfer (SCNT) technique. At passage numbers 6–8, the growth rate and cell proliferation rate were significantly lower in Y-Chr-eGFP transgenic than in non-transgenic BFF cells; the expression levels of the methylation-related genes DNMT1 and DNMT3a were similar; however, the expression levels of the acetylation-related genes HDAC1, HDAC2, and HDAC3 were significantly higher (p < 0.05) in Y-Chr-eGFP transgenic BFF cells compared with non-transgenic cells. Y-Chr-eGFP transgenic BFFs were used as donors for SCNT, the results showed that eGFP reporter is suitable for the visualization of the sex of embryos. The blastocyst rates of cloned buffalo embryos were similar; however, the cleavage rates of transgenic cloned embryos were significantly lower compared with control. In summary, we optimized the protocol for generating transgenic BFF cells and successfully generated Y-Chr-eGFP transgenic embryos using these cells as donors.
Collapse
Affiliation(s)
- Xiuling Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Wengtan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Chunying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Gouveia C, Huyser C, Egli D, Pepper MS. Lessons Learned from Somatic Cell Nuclear Transfer. Int J Mol Sci 2020; 21:E2314. [PMID: 32230814 PMCID: PMC7177533 DOI: 10.3390/ijms21072314] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1-5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.
Collapse
Affiliation(s)
- Chantel Gouveia
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Carin Huyser
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10027, USA;
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
9
|
Abstract
The mouse is the most extensively used mammalian laboratory species in biology and medicine because of the ready availability of a wide variety of defined genetic and gene-modified strains and abundant genetic information. Its small size and rapid generation turnover are also advantages compared with other experimental animals. Using these advantages, somatic cell nuclear transfer (SCNT) in mice has provided invaluable information on epigenetics related to SCNT technology and cloning, playing a leading role in relevant technical improvements. These improvements include treatment with histone deacetylase inhibitors, correction of Xist gene expression (controlling X chromosome inactivation), and removal of methylated histones from SCNT-generated embryos, which have proven to be effective for SCNT cloning of other species. However, even with the best combination of these treatments, the birth rate in cloned offspring is still lower than intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). One remaining issue associated with SCNT is placental enlargement (hyperplasia) found in late pregnancy, but this abnormality might not be a major cause for the low efficiency of SCNT because many SCNT-derived embryos die before their placentas start to enlarge at midgestation (early postimplantation stage). It is known that, at this stage, undifferentiated trophoblast cells in the extraembryonic tissue of SCNT-derived embryos fail to proliferate. Understanding the molecular mechanisms is essential for further technical improvements of mouse SCNT, which might also provide clues for technical breakthroughs in mammalian SCNT and cloning in general.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan; RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
10
|
Zhang Y, Gao E, Guan H, Wang Q, Zhang S, Liu K, Yan F, Tian H, Shan D, Xu H, Hou J. Vitamin C treatment of embryos, but not donor cells, improves the cloned embryonic development in sheep. Reprod Domest Anim 2019; 55:255-265. [PMID: 31837175 DOI: 10.1111/rda.13606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
Vitamin C is not only an antioxidant but also a regulator of epigenetic modifications that can enhance the activity of the ten-eleven translocation (TET) family dioxygenases and promote the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Here, we investigated the effects of vitamin C in regulating DNA methylation in sheep somatic cells or embryos in an effort to improve the cloned embryo development. Vitamin C treatment of sheep foetal fibroblast cells significantly increased the 5hmC levels but did not affect the 5mC levels in cells. After nuclear transfer, vitamin C-treated donor cells could not support a higher blastocyst development rate than non-treated cells. Although combination of serum starvation and vitamin C treatment could induce significant 5mC decrease in donor cells, it failed to promote the development of resultant cloned embryos. When cloned embryos were directly treated with vitamin C, the pre-implantation development of embryos and the 5hmC levels in blastocysts were significantly improved. This beneficial role of vitamin C on embryo development was also observed in fertilized embryos. Our results suggest that vitamin C treatment of the embryos, but not the donor cells, can improve the development of cloned sheep embryos.
Collapse
Affiliation(s)
- Yumei Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Enen Gao
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Hong Guan
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Shuo Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Kexiong Liu
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Fengxiang Yan
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Hao Tian
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Dehai Shan
- Hanshan White Cashmere Goat Breeding Farm, Chifeng, China
| | - Huijuan Xu
- Hanshan White Cashmere Goat Breeding Farm, Chifeng, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Cao H, Li J, Su W, Li J, Wang Z, Sun S, Tian S, Li L, Wang H, Li J, Fang X, Wei Q, Liu C. Zebularine significantly improves the preimplantation development of ovine somatic cell nuclear transfer embryos. Reprod Fertil Dev 2019; 31:357-365. [PMID: 30196805 DOI: 10.1071/rd17357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 07/14/2018] [Indexed: 01/23/2023] Open
Abstract
Aberrant DNA methylation reduces the developmental competence of mammalian somatic cell nuclear transfer (SCNT) embryos. Thus, hypomethylation-associated drugs are beneficial for improving reprogramming efficiency. Therefore, in the present study we investigated the effect of zebularine, a relatively novel DNA methyltransferase inhibitor, on the developmental potential of ovine SCNT embryos. First, reduced overall DNA methylation patterns and gene-specific DNA methylation levels at the promoter regions of pluripotency genes (octamer-binding transcription factor 4 (Oct4), SRY (sex determining region Y)-box 2 (Sox2) and Nanog) were found in zebularine-treated cumulus cells. In addition, the DNA methylation levels in SCNT embryos derived from zebularine-treated cumulus cells were significantly reduced at the 2-, 4-, 8-cell, and blastocyst stages compared with their corresponding controls (P<0.05). The blastocyst rate was significantly improved in SCNT embryos reconstructed by the cumulus donor cells treated with 5nM zebularine for 12h compared with the control group (25.4±1.6 vs 11.8±1.7%, P<0.05). Moreover, the abundance of Oct4 and Sox2 mRNA was significantly increased during the preimplantation stages after zebularine treatment (P<0.05). In conclusion, the results indicate that, in an ovine model, zebularine decreases overall DNA methylation levels in donor cumulus cells and reconstructed embryos, downregulates the DNA methylation profile in the promoter region of pluripotency genes in donor cells and ultimately elevates the expression of pluripotency genes in the reconstructed embryos, which can lead to improved development of SCNT embryos.
Collapse
Affiliation(s)
- Hui Cao
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Jun Li
- Department of Reproductive Medicine,The First Hospital of Hebei Medical University, NO.89 Donggang Road, Yuhua District, Shijiazhuang 050031, PR China
| | - Wenlong Su
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Shuchun Sun
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Lu Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Hanyang Wang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Jiexin Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Qiaoli Wei
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Chuang Liu
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| |
Collapse
|
12
|
Gupta MK, Heo YT, Kim DK, Lee HT, Uhm SJ. 5-Azacytidine improves the meiotic maturation and subsequent in vitro development of pig oocytes. Anim Reprod Sci 2019; 208:106118. [PMID: 31405459 DOI: 10.1016/j.anireprosci.2019.106118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/03/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
Treatment of donor cells and/or cloned embryos with cytidine analogues, having an Aza group at its 5th carbon (5-Aza), such as 5-Azacytidine (5-Aza-C) or 5-Aza-2'-deoxycytidine (5-Aza-dC) improves the in vitro development of cloned embryos produced by somatic cell nuclear transfer (SCNT). In vitro maturation (IVM) of immature pig oocytes treated with 5-Aza-C not only results in greater (P < 0.05) meiotic maturation to the MII stage but also enhances the capacity of 5-Aza-C treated oocytes for early embryonic development after parthenogenetic activation (PA), in vitro fertilization (IVF) or SCNT in a dose-dependent manner (0-10 μM). Cloned embryos generated from 5-Aza-C (0.01 μM) treated oocytes had an increased capacity to develop to the blastocyst stage (14.1 ± 1.5% compared with 9.6 ± 1.8%), greater probability of hatching (61.8 ± 1.5% compared with 45.0 ± 3.9%) and contained a greater number of cells per blastocyst (38.5 ± 4.4 compared with 30.5 ± 3.4) than those produced from non-treated control oocytes (P < 0.05). Data from the present study indicate that treatment of oocytes with 5-Aza-C may be an important approach to enhance the meiotic maturation and subsequent in vitro development of pig embryos. Future studies should be conducted to determine the underlying mechanism of improved early embryonic development of 5-Aza-C treated oocytes.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 26339, South Korea; Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Young Tae Heo
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 26339, South Korea
| | - Dong Ku Kim
- Nuri Science Inc., 320 Achasanro, Seoul 05053, South Korea
| | - Hoon Taek Lee
- Department of Animal Biotechnology, College of Animal Bioscience & Technology, Konkuk University, Seoul 05029, South Korea
| | - Sang Jun Uhm
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 26339, South Korea.
| |
Collapse
|
13
|
Han C, Cui C, Xing X, Lu Z, Zhang J, Liu J, Zhang Y. Functions of intrinsic disorder in proteins involved in DNA demethylation during pre-implantation embryonic development. Int J Biol Macromol 2019; 136:962-979. [PMID: 31229544 DOI: 10.1016/j.ijbiomac.2019.06.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023]
Abstract
DNA demethylation is involved in many biological processes during pre-implantation embryonic development in mammals. To date, the complicated mechanism of DNA demethylation is still not fully understood. Ten-eleven translocation family (TET3, TET1 and TET2), thymine DNA glycosylase (TDG) and DNA methyltransferase 1 (DNMT1) are considered the major protein enzymes of DNA demethylation in pre-implantation embryos. TET3, TET1, TET2, TDG, and DNMT1 contain abundant levels of intrinsically disordered protein regions (IDPRs), which contribute to increasing the functional diversity of proteins. Thus we tried to explore the complicated DNA demethylation in pre-implantation embryos from the intrinsic disorder perspective. These five biological macromolecules all have DNA demethylation-related functional domains. They can work together to fulfill DNA demethylation in pre-implantation embryos through complex protein-protein interaction networks. Intrinsic disorder analysis results showed these proteins were partial intrinsically disordered proteins. Many identifiable disorder-based DNA-binding sites, protein-binding sites and post-translational modification sites located in the intrinsically disordered regions, and DNA demethylation deficiency point mutations in the IDPRs could significantly change the local disorder propensity of these proteins. To the best of our knowledge, this work provides a new viewpoint for studying the mechanism of DNA methylation reprogramming during mammalian pre-implantation embryonic development.
Collapse
Affiliation(s)
- Chengquan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenchen Cui
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xupeng Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenzhen Lu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Singh S, Shyam S, Sah S, Singh MK, Palta P. Treatment of Buffalo ( Bubalus bubalis) Somatic Cell Nuclear Transfer Embryos with MicroRNA-29b Mimic Improves Their Quality, Reduces DNA Methylation, and Changes Gene Expression Without Affecting Their Developmental Competence. Cell Reprogram 2019; 21:210-219. [PMID: 31199675 DOI: 10.1089/cell.2019.0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
microRNA-29b (miR-29b) plays an important role in controlling DNA methylation in cells. We investigated its role during early embryonic development in buffalo embryos produced by somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF). miR-29b expression was highest at the 2-cell stage, decreased (p < 0.001) at the 4-cell stage, and remained low thereafter at the 8-cell, morula, and blastocyst stages, showing a similar pattern in cloned and IVF embryos. Treatment of reconstructed embryos with miR-29b mimic for 1 hour after 1 hour of electrofusion increased (p < 0.05) the total cell number and decreased (p < 0.05) the levels of apoptosis and DNA methylation compared with controls. It also increased (p < 0.05) the ratio of inner cell mass:trophectoderm cell numbers of blastocysts compared with controls to the levels observed in IVF blastocysts. However, the blastocyst rate was not affected by treatment with miR-29b mimic (29.0% ± 2.0% vs. 27.0% ± 2.0% for controls). The treatment decreased (p < 0.001) the expression of epigenetic-related genes, DNMT3A and DNMT3B, but not DNMT1, and increased (p < 0.05) that of pluripotency- (NANOG, OCT4, and SOX2) and development-related genes (FGF4 and GLUT1) in blastocysts compared with controls. Our results suggest that miR-29b mimic treatment of reconstructed embryos improves the quality, reduces the level of apoptosis and DNA methylation, and changes gene expression in SCNT blastocysts without affecting the blastocyst rate.
Collapse
Affiliation(s)
- Shikha Singh
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Songyukta Shyam
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Shrutika Sah
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Manoj K Singh
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
15
|
Agrawal H, Selokar NL, Saini M, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. Epigenetic Alteration of Donor Cells with Histone Deacetylase Inhibitor m-Carboxycinnamic Acid Bishydroxymide Improves the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Cloned Embryos. Cell Reprogram 2019; 20:76-88. [PMID: 29412736 DOI: 10.1089/cell.2017.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.5, 5.0, 10.0, and 20.0 μM) were used to treat buffalo adult fibroblast cells for 24 hours and effect on cell proliferation, gene expression, and histone modifications was analyzed. Based on these experiments, the best concentration was chosen to determine the effect of enhanced gene activation mark on developmental rates. Among the different concentrations, CBHA at higher concentration (20 μM) shows the sign of apoptosis and stress as indicated by proliferation rate and gene expression data. CBHA treatment significantly decreased the activity of HDACs and increased the level of gene activation mark H3K9ac and H3K4me3, but could not alter the level of H3K27ac. Based on these experiments, 5 μM CBHA was chosen for treatment of donor cells used for the production of cloned embryos. There was no significant difference in cleavage rate between the control and CBHA treatment group (98.5% ± 1.5% vs. 99.0% ± 1.0%), whereas, blastocyst rate markedly improved (46.65% ± 1.94% vs. 57.18% ± 2.68%). The level of H3K9ac and H3K27me3 did not differ significantly in cloned blastocyst produced from either control or CBHA-treated cells. Altogether, these results suggested that donor cell treatment with CBHA supports the reprogramming process and improves the cloned preimplantation development.
Collapse
Affiliation(s)
- Himanshu Agrawal
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,2 School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, India
| | - Naresh Lalaji Selokar
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Monika Saini
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Manoj Kumar Singh
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Manmohan Singh Chauhan
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,4 ICAR-Central Institute for Research on Goats , Mathura, India
| | - Prabhat Palta
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Suresh Kumar Singla
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Radhey Sham Manik
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| |
Collapse
|
16
|
Zhao X, Ruan Z, Qin X, Feng Y, Yu Q, Xu J, Deng Y, Shen P, Shi D, Lu F. The Role of 5-aza-2'-Deoxycytidine on Methylation Status of Xist Gene in Different Genders of Buffalo (Bubalus bubalis) Bone Marrow Mesenchymal Stem Cells. Cell Reprogram 2019; 21:89-98. [PMID: 30785778 DOI: 10.1089/cell.2018.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have demonstrated that proper concentration of 5-aza-2'-deoxycytidine (5-aza-CdR) treatment was advantageous to decrease DNA methylation level, but the relationships between 5-aza-CdR treatment and methylation status of imprinted genes are seldom detected. The aim of this study was to investigate the effect of low concentration 5-aza-CdR treatment on the methylation status of imprinted gene Xist in different genders of buffalo bone marrow mesenchymal stem cells (BMSCs). BMSCs were isolated and the cell gender was identified through polymerase chain reaction (PCR). Then different concentrations of 5-aza-CdR (0, 0.02, 0.1 μM) were applied for the treatment. The results showed cellular morphology, growth, Xist gene expression pattern, and adherent ability were not significantly affected with the treatment of 5-aza-CdR for 24 hours. Meanwhile, immunofluorescence analysis indicated that the expression of 5-methylcytosine (5-mC) was also not influenced after the treatment. However, bisulfite sequence PCR (BS-PCR) analysis revealed that the methylation level of Xist differentially methylated region (DMR) decreased significantly when the concentration of 5-aza-CdR increased to 0.1 μM in the ♀BMSCs group (p < 0.05), while there was no significant difference among the ♂BMSCs-treated groups. Our results implied that low concentrations of 5-aza-CdR treatment had little impacts on cellular morphology, growth Xist gene expression pattern, adherent ability, and global DNA methylation level of BMSCs in both genders, but the treatment could significantly decrease the methylation level of Xist DMR in ♀BMSCs. Thus, we conclude 5-aza-CdR treatment can affect the methylation status of Xist DMR, furthermore, the influence is also related to sex differences.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiling Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Penglei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Simões R, Rodrigues Santos A. Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 2018; 13:156-178. [PMID: 29020571 DOI: 10.1080/15476278.2017.1389367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.
Collapse
Affiliation(s)
- Renata Simões
- a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , SP , Brazil
| | | |
Collapse
|
18
|
Zhang YM, Gao EE, Wang QQ, Tian H, Hou J. Effects of histone methyltransferase inhibitor chaetocin on histone H3K9 methylation of cultured ovine somatic cells and development of preimplantation cloned embryos. Reprod Toxicol 2018; 79:124-131. [PMID: 29909068 DOI: 10.1016/j.reprotox.2018.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 01/24/2023]
Abstract
Aberrant hypermethylation of histone H3 lysine 9 (H3K9) is a key barrier to the development of cloned embryos by somatic cell nuclear transfer (SCNT). The objective of this study was to assess the effects of chaetocin, an inhibitor of H3K9 methyltransferase SUV39 H, in regulating the H3K9 methylation in ovine SCNT embryos. Treatment of sheep fetal fibroblast cells with chaetocin specifically decreased the levels of H3K9 di-and trimethylation, and down-regulated the expression of H3K9 methyltransferases, SUV39H1/2 and G9A. Cloned embryos from chaetocin-treated cells could develop to the blastocyst stage at a similar rate to those derived from non-treated cells. However, direct treatment of SCNT or in vitro fertilized embryos with chaetocin impaired the embryonic development. These results suggest that although chaetocin is a potential agent for modulating H3K9 methylation in cells, it may have an adverse effect on the development of embryos.
Collapse
Affiliation(s)
- Yu-Mei Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - En-En Gao
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Qian-Qian Wang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Hao Tian
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
No JG, Hur TY, Zhao M, Lee S, Choi MK, Nam YS, Yeom DH, Im GS, Kim DH. Scriptaid improves the reprogramming of donor cells and enhances canine-porcine interspecies embryo development. Reprod Biol 2017; 18:18-26. [PMID: 29162325 DOI: 10.1016/j.repbio.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/26/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
Histone methylation, histone acetylation, and DNA methylation are the important factors for somatic cell nuclear transfer (SCNT). Histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have been used to improve cloning efficiency. In particular, scriptaid, an HDACi, has been shown to improve SCNT efficiency. However, no studies have been performed on canines. Here, we evaluated the effects of scriptaid on histone modification in canine ear fibroblasts (cEFs) and cloned canine embryos derived from cEFs. The early development of cloned canine-porcine interspecies SCNT (iSCNT) embryos was also examined. cEFs were treated with scriptaid (0, 100, 250, 500, 750, and 1000nM) in a medium for 24h. Scriptaid treatment (all concentrations) did not significantly affect cell apoptosis. Treatment with 500nM scriptaid caused a significant increase in the acetylation of H3K9, H3K14, and H4K5. cEFs treated with 500nM scriptaid showed significantly decreased Gcn5, Hat1, Hdac6, and Bcl2 and increased Oct4 and Sox2 expression levels. After SCNT with canine oocytes, H3K14 acetylation was significantly increased in the one- and two-cell cloned embryos from scriptaid-treated cEFs. In iSCNT, the percentage of embryos in the 16-cell stage was significantly higher in the scriptaid-treated group (21.6±2.44%) than in the control (7.5±2.09%). The expression levels of Oct4, Sox2, and Bcl2 were significantly increased in 16-cell iSCNT embryos, whereas that of Hdac6 was decreased. These results demonstrated that scriptaid affected the reprogramming of canine donor and cloned embryos, as well as early embryo development in canine-porcine iSCNT, by regulating reprogramming and apoptotic genes.
Collapse
Affiliation(s)
- Jin-Gu No
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea; Department of Biological Science, University of Sungkyunkwan, Suwon 16419, Republic of Korea
| | - Tai-Young Hur
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Minghui Zhao
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Seunghoon Lee
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Mi-Kyung Choi
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Yoon-Seok Nam
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Dong-Hyun Yeom
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Gi-Sun Im
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Dong-Hoon Kim
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea.
| |
Collapse
|
20
|
Song X, Li F, Jiang Z, Sun Y, Li H, Gao S, Zhang L, Xue B, Zhao G, Li J, Liu Z, He H, Huan Y. Imprinting disorder in donor cells is detrimental to the development of cloned embryos in pigs. Oncotarget 2017; 8:72363-72374. [PMID: 29069793 PMCID: PMC5641136 DOI: 10.18632/oncotarget.20390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/06/2017] [Indexed: 02/06/2023] Open
Abstract
Imprinting disorder during somatic cell nuclear transfer usually leads to the abnormality of cloned animals and low cloning efficiency. However, little is known about the role of donor cell imprinting in the development of cloned embryos. Here, we demonstrated that the imprinting (H19/Igf2) in porcine fetus fibroblasts derived from the morphologically abnormal cloned fetuses (the abnormal imprinting group) was more hypomethylated, and accordingly, significantly higher H19 transcription and lower Igf2 expression occurred in comparison with those in fibroblasts derived from morphologically normal cloned fetuses (the normal imprinting group) or donor fetus fibroblasts (the control group). When these fibroblasts were used as donor cells, the abnormal imprinting group displayed an even lower imprinting methylation level, in correspondence to the significantly downregulated expression of Dnmt1, Dnmt3a and Zfp57, and a markedly reduced blastocyst rate, while the normal imprinting group took on the similar patterns of imprinting, gene expression and embryo development to the control group. When 5-aza-dC was applied to reduce the fibroblasts imprinting methylation level in the normal imprinting group, cloned embryos displayed the more severely impaired imprinting and significantly lower blastocyst rate. While the upregulated H19 transcription in the abnormal imprinting group was knocked down, the imprinting statuses were partly rescued, and the cleavage and blastocyst rates significantly increased in cloned embryos. In all, donor cell imprinting disorder reduced the developmental efficiency of cloned embryos. This work provides a new insight into understanding the molecular mechanism of donor cells regulating the cloned embryo development.
Collapse
Affiliation(s)
- Xuexiong Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Fangzheng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhongling Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yueping Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Huatao Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Shansong Gao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Liping Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Binghua Xue
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Guimin Zhao
- College of Life Science, Shandong Normal University, Jinan, Shandong Province, China
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan, Shandong Province, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
21
|
Saini M, Selokar NL, Agrawal H, Singla SK, Chauhan MS, Manik RS, Palta P. Treatment of Donor Cells and Reconstructed Embryos with a Combination of Trichostatin-A and 5-aza-2'-Deoxycytidine Improves the Developmental Competence and Quality of Buffalo Embryos Produced by Handmade Cloning and Alters Their Epigenetic Status and Gene Expression. Cell Reprogram 2017; 19:208-215. [PMID: 28463020 DOI: 10.1089/cell.2016.0061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The application of cloning technology on a large scale is limited by very low offspring rate primarily due to aberrant or incomplete epigenetic reprogramming. Trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferases, are widely used for altering the epigenetic status of cloned embryos. We optimized the doses of these epigenetic modifiers for production of buffalo embryos by handmade cloning and examined whether combined treatment with these epigenetic modifiers offered any advantage over treatment with the individual epigenetic modifier. Irrespective of whether donor cells or reconstructed embryos or both were treated with 50 nM TSA +7.5 nM 5-aza-dC, (1) the blastocyst rate was significantly higher (71.6 ± 3.5, 68.3 ± 2.6, and 71.8 ± 2.4, respectively, vs. 43.1 ± 3.4 for controls, p < 0.05); (2) the apoptotic index was lower (5.4 ± 1.1, 9.5 ± 1.0, and 7.4 ± 1.3, respectively, vs. 19.5 ± 2.1 for controls, p < 0.05) and was similar to that of in vitro fertilization blastocysts (6.0 ± 0.8); (3) the global level of H3K18ac was higher (p < 0.01) and that of H3K27me3 lower (p < 0.05) than in controls and was similar among all treatment groups; and (4) the expression level of epigenetic-(HDAC1, DNMT1, and DNMT3a), pluripotency-(OCT4 and NANOG), and development-related (FGF4) genes, but not that of SOX2 and CDX2, was similar among all treatment groups. These results demonstrate that similar levels of beneficial effects can be obtained following treatment of either donor cells or reconstructed embryos or both with the combination of TSA +5-aza-dC. Therefore, there is no advantage in treating both donor cells and reconstructed embryos when the combination of TSA and 5-aza-dC is used.
Collapse
Affiliation(s)
- Monika Saini
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, India
| | - Naresh L Selokar
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, India
| | - Himanshu Agrawal
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, India
| | - Radheysham S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, India
| |
Collapse
|
22
|
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016. [PMID: 27446239 DOI: 10.1186/s13072‐016‐0081‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Ioannis Ikonomopoulos
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Andrew J Bannister
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
23
|
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016; 9:31. [PMID: 27446239 PMCID: PMC4955263 DOI: 10.1186/s13072-016-0081-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023] Open
Abstract
Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.
Collapse
Affiliation(s)
- Kostas A. Triantaphyllopoulos
- />Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Ioannis Ikonomopoulos
- />Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Andrew J. Bannister
- />Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
24
|
Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo. Stem Cells Int 2016; 2016:3038764. [PMID: 27242905 PMCID: PMC4876003 DOI: 10.1155/2016/3038764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/13/2016] [Accepted: 03/29/2016] [Indexed: 02/08/2023] Open
Abstract
Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi) 5-aza-2′-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation.
Collapse
|
25
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
26
|
Saini M, Selokar NL, Agrawal H, Singla SK, Chauhan MS, Manik RS, Palta P. Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2’-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic status of cloned embryos. Reprod Fertil Dev 2016; 28:824-37. [DOI: 10.1071/rd14176] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/08/2014] [Indexed: 01/02/2023] Open
Abstract
We examined the effects of treating buffalo skin fibroblast donor cells with trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, and 5-aza-2′-deoxycytidine (5azadC), a DNA methyltransferase (DNMT) inhibitor, on the cells and embryos produced by hand-made cloning. Treatment of donor cells with TSA or 5azadC resulted in altered expression levels of the HDAC1, DNMT1, DNMT3a, P53, CASPASE3 and CASPASE9 genes and global levels of acetylation of lysine at position 9 or 14 in histone 3 (H3K9/14ac), acetylation of lysine at position 5 in histone 4 (H4K5ac), acetylation of lysine at position 18 in histone 3 (H3K18ac) and tri-methylation of lysine at position 27 in histone 3 (H3K27me3). Moreover, global levels of DNA methylation and activity of DNMT1 and HDAC1 were decreased, while global acetylation of H3 and H3K9 was significantly increased in comparison to untreated cells. Simultaneous treatment of donor cells with TSA (50 nM) and 5azadC (7.5 nM) resulted in higher in vitro development to the blastocyst stage, reduction of the apoptotic index and the global level of H3K27 me3 and altered expression levels of HDAC1, P53, CASPASE3, CASPASE9 and DNMT3a in cloned blastocysts. Transfer of cloned embryos produced with donor cells treated with TSA led to the birth of a calf that survived for 21 days. These results show that treatment of buffalo donor cells with TSA and 5azadC improved developmental competence and quality of cloned embryos and altered their epigenetic status and gene expression, and that these beneficial effects were mediated by a reduction in DNA and histone methylation and an increase in histone acetylation in donor cells.
Collapse
|
27
|
Changes in tri-methylation profile of lysines 4 and 27 of histone H3 in bovine blastocysts after cryopreservation. Cryobiology 2015; 71:481-5. [DOI: 10.1016/j.cryobiol.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022]
|
28
|
Huan YJ, Wu ZF, Zhang JG, Zhu J, Xie BT, Wang JY, Li JY, Xue BH, Kong QR, Liu ZH. Alteration of the DNA methylation status of donor cells impairs the developmental competence of porcine cloned embryos. J Reprod Dev 2015; 62:71-7. [PMID: 26537205 PMCID: PMC4768780 DOI: 10.1262/jrd.2015-048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear reprogramming induced by somatic cell nuclear transfer is an inefficient process, and donor cell DNA
methylation status is thought to be a major factor affecting cloning efficiency. Here, the role of donor cell
DNA methylation status regulated by 5-aza-2'-deoxycytidine (5-aza-dC) or
5-methyl-2'-deoxycytidine-5'-triphosphate (5-methyl-dCTP) in the early development of porcine cloned embryos
was investigated. Our results showed that 5-aza-dC or 5-methyl-dCTP significantly reduced or increased the
global methylation levels and altered the methylation and expression levels of key genes in donor cells.
However, the development of cloned embryos derived from these cells was reduced. Furthermore, disrupted
pseudo-pronucleus formation and transcripts of early embryo development-related genes were observed in cloned
embryos derived from these cells. In conclusion, our results demonstrated that alteration of the DNA
methylation status of donor cells by 5-aza-dC or 5-methyl-dCTP disrupted nuclear reprogramming and impaired
the developmental competence of porcine cloned embryos.
Collapse
Affiliation(s)
- Yan Jun Huan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Altering histone acetylation status in donor cells with suberoylanilide hydroxamic acid does not affect dog cloning efficiency. Theriogenology 2015; 84:1256-61. [PMID: 26259535 DOI: 10.1016/j.theriogenology.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 11/24/2022]
Abstract
Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos.
Collapse
|
30
|
Li R, Wu H, Zhuo WW, Mao QF, Lan H, Zhang Y, Hua S. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation. Reprod Domest Anim 2015; 50:793-9. [DOI: 10.1111/rda.12589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/11/2015] [Indexed: 01/26/2023]
Affiliation(s)
- R Li
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - H Wu
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - WW Zhuo
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - QF Mao
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - H Lan
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - Y Zhang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - S Hua
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| |
Collapse
|
31
|
Selokar NL, Saini M, Agrawal H, Palta P, Chauhan MS, Manik R, Singla SK. Downregulation of DNA methyltransferase 1 in zona-free cloned buffalo (Bubalus bubalis) embryos by small interefering RNA improves in vitro development but does not alter DNA methylation level. Cell Reprogram 2015; 17:89-94. [PMID: 25826721 DOI: 10.1089/cell.2014.0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aberrant epigenetic reprogramming, especially genomic hypermethylation, is implicated as the primary reason behind the failure of the cloning process during somatic cell nuclear transfer (SCNT). We transfected one-cell-stage zona-free buffalo embryos produced by handmade cloning with 50 nM DNMT1 small interfering RNA (siRNA), using lipofectamine, to knockdown the DNA methyltransferase 1 (DNMT1) gene. siRNA treatment decreased (p<0.001) the expression level of DNMT1 mRNA and DNMT1 protein in the one-cell-stage embryos and increased (p<0.05) the blastocyst rate (52.3 ± 1.3% vs. 45.3 ± 2.5%) compared to that in the controls, but did not reduce the DNA methylation level similar to the in vitro-fertilized (IVF) embryos. It also increased (p<0.05) the relative mRNA abundance of P53 and CASPASE 3, but not that of HDAC1, DNMT1, and DNMT3a, in the blastocysts of the siRNA group compared to the controls. The global level of H3K18ac was higher (p<0.05) in the blastocysts of the siRNA group than in the controls, whereas that of H3K9ac and H3K27me3 was not significantly different between the two groups. In conclusion, lipofection can be successfully used for transfection of DNMT1 siRNA into one-cell-stage zona-free cloned buffalo embryos. It results in a concomitant decrease in the DNMT1 mRNA and protein levels in the one-cell-stage embryos. siRNA-mediated knockdown increases the blastocyst rate but does not alter the DNA methylation level.
Collapse
Affiliation(s)
- Naresh L Selokar
- 1 Animal Biotechnology Centre, National Dairy Research Institute , 132001 Karnal, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Liao HF, Mo CF, Wu SC, Cheng DH, Yu CY, Chang KW, Kao TH, Lu CW, Pinskaya M, Morillon A, Lin SS, Cheng WTK, Bourc'his D, Bestor T, Sung LY, Lin SP. Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction 2015; 150:245-56. [PMID: 26159833 DOI: 10.1530/rep-15-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022]
Abstract
Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chu-Fan Mo
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shinn-Chih Wu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Dai-Han Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chih-Yun Yu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Kai-Wei Chang
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Tzu-Hao Kao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chia-Wei Lu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Marina Pinskaya
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Antonin Morillon
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shih-Shun Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| | - Winston T K Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Déborah Bourc'his
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Timothy Bestor
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Li-Ying Sung
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| |
Collapse
|
33
|
Sun H, Lu F, Zhu P, Liu X, Tian M, Luo C, Ruan Q, Ruan Z, Liu Q, Jiang J, Wei Y, Shi D. Effects of Scriptaid on the Histone Acetylation, DNA Methylation and Development of Buffalo Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2015; 17:404-14. [PMID: 26035741 DOI: 10.1089/cell.2014.0084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The present study was undertaken to examine the effect of Scriptaid treatment on histone acetylation, DNA methylation, expression of genes related to histone acetylation, and development of buffalo somatic cell nuclear transfer (SCNT) embryos. Treatment of buffalo SCNT embryos with 500 nM Scriptaid for 24 h resulted in a significant increase in the blastocyst formation rate (28.2% vs. 13.6%, p<0.05). Meanwhile, treatment of buffalo SCNT embryos with Scriptaid also resulted in higher acetylation levels of H3K18 and lower methylation levels of global DNA at the blastocyst stage, which was similar to fertilized counterparts. The expression levels of CBP, p300, HAT1, Dnmt1, and Dnmt3a in SCNT embryos treated with Scriptaid were significantly lower than the control group at the eight-cell stage (p<0.05), but the expression of HAT1 and Dnmt1a was higher than the control group at the blastocyst stage (p<0.05). When 96 blastocysts developed from Scriptaid-treated SCNT embryos were transferred into 48 recipients, 11 recipients (22.9%) became pregnant, whereas only one recipient (11.1%) became pregnant following transfer of 18 blastocysts developed from untreated SCNT embryos into nine recipients. These results indicate that treatment of buffalo SCNT embryos with Scriptaid can improve their developmental competence, and this action is mediated by resulting in a similar histone acetylation level and global DNA methylation level compared to in vitro-fertilized embryos through regulating the expression pattern of genes related to histone acetylation and DNA methylation.
Collapse
Affiliation(s)
- Hongliang Sun
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China .,2 These authors contributed equally to this work
| | - Fenghua Lu
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China .,2 These authors contributed equally to this work
| | - Peng Zhu
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Xiaohua Liu
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Mingming Tian
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Chan Luo
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Qiuyan Ruan
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Ziyun Ruan
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Qingyou Liu
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Jianrong Jiang
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Yingming Wei
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Deshun Shi
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| |
Collapse
|
34
|
Gaspar RC, Arnold DR, Corrêa CA, da Rocha CV, Penteado JC, del Collado M, Vantini R, Garcia JM, Lopes FL. Oxygen tension affects histone remodeling of in vitro–produced embryos in a bovine model. Theriogenology 2015; 83:1408-15. [DOI: 10.1016/j.theriogenology.2015.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/17/2014] [Accepted: 01/01/2015] [Indexed: 12/14/2022]
|
35
|
Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. BIOMED RESEARCH INTERNATIONAL 2015; 2015:814686. [PMID: 25866813 PMCID: PMC4381569 DOI: 10.1155/2015/814686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The current research was conducted to explore the in vitro developmental outcome and cytological/molecular quality of porcine nuclear-transferred (NT) embryos reconstituted with adult bone marrow-derived mesenchymal stem cells (ABM-MSCs) that were epigenetically transformed by treatment with nonspecific inhibitor of histone deacetylases, known as trichostatin A (TSA). The cytological quality of cloned blastocysts was assessed by estimation of the total cells number (TCN) and apoptotic index. Their molecular quality was evaluated by real-time PCR-mediated quantification of gene transcripts for pluripotency- and multipotent stemness-related markers (Oct4, Nanog, and Nestin). The morula and blastocyst formation rates of NT embryos derived from ABM-MSCs undergoing TSA treatment were significantly higher than in the TSA-unexposed group. Moreover, the NT blastocysts generated using TSA-treated ABM-MSCs exhibited significantly higher TCN and increased pluripotency extent measured with relative abundance of Oct4 and Nanog mRNAs as compared to the TSA-untreated group. Altogether, the improvements in morula/blastocyst yields and quality of cloned pig embryos seem to arise from enhanced abilities for promotion of correct epigenetic reprogramming of TSA-exposed ABM-MSC nuclei in a cytoplasm of reconstructed oocytes. To our knowledge, we are the first to report the successful production of mammalian high-quality NT blastocysts using TSA-dependent epigenomic modulation of ABM-MSCs.
Collapse
|
36
|
No JG, Choi MK, Kwon DJ, Yoo JG, Yang BC, Park JK, Kim DH. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming. J Reprod Dev 2015; 61:90-8. [PMID: 25736622 PMCID: PMC4410095 DOI: 10.1262/jrd.2014-078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.
Collapse
Affiliation(s)
- Jin-Gu No
- Animal Biotechnology Division; Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Latham KE. Role of aberrant protein modification, assembly, and localization in cloned embryo phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:141-58. [PMID: 25030763 DOI: 10.1007/978-1-4939-0817-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Aberrant post-translational modifications of proteins contribute markedly to the abnormal characteristics of cloned embryos. This review summarizes aberrant aspects of protein modifications and protein interactions, taking an inside-outside view to the cell. These aberrant aspects affect a range of processes including the control of chromatin structure, expression of pluripotency genes, propagation of epigenetic inheritance, protein trafficking, localization and signaling, cytoskeletal structure, mitosis, and correct localization of membrane proteins. By observing these aberrant features of cloned embryos, how they arise, and their impacts on development, it is possible to gain insight into normal development and identify novel strategies for enhancing cloning outcomes.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, College of Agriculture and Natural Resources, and The Reproductive and Developmental Sciences Program, Michigan State University, 474 S. Shaw Lane, Room 1230E, East Lansing, MI, 48824, USA,
| |
Collapse
|
38
|
Sangalli JR, Chiaratti MR, De Bem THC, de Araújo RR, Bressan FF, Sampaio RV, Perecin F, Smith LC, King WA, Meirelles FV. Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One 2014; 9:e101022. [PMID: 24959750 PMCID: PMC4069182 DOI: 10.1371/journal.pone.0101022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
Cloning of mammals by somatic cell nuclear transfer (SCNT) is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis), have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA) in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post-implantation development of cloned cattle.
Collapse
Affiliation(s)
- Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
- * E-mail:
| | - Marcos Roberto Chiaratti
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Tiago Henrique Camara De Bem
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Reno Roldi de Araújo
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fabiana Fernandes Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Felipe Perecin
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Lawrence Charles Smith
- Centre de recherche em reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | - Willian Allan King
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
39
|
Liu H, Lv P, Zhu X, Wang X, Yang X, Zuo E, Lu Y, Lu S, Lu K. In vitro development of porcine transgenic nuclear-transferred embryos derived from newborn Guangxi Bama mini-pig kidney fibroblasts. In Vitro Cell Dev Biol Anim 2014; 50:811-21. [PMID: 24879084 DOI: 10.1007/s11626-014-9776-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
Porcine transgenic cloning has potential applications for improving production traits and for biomedical research purposes. To produce a transgenic clone, kidney fibroblasts from a newborn Guangxi Bama mini-pig were isolated, cultured, and then transfected with red and green fluorescent protein genes using lipofectamine for nuclear transfer. The results of the present study show that the kidney fibroblasts exhibited excellent proliferative capacity and clone-like morphology, and were adequate for generation of somatic cell nuclear transfer (SCNT)-derived embryos, which was confirmed by their cleavage activity and blastocyst formation rate of 70.3% and 7.9%, respectively. Cells transfected with red fluorescent protein genes could be passed more than 35 times. Transgenic embryos cloned with fluorescent or blind enucleation methods were not significantly different with respect to cleavage rates (92.5% vs. 86.8%, p > 0.05) and blastocyst-morula rates (26.9% vs. 34.0%, p > 0.05), but were significantly different with respect to blastocyst rates (3.0% vs. 13.2%, p < 0.05). Cleavage (75.3%, 78.5% vs. 78.0%, p > 0.05), blastocyst (14.1%, 16.1% vs. 23.1%, p > 0.05) and morula/blastocyst rates (43.5%, 47.0% vs. 57.6%, p > 0.05) were not significantly different between the groups of transgenic cloned embryos, cloned embryos, and parthenogenetic embryos. This indicates that long-time screening by G418 caused no significant damage to kidney fibroblasts. Thus, kidney fibroblasts represent a promising new source for transgenic SCNT, and this work lays the foundation for the production of genetically transformed cloned Guangxi Bama mini-pigs.
Collapse
Affiliation(s)
- Hongbo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, and College of Animal Science and Technology, Guangxi University, 100 Daxuedong Road, Nanning, 530004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The remarkable ability of oocytes to reinstate the totipotent state from a unipotent somatic cell, allowing the cloning of animals and the generation of human stem cells, has fascinated scientists for decades. Due to the complexity of oocytes, it has remained challenging to understand the rapid reprogramming following nuclear transfer at a molecular level. Conversely, the detailed characterization of molecular mechanisms is also often insufficient to comprehend the functional relevance of a complex molecular process, such as the dissociation of transcription factors from chromatin during cell division, the role of chromatin modifications in cellular memory, or of cell type-specific DNA replication. This review attempts to bridge the gap between nuclear transfer and molecular biology by focusing on the role of the cell cycle in reprogramming.
Collapse
Affiliation(s)
- Gloryn Chia
- 1 Department of Pediatrics, Naomi Berric Diabetes Center, Columbia University , New York, NY 10032
| | | |
Collapse
|
41
|
Zhang H, Wang Y, Sang Y, Zhang Y, Hua S. Combination of S-adenosylhomocysteine and scriptaid, a non-toxic epigenetic modifying reagent, modulates the reprogramming of bovine somatic-cell nuclear transfer embryos. Mol Reprod Dev 2013; 81:87-97. [PMID: 24347442 DOI: 10.1002/mrd.22287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/20/2013] [Indexed: 11/07/2022]
Abstract
The goal of this study was to improve the development of bovine somatic-cell nuclear transfer (SCNT) embryos by optimizing the combination of DNA methyltransferases inhibitor S-adenosylhomocysteine (SAH) and histone deacetylase inhibitor Scriptaid (SPD). A. 4 × 4-factor design of different drug combinations (0, 0.75, 1.0, and 1.5 mM SAH and 0, 5, 250, and 500 nM SPD) was used to identify an optimal combination of 0.75 mM SAH and 250 nM SPD that improved the developmental competence of bovine SCNT embryos. Further experiments using this combination revealed that methylation levels of CpG islands near exon 1 of the pluripotent gene SOX2; the epigenetic-related gene HDAC3 and DNMT3a; imprinted genes XIST and PEG3; as well as apoptosis-related genes BCL2 and BAX were returned to levels similar to those of in vitro fertilized (IVF) embryo after treatment, which also normalized transcript levels for these genes. This combination also returned global DNA methylation to a normal level, correcting H4K12ac levels while enhancing H3K9ac levels. Thus, the combined application of 0.75 mM SAH and 250 nM SPD can significantly improve the reprogramming of bovine SCNT embryos by stabilizing how embryos utilize their genomes.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China; Key Laboratory of Biological Technology, Ministry of Agriculture, Yangling, China
| | | | | | | | | |
Collapse
|
42
|
Selokar NL, St John L, Revay T, King WA, Singla SK, Madan P. Effect of histone deacetylase inhibitor valproic acid treatment on donor cell growth characteristics, cell cycle arrest, apoptosis, and handmade cloned bovine embryo production efficiency. Cell Reprogram 2013; 15:531-42. [PMID: 24180742 DOI: 10.1089/cell.2013.0018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we tested the effects of valproic acid (VPA), a known histone deacetylase inhibitor (HDACi), on the growth characteristics, apoptosis, and cell cycle stages distribution of donor cells, as well as cloning efficiency, embryo development, and histone methylation. Our results showed that treatment of donor cells with VPA (2.5 mM, 5.0 mM, 7.5 mM, or 10 mM) for 24 h resulted in altered cell proliferation, extent of apoptosis and necrosis, and cell cycle stage distribution, whereas no changes in cell viability and chromosomal complements were observed. Measurement of relative gene expression using real-time PCR of a few developmentally important genes in treated donor cells showed decreased expression of HDAC1 and increased expression of BAX (p<0.05). No change in relative expression of HDAC2 and Bcl2 was noticed. Treatment of donor cells with VPA for 24 h before electrofusion significantly (p<0.05) increased the blastocyst formation rate of somatic cell nuclear transfer (SCNT) embryos compared to the control embryos. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive nuclei in SCNT blastocysts derived from VPA-treated donor cells were significantly decreased compared to the control blastocysts (p<0.05). Immunolocalization studies revealed that the levels of histone H3 at lysine 9 (H3K9me3) were lower in VPA-treated donor cells derived cloned blastocysts than nontreated cloned embryos, and was at the level of in vitro fertilization (IVF) counterparts, although no effects of treatments were found in donor cells. Our study demonstrates that the use of VPA in SCNT has been beneficial for efficient reprogramming of donor cells. Its effect on histone methylation in cloned embryos correlates with their developmental potential and may be a useful epigenetic marker to predict the efficiency of SCNT.
Collapse
Affiliation(s)
- Naresh L Selokar
- 1 Department of Biomedical Sciences, Ontario Veterinary College , Guelph Canada, N1G 2W1
| | | | | | | | | | | |
Collapse
|
43
|
Xiong X, Lan D, Li J, Zhong J, Zi X, Ma L, Wang Y. Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency. Cell Reprogram 2013; 15:293-300. [PMID: 23790013 DOI: 10.1089/cell.2012.0092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abnormal epigenetic reprogramming of the donor nucleus after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiency. Following SCNT, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modification. Therefore, in this study, we have attempted to improve epigenetic reprogramming of the donor nucleus and cloned embryos with Zebularine and Scriptaid. Yak fibroblasts were treated with 20 μM Zebularine alone or 20 μM Zebularine plus 0.5 μM Scriptaid for 24 h, whereas yak cloned embryos were treated exclusively with 0.5 μM Scriptaid for 12 h. There was no effect on cellular viability and proliferation after drug treatment. The treatment of fibroblasts with Zebularine or Zebularine plus Scriptaid increased histone acetylation of histone 3 lysine 9 (H3K9), but decreased the level of DNA methylation of Oct-4 and Sox-2 promoter regions. When donor cells were used after Zebularine plus Scriptaid treatment to reconstruct cloned embryos and then treated with Scriptaid, the developmental competence and cryosurvival of embryos were improved significantly. In addition, the relative expression of Oct-4 and Sox-2 were increased significantly. The expression levels of Dnmt-1 and Hdac-1 were significantly decreased when fibroblasts and cloned embryos were treated with Zebularine or Scriptaid. This work provides functional evidence that treatment with Zebularine and Scriptaid modifies the epigenetic status of yak fibroblasts, subsequently enhancing in vitro developmental potential and the quality of yak cloned embryos.
Collapse
Affiliation(s)
- Xianrong Xiong
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Huan YJ, Zhu J, Xie BT, Wang JY, Liu SC, Zhou Y, Kong QR, He HB, Liu ZH. Treating cloned embryos, but not donor cells, with 5-aza-2'-deoxycytidine enhances the developmental competence of porcine cloned embryos. J Reprod Dev 2013; 59:442-9. [PMID: 23748715 PMCID: PMC3934119 DOI: 10.1262/jrd.2013-026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low.
In most cloned embryos, epigenetic reprogramming is incomplete, and usually the
genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine
(5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT
embryos in previous studies. However, the parameters of 5-aza-dC treatment among
species are different, and whether 5-aza-dC could enhance the developmental
competence of porcine cloned embryos has still not been well studied. Therefore, in
this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor
nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with
5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine
cloned embryos were investigated by assessing pseudo-pronucleus formation,
developmental potential and pluripotent gene expression of these reconstructed
embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation
level in PFF (0 nM vs. 10 nM vs. 25 nM
vs. 50 nM, 58.70% vs. 37.37%
vs. 45.43% vs. 39.53%, P<0.05), but did not
improve the blastocyst rate of cloned embryos derived from these cells. Treating
cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst
rate compared with that of the untreated group. Furthermore, treating cloned embryos,
but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post
activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for
control, respectively, P<0.05) and enhanced the expression levels of pluripotent
genes (Oct4, Nanog and Sox2) up to
those of in vitro fertilized embryos during embryo development. In
conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the
developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus
formation and improvement of pluripotent gene expression.
Collapse
Affiliation(s)
- Yan Jun Huan
- College of Life Science, Northeast Agricultural University, Haerbin 150030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Goto Y, Hirayama M, Takeda K, Tukamoto N, Sakata O, Kaeriyama H, Geshi M. Effect of synchronization of donor cells in early G1-phase using shake-off method on developmental potential of somatic cell nuclear transfer embryos in cattle. Anim Sci J 2013; 84:592-9. [PMID: 23607733 DOI: 10.1111/asj.12047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
In this study, we compared the developmental ability of somatic cell nuclear transfer (SCNT) embryos reconstructed with three bovine somatic cells that had been synchronized in G0-phase (G0-SCNT group) or early G1-phase (eG1-SCNT group). Furthermore, we investigated the production efficiency of cloned offspring for NT embryos derived from these donor cells. The G0-phase and eG1-phase cells were synchronized, respectively, using serum starvation and antimitotic reagent treatment combined with shaking of the plate containing the cells (shake-off method). The fusion rate in the G0-SCNT groups (64.2 ± 1.8%) was significantly higher than that of eG1-SCNT groups (39.2 ± 1.9%) (P < 0.05), but the developmental rates to the blastocyst stage of SCNT embryos per fused oocytes were similar for all groups. The overall production efficiency of the clone offspring in eG1-SCNT groups (12.7%) per recipient cow was higher than that in G0-SCNT groups (3%) (P < 0.05). The mean birth weight of cloned calves and the average calving score in the G0-SCNT groups (48.1 ± 3.4 kg and 3.3 ± 0.3, respectively) was significantly higher (P < 0.05) than those of eG1-SCNT groups (37.2 ± 2.1 kg and 2.3 ± 0.2, respectively). Results of this study indicate that synchronization of donor cells in eG1-phase using the shake-off method improved the overall production efficiency of the clone offspring per transferred embryo.
Collapse
Affiliation(s)
- Yuji Goto
- National Livestock Breeding Center, Ohu Station, Shichinohe, Aomori, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Goissis MD, Suhr ST, Cibelli JB. Effects of Donor Fibroblasts Expressing OCT4 on Bovine Embryos Generated by Somatic Cell Nuclear Transfer. Cell Reprogram 2013; 15:24-34. [DOI: 10.1089/cell.2012.0055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marcelo D. Goissis
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Capes Foundation, Ministry of Education, Brasília, Brazil
| | - Steven T. Suhr
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Programa Andaluz de Terapia Celular y Medicina Regenerativa, Andalucía, Spain
| |
Collapse
|
47
|
Akagi S, Geshi M, Nagai T. Recent progress in bovine somatic cell nuclear transfer. Anim Sci J 2013; 84:191-9. [PMID: 23480698 DOI: 10.1111/asj.12035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/02/2012] [Indexed: 11/30/2022]
Abstract
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full-term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.
Collapse
Affiliation(s)
- Satoshi Akagi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Japan.
| | | | | |
Collapse
|
48
|
Smith LC, Suzuki J, Goff AK, Filion F, Therrien J, Murphy BD, Kohan-Ghadr HR, Lefebvre R, Brisville AC, Buczinski S, Fecteau G, Perecin F, Meirelles FV. Developmental and epigenetic anomalies in cloned cattle. Reprod Domest Anim 2013; 47 Suppl 4:107-14. [PMID: 22827358 DOI: 10.1111/j.1439-0531.2012.02063.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many of the developmental anomalies observed in cloned animals are related to foetal and placental overgrowth, a phenomenon known as the 'large offspring syndrome' (LOS) in ruminants. It has been hypothesized that the epigenetic control of imprinted genes, that is, genes that are expressed in a parental-specific manner, is at the root of LOS. Our recent research has focused on understanding epigenetic alterations to imprinted genes that are associated with assisted reproductive technologies (ART), such as early embryo in vitro culture (IVC) and somatic cell nuclear transfer (SCNT) in cattle. We have sought and identified single nucleotide polymorphisms in Bos indicus DNA useful for the analysis of parental-specific alleles and their respective transcripts in tissues from hybrid embryos derived by crossing Bos indicus and Bos taurus cattle. By analysing differentially methylated regions (DMRs) of imprinted genes SNRPN, H19 and the IGF2R in cattle, we demonstrated that there is a generalized hypomethylation of the imprinted allele and the biallelic expression of embryos produced by SCNT when compared to the methylation patterns observed in vivo (artificially inseminated). Together, these results indicate that imprinting marks are erased during the reprogramming of the somatic cell nucleus during early development, indicating that such epigenetic anomalies may play a key role in mortality and morbidity of cloned animals.
Collapse
Affiliation(s)
- L C Smith
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Walters EM, Wolf E, Whyte JJ, Mao J, Renner S, Nagashima H, Kobayashi E, Zhao J, Wells KD, Critser JK, Riley LK, Prather RS. Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics 2012; 5:55. [PMID: 23151353 PMCID: PMC3499190 DOI: 10.1186/1755-8794-5-55] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/28/2011] [Indexed: 12/25/2022] Open
Abstract
Background Anatomic and physiological similarities to the human make swine an excellent large animal model for human health and disease. Methods Cloning from a modified somatic cell, which can be determined in cells prior to making the animal, is the only method available for the production of targeted modifications in swine. Results Since some strains of swine are similar in size to humans, technologies that have been developed for swine can be readily adapted to humans and vice versa. Here the importance of swine as a biomedical model, current technologies to produce genetically enhanced swine, current biomedical models, and how the completion of the swine genome will promote swine as a biomedical model are discussed. Conclusions The completion of the swine genome will enhance the continued use and development of swine as models of human health, syndromes and conditions.
Collapse
Affiliation(s)
- Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kumar BM, Maeng GH, Lee YM, Lee JH, Jeon BG, Ock SA, Kang T, Rho GJ. Epigenetic modification of fetal fibroblasts improves developmental competency and gene expression in porcine cloned embryos. Vet Res Commun 2012; 37:19-28. [DOI: 10.1007/s11259-012-9542-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 02/03/2023]
|