1
|
Doroftei B, Ilie OD, Maftei R, Scripcariu IS, Armeanu T, Stoian IL, Ilea C. A Narrative Review Discussing Vasectomy-Related Impact upon the Status of Oxidative Stress and Inflammation Biomarkers and Semen Microbiota. J Clin Med 2023; 12:jcm12072671. [PMID: 37048754 PMCID: PMC10095584 DOI: 10.3390/jcm12072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Male contraceptive approaches besides tubal sterilization involve vasectomy and represent the method of choice among midlife men in developing countries thanks to many advantages. However, the subsidiary consequences of this intervention are insufficiently explored since the involved mechanisms may offer insight into a much more complex picture. Methods: Thus, in this manuscript, we aimed to reunite all available data by searching three separate academic database(s) (PubMed, Web of Knowledge, and Scopus) published in the past two decades by covering the interval 2000–2023 and using a predefined set of keywords and strings involving “oxidative stress” (OS), “inflammation”, and “semen microbiota” in combination with “humans”, “rats”, and “mice”. Results: By following all evidence that fits in the pre-, post-, and vasectomy reversal (VR) stages, we identified a total of n = 210 studies from which only n = 21 were finally included following two procedures of eligibility evaluation. Conclusions: The topic surrounding this intricate landscape has created debate since the current evidence is contradictory, limited, or does not exist. Starting from this consideration, we argue that further research is mandatory to decipher how a vasectomy might disturb homeostasis.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue no 20A, 700505 Iasi, Romania
| | - Radu Maftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ioana-Sadyie Scripcariu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| | - Theodora Armeanu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Irina-Liviana Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| |
Collapse
|
2
|
Wei YL, She ZY, Huang T, Zhang HT, Wang XR. Male reproductive systems of Macaca mulatta: Gonadal development, spermatogenesis and applications in spermatogonia stem cell transplantation. Res Vet Sci 2021; 137:127-137. [PMID: 33965833 DOI: 10.1016/j.rvsc.2021.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Rhesus macaque (Macaca mulatta) is widely applied in animal model construction of infertility, spermatogonia stem cell transplantation and male reproductive diseases. In this review, we describe the seasonal changes of the reproductive system in rhesus macaques, the regular pattern of spermatogenesis and spermatozoa maturation, and the differentiation of spermatogonia and spermatocytes. The duration of the M. mulatta spermatogenesis is approximately 10 days and seminiferous epithelium cycles mainly consist of 12 stages, which provide a suitable model for reproductive studies in non-human primates. Here, we summarize the features of gonadal development and sperm maturation in the rhesus monkeys, which provide important information in the studies of reproductive biology. Rhesus macaque is an excellent animal model in spermatogonia stem cell transplantation. We discuss the applications and progresses of assisted reproductive technologies in sperm liquefaction, semen cryopreservation and spermatogonia stem cell transplantation of rhesus macaques. Besides, we sort out recent proteomic analyses of male reproductive systems and semen samples in rhesus macaques. This review mainly focuses on male reproductive biology and application studies using M. mulatta, which would promote the development of new therapeutic interventions on assisted reproduction and reproductive disease studies in the future.
Collapse
Affiliation(s)
- Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian 350011, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350013, China.
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Tao Huang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350013, China
| | - Hai-Tao Zhang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350013, China
| | - Xin-Rui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350013, China.
| |
Collapse
|
3
|
Dreef HC, Van Esch E, De Rijk EPCT. Spermatogenesis in the Cynomolgus Monkey (Macaca fascicularis): A Practical Guide for Routine Morphological Staging. Toxicol Pathol 2016; 35:395-404. [PMID: 17455088 DOI: 10.1080/01926230701230346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The cynomolgus monkey ( Macaca fascicularis) is widely used in regulatory toxicity studies. Especially in studies on male contraception, the male reproductive tract can be an important target system. The aim of the present paper is to describe a practical approach for morphological staging of spermatogenesis in routinely prepared paraffin sections. Results obtained using this approach could help to determine possible drug-related effects on spermatogenesis. As a guide to the investigators, photomicrographs of Bouin-fixed, paraffin-embedded and H&E or PAS stained sections from testis tissue are presented to illustrate the twelve successive morphological stages (cell associations) of normal spermatogenesis. Sexually immature or peripubertal monkeys sometimes are included in toxicity studies. Since the morphological features of the testes of such monkeys can be mistaken for treatment-related abnormalities, the morphologic characteristics of these testes are described and discussed briefly.
Collapse
Affiliation(s)
- Henriette C Dreef
- Department of Toxicology and Drug Disposition, Organon, 5340 BH, Oss, The Netherlands
| | | | | |
Collapse
|
4
|
An update of the macaque testis proteome. Data Brief 2015; 5:95-8. [PMID: 26484360 PMCID: PMC4573093 DOI: 10.1016/j.dib.2015.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of rhesus macaque is a draft version with many errors and is lack of Y chromosome annotation. In the present dataset, we reanalyzed the previously published macaque testis proteome. We searched for refined protein sequences, potential Y chromosome proteins and transcripts predicted proteins in addition to the latest Ensembl protein sequences of macaque. A total of 74,433 peptides corresponding to 9247 protein groups were identified, and the data are supplied in this paper. The updated version of macaque testis proteome provided evidences for predicted genes or transcripts at the peptide level. It can be used for further in-depth proteogenomic annotation of macaque genome and is useful for studying the mechanisms of macaque spermatogenesis.
Collapse
|
5
|
Toocheck C, Clister T, Shupe J, Crum C, Ravindranathan P, Lee TK, Ahn JM, Raj GV, Sukhwani M, Orwig KE, Walker WH. Mouse Spermatogenesis Requires Classical and Nonclassical Testosterone Signaling. Biol Reprod 2015; 94:11. [PMID: 26607719 PMCID: PMC4809556 DOI: 10.1095/biolreprod.115.132068] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/16/2015] [Indexed: 01/12/2023] Open
Abstract
Testosterone acts though the androgen receptor in Sertoli cells to support germ cell development (spermatogenesis) and male fertility, but the molecular and cellular mechanisms by which testosterone acts are not well understood. Previously, we found that in addition to acting through androgen receptor to directly regulate gene expression (classical testosterone signaling pathway), testosterone acts through a nonclassical pathway via the androgen receptor to rapidly activate kinases that are known to regulate spermatogenesis. In this study, we provide the first evidence that nonclassical testosterone signaling occurs in vivo as the MAP kinase cascade is rapidly activated in Sertoli cells within the testis by increasing testosterone levels in the rat. We find that either classical or nonclassical signaling regulates testosterone-mediated Rhox5 gene expression in Sertoli cells within testis explants. The selective activation of classical or nonclassical signaling pathways in Sertoli cells within testis explants also resulted in the differential activation of the Zbtb16 and c-Kit genes in adjacent spermatogonia germ cells. Delivery of an inhibitor of either pathway to Sertoli cells of mouse testes disrupted the blood-testis barrier that is essential for spermatogenesis. Furthermore, an inhibitor of nonclassical testosterone signaling blocked meiosis in pubertal mice and caused the loss of meiotic and postmeiotic germ cells in adult mouse testes. An inhibitor of the classical pathway caused the premature release of immature germ cells. Collectively, these observations indicate that classical and nonclassical testosterone signaling regulate overlapping and distinct functions that are required for the maintenance of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Corey Toocheck
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Terri Clister
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Shupe
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chelsea Crum
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Preethi Ravindranathan
- Department of Urology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas
| | - Tae-Kyung Lee
- Department of Chemistry, University of Texas, Dallas, Richardson, Texas
| | - Jung-Mo Ahn
- Department of Chemistry, University of Texas, Dallas, Richardson, Texas
| | - Ganesh V Raj
- Department of Urology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas
| | - Meena Sukhwani
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William H Walker
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Ramaswamy S, Weinbauer GF. Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone. SPERMATOGENESIS 2014; 4:e996025. [PMID: 26413400 PMCID: PMC4581062 DOI: 10.1080/21565562.2014.996025] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
Evaluation of testicular functions (production of sperm and androgens) is an important aspect of preclinical safety assessment and testicular toxicity is comparatively far more common than ovarian toxicity. This chapter focuses (1) on the histological sequelae of disturbed reproductive endocrinology in rat, dog and nonhuman primates and (2) provides a review of our current understanding of the roles of gonadotropins and androgens. The response of the rodent testis to endocrine disturbances is clearly different from that of dog and primates with different germ cell types and spermatogenic stages being affected initially and also that the end-stage spermatogenic involution is more pronounced in dog and primates compared to rodents. Luteinizing hormone (LH)/testosterone and follicle-stimulating hormone (FSH) are the pivotal endocrine factors controlling testicular functions. The relative importance of either hormone is somewhat different between rodents and primates. Generally, however, both LH/testosterone and FSH are necessary for quantitatively normal spermatogenesis, at least in non-seasonal species.
Collapse
Affiliation(s)
- Suresh Ramaswamy
- Center for Research in Reproductive Physiology (CRRP); Department of Obstetrics, Gynecology & Reproductive Sciences; University of Pittsburgh School of Medicine; Magee-Womens Research Institute; Pittsburgh, PA USA
| | | |
Collapse
|
7
|
Ramaswamy S, Razack BS, Roslund RM, Suzuki H, Marshall GR, Rajkovic A, Plant TM. Spermatogonial SOHLH1 nucleocytoplasmic shuttling associates with initiation of spermatogenesis in the rhesus monkey (Macaca mulatta). Mol Hum Reprod 2013; 20:350-7. [PMID: 24324034 DOI: 10.1093/molehr/gat093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
As the spermatogenesis- and oogenesis-specific basic helix-loop-helix 1 (SOHLH1) transcription factor has been shown to be essential for spermatogonial differentiation in mice, we examined the immunoexpression of this protein in the testis of the rhesus monkey (Macaca mulatta) during puberty, the stage of development when spermatogonial differentiation is initiated in higher primates. Immunopositive SOHLH1 cells were observed only on the basement membrane of the seminiferous cords and tubules. Prior to puberty, essentially 100% of SOHLH1-positive spermatogonia co-expressed the glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1), a marker for undifferentiated spermatogonia, and >80% of the immunopositive SOHLH1 cells exhibited only cytoplasmic staining of this transcription factor. Nuclear-only SOHLH1 was found in <10% of spermatogonia in testes from pre-pubertal animals. Puberty was associated with a dramatic and progressive increase in the percentage of immunopositive SOHLH1 cells with nuclear-only staining, and this was associated with (i) a marked reduction in the fraction (∼100-20%) of SOHLH1-positive germ cells co-expressing GFRα1 and (ii) a significant increase in the proportion of SOHLH1-positive spermatogonia that co-expressed the tyrosine kinase receptor (cKIT). Spermatogonia exhibiting nuclear SOHLH1 staining were found to be cKIT positive, but not all cKIT-positive spermatogonia exhibited nuclear SOHLH1 staining. Taken together, these results suggest that, in the monkey, nuclear location of SOHLH1 is closely associated with spermatogonial differentiation.
Collapse
Affiliation(s)
- Suresh Ramaswamy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Effects of diethylhexyl phthalate (DEHP) given neonatally on spermatogenesis of mice. Mol Biol Rep 2013; 40:6509-17. [DOI: 10.1007/s11033-013-2769-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 09/14/2013] [Indexed: 11/27/2022]
|
9
|
Shetty G, Uthamanthil RK, Zhou W, Shao SH, Weng CC, Tailor RC, Hermann BP, Orwig KE, Meistrich ML. Hormone suppression with GnRH antagonist promotes spermatogenic recovery from transplanted spermatogonial stem cells in irradiated cynomolgus monkeys. Andrology 2013; 1:886-98. [PMID: 24124124 DOI: 10.1111/j.2047-2927.2013.00126.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 01/08/2023]
Abstract
Hormone suppression given before or after cytotoxic treatment stimulates the recovery of spermatogenesis from endogenous and transplanted spermatogonial stem cells (SSC) and restores fertility in rodents. To test whether the combination of hormone suppression and transplantation could enhance the recovery of spermatogenesis in primates, we irradiated (7 Gy) the testes of 12 adult cynomolgus monkeys and treated six of them with gonadotropin-releasing hormone antagonist (GnRH-ant) for 8 weeks. At the end of this treatment, we transfected cryopreserved testicular cells with green fluorescent protein-lentivirus and autologously transplanted them back into one of the testes. The only significant effect of GnRH-ant treatment on endogenous spermatogenesis was an increase in the percentage of tubules containing differentiated germ cells (tubule differentiation index; TDI) in the sham-transplanted testes of GnRH-ant-treated monkeys compared with radiation-only monkeys at 24 weeks after irradiation. Although transplantation alone after irradiation did not significantly increase the TDI, detection of lentiviral DNA in the spermatozoa of one radiation-only monkey indicated that some transplanted cells colonized the testis. However, the combination of transplantation and GnRH-ant clearly stimulated spermatogenic recovery as evidenced by several observations in the GnRH-ant-treated monkeys receiving transplantation: (i) significant increases (~20%) in the volume and weight of the testes compared with the contralateral sham-transplanted testes and/or to the transplanted testes of the radiation-only monkeys; (ii) increases in TDI compared to the transplanted testes of radiation-only monkeys at 24 weeks (9.6% vs. 2.9%; p = 0.05) and 44 weeks (16.5% vs. 6.1%, p = 0.055); (iii) detection of lentiviral sequences in the spermatozoa or testes of five of the GnRH-ant-treated monkeys and (iv) significantly higher sperm counts than in the radiation-only monkeys. Thus hormone suppression enhances spermatogenic recovery from transplanted SSC in primates and may be a useful tool in conjunction with spermatogonial transplantation to restore fertility in men after cancer treatment.
Collapse
Affiliation(s)
- G Shetty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sá R, Graça I, Silva J, Malheiro I, Carvalho F, Barros A, Sousa M. Quantitative analysis of cellular proliferation and differentiation of the human seminiferous epithelium in vitro. Reprod Sci 2012; 19:1063-74. [PMID: 22544847 DOI: 10.1177/1933719112440746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of the present work was to quantitate the temporal and stage-specific effects of follicle-stimulating hormone (FSH) and testosterone on the proliferation and differentiation capacities of the human seminiferous epithelium. Seminiferous tubule fragments were kept in culture for 28 days and 5-bromo-2'-deoxyuridine incorporation was used to determine cell proliferation. Data demonstrated a gradual loss of germ cells during the culture period, no decrease in Sertoli cell numbers, and maintenance of the general architecture of the seminiferous tubules. Both FSH and testosterone increased germ cell survival, spermatogonia proliferation, and germ cell differentiation, especially during the first week of culture. At the end of the first week, differentiation of spermatocytes was observed, especially when 50 IU/L FSH and 1 µmol/L testosterone were used. In conclusion, using this methodology, it was possible to quantify germ cell proliferation and differentiation, in a reproducible way, with results compatible with the timing of human spermatogenesis in vivo.
Collapse
Affiliation(s)
- Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, UMIB, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
11
|
Simorangkir DR, Ramaswamy S, Marshall GR, Roslund R, Plant TM. Sertoli cell differentiation in rhesus monkey (Macaca mulatta) is an early event in puberty and precedes attainment of the adult complement of undifferentiated spermatogonia. Reproduction 2012; 143:513-22. [PMID: 22232743 DOI: 10.1530/rep-11-0411] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In primates, the time course of Sertoli cell proliferation and differentiation during puberty and its relationship with the expansion of undifferentiated type A spermatogonia that occurs at this critical stage of development are poorly defined. Mid and late juvenile and early and late pubertal male rhesus monkeys were studied. Testes were immersion fixed, embedded in paraffin, and sectioned at 5 μm. Sertoli cell number per testis, S-phase labeling (BrdU), and growth fraction (Ki67 labeling) were determined and correlated with corresponding parameters for undifferentiated type A spermatogonia (A dark and A pale). Dual fluorescence labeling was used in addition to histochemistry to monitor spermatogonial differentiation during the peripubertal period using GFRα-1 and cKIT as markers. While the adult complement of Sertoli cells/testis was attained in early pubertal monkeys after only a few weeks of exposure to the elevated gonadotropin secretion characteristic of this developmental stage, the number of undifferentiated type A spermatogonia several months later in mid pubertal monkeys was only 50% of that in adult testes. Both A dark and A pale spermatogonia exhibited high S-phase BrdU labeling at all stages of juvenile and pubertal development. Spermatogonial differentiation, as reflected histochemically and by relative changes in GFRα-1 and cKIT expression, was not observed until after the initiation of puberty. In the rhesus monkey and maybe in other higher primates including human, the pubertal proliferation of undifferentiated spermatogonia is insidious and proceeds in the wake of a surge in Sertoli cell proliferation following termination of the juvenile stage of development.
Collapse
Affiliation(s)
- D R Simorangkir
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Plant TM. Undifferentiated primate spermatogonia and their endocrine control. Trends Endocrinol Metab 2010; 21:488-95. [PMID: 20359909 PMCID: PMC2896565 DOI: 10.1016/j.tem.2010.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/25/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
The biology of spermatogonial stem cells is currently an area of intensive research and contemporary studies in primates are emerging. Quantitative regulation of sperm output by the primate testis seems to be exerted primarily on the transition from undifferentiated to differentiating spermatogonia. This review examines recent advances in our understanding of the mechanisms governing spermatogonial renewal and early differentiation in male primates, with a focus on the monkey. Emerging revisions to the classic view of dark and pale type A spermatogonia as reserve and renewing spermatogonial stem cells, respectively, are critically evaluated and essential features of endocrine control of undifferentiated spermatogonia throughout postnatal primate development are discussed. Obstacles in gaining a more complete understanding of primate spermatogonia are also identified.
Collapse
Affiliation(s)
- Tony M Plant
- University of Pittsburgh, Magee-Womens Research Institute, 204 Craft Avenue, Rm. B311, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
|
15
|
McClusky LM, Patrick S, Barnhoorn IEJ, van Dyk JC, de Jager C, Bornman MS. Immunohistochemical study of nuclear changes associated with male germ cell death and spermiogenesis. J Mol Histol 2009; 40:287-99. [PMID: 19924546 DOI: 10.1007/s10735-009-9240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
In a previous study on the effects of gestational and lactational exposure of para-nonylphenol on male rats, we noted in both induced and uninduced rats, that variations in cleaved caspase-3 immunostaining patterns were associated with distinct nuclear alterations in mainly basally located germ cells (spermatogonia and preleptotene spermatocytes). These were re-analysed and compared with cleaved caspase-3-labeled germ cells in the aging human and the spermatogenically active catfish testis. In the rat testes, cytoplasmic immunostaining was progressively associated with lateral compression of the nucleus, its break up into large pieces which can contain immunostained marginated chromatin masses. The pale remnants of the nucleus continued to shrink in size concomitant with the appearance of blue-purplish stained regions in the cytoplasm similar in color to the condensed chromatin in spermatids, a condition which was TUNEL-negative. These large clumps of chromatin also eventually disappeared, giving rise to cells resembling cytoplasmic ghosts, a condition which was TUNEL-positive. By contrast, the immunolabeled nuclei of human and catfish germ cells condensed into a single mass, after which they lost immunoreactivity. To exclude the possibility that these observations could reflect alterations in Sertoli nuclei, rat testicular sections were probed with a mouse anti-human GATA-4 monoclonal (MHM) antibody. The MHM was, however, the second of two GATA-4 antibodies tested, with a goat anti-mouse polyclonal (GMP) initially used to label the rat Sertoli nuclei. GMP unexpectedly, but distinctly labeled the complete development of the acrosome in the rat testis, a fortuitous finding with utility for staging of the seminiferous epithelium.
Collapse
Affiliation(s)
- Leon M McClusky
- Department of Health and Nursing Science, Narvik University College, Narvik, Norway.
| | | | | | | | | | | |
Collapse
|
16
|
Simorangkir DR, Ramaswamy S, Marshall GR, Pohl CR, Plant TM. A selective monotropic elevation of FSH, but not that of LH, amplifies the proliferation and differentiation of spermatogonia in the adult rhesus monkey (Macaca mulatta). Hum Reprod 2009; 24:1584-95. [PMID: 19279035 DOI: 10.1093/humrep/dep052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Unilateral orchidectomy in monkeys increases spermatogenesis in the remaining testis in association with elevated follicle-stimulating hormone (FSH) secretion and testicular testosterone. The present study examined the relative importance of FSH and testosterone in driving the primate testis toward its spermatogenic ceiling. METHODS Adult male rhesus monkeys were treated with a gonadotropin-releasing hormone receptor antagonist to inhibit endogenous FSH and luteinizing hormone (LH) secretion. The gonadotrophin drive to the testis was replaced with a pulsatile recombinant human FSH and LH infusion to maintain testicular volume and circulating testosterone and inhibin B at physiological levels. A selective monotropic elevation of FSH or LH that doubled the concentrations of inhibin B or testosterone, respectively, was then imposed for 4 weeks, each in a group of four monkeys. In a third group (n = 4), the gonadotrophin drive remained clamped at physiological levels. Bromo-deoxyuridine was administered 3 h prior to castration, and the effects of the monotropic hormone increments on germ cell number, S-phase labeling and degeneration were determined. RESULTS Increased FSH, but not LH, produced increases in testicular volume (P < 0.05), the proportion of A pale spermatogonia entering the cell cycle and the numbers of differentiated spermatogonia and more advanced germ cells (P < 0.05). Indexes for spermatogonia labeling and germ cell degeneration were not affected. CONCLUSIONS Under physiological conditions, circulating concentrations of FSH directly dictate sperm output of the primate testis by regulating the proportion of Ap spermatogonia in the growth fraction. An effect of FSH on survival of the first generation of differentiated B spermatogonia is not excluded.
Collapse
Affiliation(s)
- D R Simorangkir
- Department of Cell Biology and Physiology, Center for Research in Reproductive Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
17
|
De Luca F, Mitchell V, Wasniewska M, Arrigo T, Messina MF, Valenzise M, de Sanctis L, Lahlou N. Regulation of spermatogenesis in McCune-Albright syndrome: lessons from a 15-year follow-up. Eur J Endocrinol 2008; 158:921-7. [PMID: 18505910 DOI: 10.1530/eje-07-0494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CONTEXT McCune-Albright syndrome (MAS) is a disorder caused by a post-zygotic gain-of-function mutation in the gene encoding the Gs-alpha protein. Sexual precocity, common in girls, has been reported in only 15% of boys, and little is known on the long-term evolution of MAS in males. OBJECTIVE In a boy with MAS, we studied spermatogenesis, testis histology, and immunohistochemistry with the aim to shed light on seminiferous tubule activity. DESIGN A boy who presented at the age of 2.9 years with sexual precocity, monolateral macroorchidism, increased testosterone levels, and suppressed gonadotropins was followed up until the age of 18. RESULTS Throughout follow-up testicular asymmetry persisted and gonadotropin and testosterone pattern did not change. At the age of 18, inhibin B was undetectable while alpha-immunoreactive inhibin was within normal range. Anti-Mullerian hormone level was slightly subnormal. Sperm cells were 3,900,000 per ejaculate. Histology of both testes showed spermatogonia, spermatocytes, and, in some tubes, matured spermatozoa. Sertoli cells were markedly stained with anti-inhibin alpha-subunit antibody in both the testes. There was no immunostaining of Sertoli, Leydig, or germ cells with anti-betaA or anti-betaB antibody. MAS R201H mutation was identified in both the testes. CONCLUSION The 15-year follow-up in this boy with MAS demonstrated that autonomous testicular activation and gonadotropin suppression persisted over time. This provides an interesting model of active spermatogenesis despite long-term FSH suppression. It also suggests that FSH is needed for the full expression of the inhibin betaB-subunit gene, an expression previously reported in the germ and Leydig cells of normal adult subjects.
Collapse
Affiliation(s)
- Filippo De Luca
- Department of Pediatrics, University of Messina, 01924 Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Collins PM, Tsang WN, Urbanski HF. Endocrine correlates of reproductive development in the male tree-shrew (Tupaia belangeri) and the effects of infantile exposure to exogenous androgens. Gen Comp Endocrinol 2007; 154:22-30. [PMID: 17686481 DOI: 10.1016/j.ygcen.2007.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 05/21/2007] [Accepted: 06/27/2007] [Indexed: 11/24/2022]
Abstract
The developmental life-history of tree-shrews conforms with the general primate pattern. Consequently, elucidation of the tree-shrew's neuroendocrine reproductive axis could shed light on the mechanisms that underlie human pubertal development. In the present study, we examined plasma gonadotropin concentrations in male tree-shrews from birth to sexual maturity, and related them to changes in the androgenic and gametogenic status of the testis. A hypogonadotropic infantile phase, during which a stable population of primordial cells is established, extended from birth to approximately Day 30. Following a short juvenile phase (Days 30-40), a pubertal phase of accelerated reproductive development was initiated between Days 40-55. At this time, FSH and LH levels rose and testosterone concentrations reached peak levels coincident with the descent of the testes, accelerated growth in the reproductive tract and the onset of spermatogenesis. To test whether this developmental peak in testosterone secretion is an important determinant in the normal onset of puberty, we exposed male tree-shrews prematurely to high circulating androgen levels for various periods and then examined the impact on key components of the developing reproductive axis. The testosterone implants failed to initiate spermatogenesis and the testes remained in an infantile state for the duration of the treatment, whereas implant removal led to the development of full spermatogenic activity. In both normal and experimental situations, low levels of FSH were associated with a lack of spermatogenic activity while the progression of germ cell development was precisely correlated with rising FSH levels. Taken together, these data establish a comprehensive picture of reproductive development in the male tree-shrew, and also provide support for the hypothesis that FSH plays a primary role in the initiation of spermatogenesis.
Collapse
Affiliation(s)
- Peter M Collins
- Department of Biological Sciences, University of California, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
19
|
Shiraishi K, Naito K. Effects of 4-Hydroxy-2-Nonenal, a Marker of Oxidative Stress, on Spermatogenesis and Expression of p53 Protein in Male Infertility. J Urol 2007; 178:1012-7; discussion 1017. [PMID: 17632137 DOI: 10.1016/j.juro.2007.05.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Indexed: 11/18/2022]
Abstract
PURPOSE Oxidative stress is involved in male infertility. However, little is known about how it impairs spermatogenesis. We investigated the presence of oxidative stress in human testes by studying the generation of 4-hydroxy-2-nonenal modified proteins and expressions of proliferating cell nuclear antigen and p53. MATERIALS AND METHODS A total of 47 testicular biopsies from patients with varicocele, obstructive azoospermia and idiopathic infertility were included. Localization and generation of 4-hydroxy-2-nonenal modified proteins were determined by immunohistochemistry and Western blotting. The expressions of proliferating cell nuclear antigen and p53 were assessed by Western blotting. The interaction between 4-hydroxy-2-nonenal modified proteins and p53 was examined by immunoprecipitation. Data were compared to clinicopathological parameters. RESULTS 4-Hydroxy-2-nonenal modified proteins were strongly positive in spermatogonia, primary spermatocytes and Sertoli's cells, and generation was inversely correlated with expression of proliferating cell nuclear antigen. The expression of p53 was increased in testes with varicocele (p <0.01) and obstructive azoospermia (p <0.05), and there was a positive or inverse correlation with 4-hydroxy-2-nonenal modified proteins and proliferating cell nuclear antigen. Immunoprecipitated p53 was detected by anti-4-hydroxy-2-nonenal modified protein antibody. CONCLUSIONS 4-Hydroxy-2-nonenal impairs the proliferation of germ cells through the up-regulation of p53 protein, especially in testes with varicocele. Modification by 4-hydroxy-2-nonenal might alter normal function and stabilization of p53 protein.
Collapse
Affiliation(s)
- Koji Shiraishi
- Department of Urology, Yamaguchi University School of Medicine, Yamaguchi, Japan.
| | | |
Collapse
|
20
|
Shibata M, Friedman RL, Ramaswamy S, Plant TM. Evidence that down regulation of hypothalamic KiSS-1 expression is involved in the negative feedback action of testosterone to regulate luteinising hormone secretion in the adult male rhesus monkey (Macaca mulatta). J Neuroendocrinol 2007; 19:432-8. [PMID: 17504437 DOI: 10.1111/j.1365-2826.2007.01549.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the male monkey, luteinising hormone (LH) secretion is regulated by a negative feedback action of testicular testosterone that is exerted indirectly at the hypothalamic level to decelerate pulsatile gonadotrophin-releasing hormone release (GnRH). The purpose of the present experiment was to investigate whether the kisspeptin-G protein-coupled receptor 54 (GPR54) signalling pathway is involved in mediating the action of testosterone to suppress GnRH release in the monkey, as has been indicated by studies of nonprimates. To this end, 12 castrated adult male rhesus monkeys were implanted with either testosterone containing or empty Silastic capsules. Testosterone treatment produced a square wave increment in circulating testosterone levels within the physiologic range. After suppression of LH and follicle-stimulating hormone secretion was established at 5-6 weeks of testosterone exposure, the animals were killed and expression of the genes encoding for kisspeptin, GPR54 and GnRH determined in the mediobasal hypothalamus and preoptic area of both treated and control animals using RNase protection assays. The suppression in pituitary gonadotrophin secretion was associated with a reduction in kisspeptin mRNA levels in the mediobasal hypothalamus, but not the preoptic area. GPR54 mRNA levels, on the other hand, were not influenced by testosterone treatment. These results are consistent with those previously reported for the rodent, and suggest that the neurobiology of the negative feedback action of testicular testosterone on LH secretion in the monkey, a representative higher primate, may be mediated by kisspeptinergic neurones upstream to the GnRH network.
Collapse
Affiliation(s)
- M Shibata
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
21
|
Soriano-Guillen L, Mitchell V, Carel JC, Barbet P, Roger M, Lahlou N. Activating mutations in the luteinizing hormone receptor gene: a human model of non-follicle-stimulating hormone-dependent inhibin production and germ cell maturation. J Clin Endocrinol Metab 2006; 91:3041-7. [PMID: 16684832 DOI: 10.1210/jc.2005-2564] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Familial male-limited precocious puberty is a dominant autosomal genetic disease caused by activating LH receptor gene mutations, clinically expressed only in males. In preliminary studies, in addition to the expected testosterone increase, we found high inhibin B levels before the age of normal puberty. OBJECTIVES The objective of the study was to assess the cellular origin of serum inhibin thanks to testis section immunostaining. MAIN OUTCOME MEASURES Serum testosterone, gonadotropin, inhibin B, pan-alphaC-inhibin, and anti-Mullerian hormone levels were measured. Immunostaining was performed using specific anti-alpha- and anti-beta-subunit antibodies. SUBJECTS AND METHODS Five boys from three families (mutation M398T or I542L) were investigated at onset (2-6 yr), on ketoconazole treatment, and at adolescence. Testis biopsies were performed in three subjects before the disease was fully characterized. RESULTS The high testosterone levels were suppressed by ketoconazole. Anti-Mullerian hormone levels were inversely related to testosterone: low at diagnosis, elevated after testosterone suppression. Despite FSH suppression, inhibin B and pan-alphaC-inhibin levels were high from clinical onset to adolescence. Biopsy specimens showed normal Sertoli cell complement and germ cell maturation until the spermatocyte II stage. Sertoli and Leydig cells displayed positive inhibin alpha-subunit immunostaining. Only Leydig cells and spermatogonia stained positively for the inhibin betaB-subunit. CONCLUSIONS Familial male-limited precocious puberty is a unique model of inhibin B secretion, demonstrating that Leydig cells can produce significant amounts of the dimeric molecule. Our results also suggest that the pubertal FSH rise is not required for full expression of the two inhibin B genes and for the initiation of germ cell maturation.
Collapse
Affiliation(s)
- Leandro Soriano-Guillen
- Department of Pediatric Endocrinology, Centre Hospitalier Universitaire Cochin Saint Vincent de Paul, 82 avenue Denfert-Rochereau, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Plant TM, Ramaswamy S, Simorangkir D, Marshall GR. Postnatal and pubertal development of the rhesus monkey (Macaca mulatta) testis. Ann N Y Acad Sci 2006; 1061:149-62. [PMID: 16467264 DOI: 10.1196/annals.1336.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review examines the neurobiology, endocrinology, and cell biology underlying the development of the testis from birth until puberty in the rhesus monkey, a representative higher primate.
Collapse
Affiliation(s)
- Tony M Plant
- University of Pittsburgh School of Medicine, Department of Cell Biology and Physiology, 3550 Terrace Street, Rm. 828 Scaife Hall, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|