1
|
Chen W, Han Y, Chen Y, Liu X, Liang H, Wang C, Khan MZ. Potential Candidate Genes Associated with Litter Size in Goats: A Review. Animals (Basel) 2025; 15:82. [PMID: 39795025 PMCID: PMC11718837 DOI: 10.3390/ani15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
This review examines genetic markers associated with litter size in goats, a key reproductive trait impacting productivity in small ruminant farming. Goats play a vital socioeconomic role in both low- and high-income regions; however, their productivity remains limited due to low reproductive efficiency. Litter size, influenced by multiple genes and environmental factors, directly affects farm profitability and sustainability by increasing the output per breeding cycle. Recent advancements in genetic research have identified key genes and pathways associated with reproductive traits, including gonadotropin-releasing hormone (GnRH), inhibin (INHAA), Kit ligand (KITLG), protein phosphatase 3 catalytic subunit alpha (PPP3CA), prolactin receptor (PRLR), POU domain class 1 transcription factor 1 (POU1F1), anti-Müllerian hormone (AMH), bone morphogenetic proteins (BMP), growth differentiation factor 9 (GDF9), and KISS1 and suppressor of mothers against decapentaplegic (SMAD) family genes, among others. These genes regulate crucial physiological processes such as folliculogenesis, hormone synthesis, and ovulation. Genome-wide association studies (GWASs) and transcriptomic analyses have pinpointed specific genes linked to increased litter size, highlighting their potential in selective breeding programs. By incorporating genomic data, breeding strategies can achieve higher selection accuracy, accelerate genetic gains, and improve reproductive efficiency. This review emphasizes the importance of genetic markers in optimizing litter size and promoting sustainable productivity in goat farming.
Collapse
Affiliation(s)
| | | | | | | | | | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
Abstract
Male germ cells undergo a complex sequence of developmental events throughout fetal and postnatal life that culminate in the formation of haploid gametes: the spermatozoa. Errors in these processes result in infertility and congenital abnormalities in offspring. Male germ cell development starts when pluripotent cells undergo specification to sexually uncommitted primordial germ cells, which act as precursors of both oocytes and spermatozoa. Male-specific development subsequently occurs in the fetal testes, resulting in the formation of spermatogonial stem cells: the foundational stem cells responsible for lifelong generation of spermatozoa. Although deciphering such developmental processes is challenging in humans, recent studies using various models and single-cell sequencing approaches have shed new insight into human male germ cell development. Here, we provide an overview of cellular, signaling and epigenetic cascades of events accompanying male gametogenesis, highlighting conserved features and the differences between humans and other model organisms.
Collapse
Affiliation(s)
- John Hargy
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Wu GMJ, Chen ACH, Yeung WSB, Lee YL. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells. Front Cell Dev Biol 2023; 11:1166351. [PMID: 37325555 PMCID: PMC10267358 DOI: 10.3389/fcell.2023.1166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian female reproduction requires a functional ovary. Competence of the ovary is determined by the quality of its basic unit-ovarian follicles. A normal follicle consists of an oocyte enclosed within ovarian follicular cells. In humans and mice, the ovarian follicles are formed at the foetal and the early neonatal stage respectively, and their renewal at the adult stage is controversial. Extensive research emerges recently to produce ovarian follicles in-vitro from different species. Previous reports demonstrated the differentiation of mouse and human pluripotent stem cells into germline cells, termed primordial germ cell-like cells (PGCLCs). The germ cell-specific gene expressions and epigenetic features including global DNA demethylation and histone modifications of the pluripotent stem cells-derived PGCLCs were extensively characterized. The PGCLCs hold potential for forming ovarian follicles or organoids upon cocultured with ovarian somatic cells. Intriguingly, the oocytes isolated from the organoids could be fertilized in-vitro. Based on the knowledge of in-vivo derived pre-granulosa cells, the generation of these cells from pluripotent stem cells termed foetal ovarian somatic cell-like cells was also reported recently. Despite successful in-vitro folliculogenesis from pluripotent stem cells, the efficiency remains low, mainly due to the lack of information on the interaction between PGCLCs and pre-granulosa cells. The establishment of in-vitro pluripotent stem cell-based models paves the way for understanding the critical signalling pathways and molecules during folliculogenesis. This article aims to review the developmental events during in-vivo follicular development and discuss the current progress of generation of PGCLCs, pre-granulosa and theca cells in-vitro.
Collapse
Affiliation(s)
- Genie Min Ju Wu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
4
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
5
|
Wang J, Li W, Zhou N, Liu J, Zhang S, Li X, Li Z, Yang Z, Sun M, Li M. Identification of a novel mutation in the KITLG gene in a Chinese family with familial progressive hyper- and hypopigmentation. BMC Med Genomics 2021; 14:12. [PMID: 33407466 PMCID: PMC7789533 DOI: 10.1186/s12920-020-00851-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Familial progressive hyper- and hypopigmentation (FPHH, MIM 145250) is a rare hereditary skin disorder that is predominantly characterized by progressive, diffuse, partly blotchy hyperpigmented lesions intermingled with scattered hypopigmented spots, lentigines and sometimes Cafe-au-lait spots (CALs). Heterozygous mutations of the KIT ligand (KITLG, MIM 184745) gene are responsible for FPHH. To date, only eight KITLG mutations have been reported to be associated with FPHH, and no clear genotype-phenotype correlations have been established. This study aimed to identify the causative mutations in the KITLG gene in two Chinese FPHH patients. METHODS Direct sequencing of the coding regions of KITLG was performed. Pathogenicity prediction was performed using bioinformatics tools, including SIFT, Polyphen2, and SWISS-MODEL, and the results were further evaluated according to the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS The novel mutation c.104A > T (p.Asn35Ile) and the recurrent mutation c.101C > T (p.Thr34Ile) in KITLG were identified. As shown using SIFT and Polyphen-2 software, both mutations identified in this study were predicted to be detrimental variations. Three-dimensional protein structure modeling indicated that the mutant KITLG proteins might affect the affinity of KITLG for its receptor, c-KIT. According to the 2015 ACMG guidelines, the novel mutation c.104A > T was 'likely pathogenic'. CONCLUSIONS To date, most of the identified KITLG mutations have been clustered within the conserved VTNNV motif (amino acids 33-37) in exon 2. The known mutations are only involved in 33 V, 34 T, 36 N, and 37 V but not 35 N. We have now identified a novel mutation in KITLG, c.104A > T, that was first reported in FPHH within the conserved 35 N motif. These results strengthen our understanding of FPHH and expand the mutational spectrum of the KITLG gene.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Dermatology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Weisheng Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Naihui Zhou
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Shoumin Zhang
- Department of Dermatology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Xueli Li
- Department of Dermatology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Zhenlu Li
- Department of Dermatology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Ziliang Yang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China.
| | - Min Li
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China.
| |
Collapse
|
6
|
Borkowska M, Leitch HG. Mouse Primordial Germ Cells: In Vitro Culture and Conversion to Pluripotent Stem Cell Lines. Methods Mol Biol 2021; 2214:59-73. [PMID: 32944903 DOI: 10.1007/978-1-0716-0958-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes. Despite decades of research, in vitro culture of PGCs remains a major challenge and has previously relied on undefined components such as serum and feeders. Notably, PGCs cultured for extended periods do not maintain their lineage identity but instead undergo conversion to form pluripotent stem cell lines called embryonic germ (EG) cells in response to LIF/STAT3 signaling. Here we report both established and new methodologies to derive EG cells, in a range of different conditions. We show that basic fibroblast growth factor is not required for EG cell conversion. We detail the steps taken in our laboratory to systematically remove complex components and establish a fully defined protocol that allows efficient conversion of isolated PGCs to pluripotent EG cells. In addition, we demonstrate that PGCs can adhere and proliferate in culture without the support of feeder cells or serum. This may well suggest novel approaches to establishing short-term culture of PGCs in defined conditions.
Collapse
Affiliation(s)
- Malgorzata Borkowska
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
7
|
KHARCHE SURESHDINKAR, JENA DAYANIDHI, GANGWAR CHETNA, KHATTI AMIT, BALAMURUGAN B. Role of certain growth factors and hormones in folliculogenesis. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v89i12.96617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Folliculogenesis is an inextricable process associated with female fertility and infertility cases. This process involves many events at cellular and molecular level in a highly orchestrated fashion which culminates with ovulation. Various factors like hormonal factors, growth factors, role of ovarian micro environment, diseases of reproductive tract etc. influence the process of folliculogenesis in systematic manner. The function and mechano-biology of these growth factors and hormones have been studied by many researchers. This review discusses about those hormonal and growth factors which are involved in folliculogenesis process.
Collapse
|
8
|
Abstract
Germ cell tumors (GCTs) arising in infants, children, and adolescents present a set of special challenges. GCTs make up about 3% of malignancies in children aged 0–18 and nearly 15% of cancers in adolescents. Epidemiologic and molecular evidence suggests that GCTs in young children likely represent a distinct biologic group as compared to GCTs of older adolescents and adults. Despite this difference, pediatric GCTs are typically treated with cisplatin-based multiagent regimens similar to those used in adults. There is evidence that children are particularly vulnerable to late effects of conventional therapy, including ototoxicity, pulmonary abnormalities, and secondary malignancies, motivating the search for molecular targets for novel therapies. Evidence is accumulating that the genes and mechanisms controlling normal germ cell development are particularly relevant to the understanding of germ cell tumorigenesis. Perturbations in the epigenetic program of germ cell differentiation, with resulting effects on the regulation of pluripotency, may contribute to the marked histologic variability of GCTs. Perturbations in the KIT receptor signaling pathway have been identified via next-generation sequencing studies and in genome-wide association studies of testicular cancer susceptibility. Here, we review these and other biological insights that may fuel further translational and clinical research in childhood GCTs.
Collapse
|
9
|
Rehman ZU, Worku T, Davis JS, Talpur HS, Bhattarai D, Kadariya I, Hua G, Cao J, Dad R, Hussain T, Yang L. Role and mechanism of AMH in the regulation of Sertoli cells in mice. J Steroid Biochem Mol Biol 2017; 174:133-140. [PMID: 28851672 DOI: 10.1016/j.jsbmb.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
Sertoli cells produce anti-Müllerian hormone (AMH), a glycoprotein belonging to the transforming growth factor-beta family. AMH mediates the regression of Müllerian ducts in the developing male fetus. However, the role of AMH in the regulation of primary Sertoli cells remains unclear. The present study was designed to investigate the effect of AMH on the viability and proliferation of Sertoli cells, with an additional focus on stem cell factor (SCF). Treatment of Sertoli cells with increasing concentrations of rh-AMH (0, 10, 50, 100, and 800ng/ml) for two days revealed that AMH, at high concentrations, increased apoptosis. These results were confirmed by a significant increase in Caspase-3 and Bax and a decrease in Bcl-2 protein and mRNA expression (P<0.01). Paradoxically, treatment with a low concentration of rh-AMH (10ng/ml), but not higher concentrations (50-800ng/ml), promoted Sertoli cell proliferation, which was verified by an increase in PCNA mRNA (P<0.05). Furthermore, only low concentrations of rh-AMH activated the non-canonical ERK signaling pathway. Similarly, low concentrations of rh-AMH (10-50ng/ml) significantly increased (P<0.05) SCF mRNA and SCF protein levels. These findings indicate that AMH differentially regulates the fate of Sertoli cells in vitro by promoting proliferation at low concentrations and apoptosis at high concentrations. In addition, AMH increased the expression of SCF, an important regulator of Sertoli cell development. Therefore, AMH may play a role in Sertoli cell development.
Collapse
Affiliation(s)
- Zia Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tesfaye Worku
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - John S Davis
- Olson Center for Women's Health, Omaha VA Medical Center, Omaha, NE, USA; Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ishwari Kadariya
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rahim Dad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tarique Hussain
- Lab of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese of Academy of Science, Changsha, Hunan, 410125, People's Republic of China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
De Felici M. The Formation and Migration of Primordial Germ Cells in Mouse and Man. Results Probl Cell Differ 2016; 58:23-46. [DOI: 10.1007/978-3-319-31973-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
11
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
12
|
An XP, Hou JX, Gao TY, Lei YN, Song YX, Wang JG, Cao BY. Association analysis between variants in KITLG gene and litter size in goats. Gene 2014; 558:126-30. [PMID: 25550049 DOI: 10.1016/j.gene.2014.12.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/05/2014] [Accepted: 12/24/2014] [Indexed: 11/29/2022]
Abstract
Xinong Saanen (SN) and Guanzhong (GZ) goat breeds were used to detect single nucleotide polymorphisms (SNPs) in the coding regions with their intron-exon boundaries and the proximal flanking regions of KITLG gene by DNA sequencing and genotyped by PCR-restriction fragment (PCR-RFLP). Four novel SNPs (g.12654G>A, g.12772G>A, g.12829T>C and g.23683C>T) were identified (GenBank accession No. KM609289). It was shown that Xinong Saanen and Guanzhong goat breeds were in Hardy-Weinberg disequilibrium at g.12654G>A, g.12772G>A and g.12829T>C loci (P<0.05). The g.12654G>A, g.12772G>A and g.12829T>C loci were closely linked in both goat breeds (r(2)>0.33). Results of an association analysis indicated that SNPs g.12654G>A, g.12772G>A and g.12829T>C had significant effects on litter size (P<0.05). The combined genotypes of four SNP loci also affected litter size with the C7(GG/GG/CC/CC) genotype in the SN goat breed and C1(AA/GG/CC/CC) and C7(GG/GG/CC/CC) genotypes in the GZ goat breed having the highest litter size. The biochemical and physiological functions, together with the results obtained in our investigation, suggest that C7(GG/GG/CC/CC) could be used in marker-assisted selection to select the individuals with higher litter size in both goat breeds. The results extend the spectrum of genetic variation of the caprine KITLG gene, which might contribute to goat genetic resources and breeding.
Collapse
Affiliation(s)
- X P An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - J X Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - T Y Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Y N Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Y X Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - J G Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - B Y Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
13
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Leitch HG, Tang WWC, Surani MA. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 2014; 104:149-87. [PMID: 23587241 DOI: 10.1016/b978-0-12-416027-9.00005-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes and represent the founder cells of the germline. Specification of PGCs is a critical divergent point during embryogenesis. Whereas the somatic lineages will ultimately perish, cells of the germline have the potential to form a new individual and hence progress to the next generation. It is therefore critical that the genome emerges intact and carrying the appropriate epigenetic information during its passage through the germline. To ensure this fidelity of transmission, PGC development encompasses extensive epigenetic reprogramming. The low cell numbers and relative inaccessibility of PGCs present a challenge to those seeking mechanistic understanding of the crucial developmental and epigenetic processes in this most fascinating of lineages. Here, we present an overview of PGC development in the mouse and compare this with the limited information available for other mammalian species. We believe that a comparative approach will be increasingly important to uncover the extent to which mechanisms are conserved and reveal the critical steps during PGC development in humans.
Collapse
Affiliation(s)
- Harry G Leitch
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
15
|
Genome-wide association studies of cancer predisposition. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Jorgensen JS. Defining the neighborhoods that escort the oocyte through its early life events and into a functional follicle. Mol Reprod Dev 2013; 80:960-76. [PMID: 24105719 PMCID: PMC3980676 DOI: 10.1002/mrd.22232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 01/19/2023]
Abstract
The ovary functions to chaperone the most precious cargo for female individuals, the oocyte, thereby allowing the passage of genetic material to subsequent generations. Within the ovary, single oocytes are surrounded by a legion of granulosa cells inside each follicle. These two cell types depend upon one another to support follicle formation and oocyte survival. The infrastructure and events that work together to ultimately form these functional follicles within the ovary are unprecedented, given that the oocyte originates as a cell like all other neighboring cells within the embryo prior to gastrulation. This review discusses the journey of the germ cell in the context of the developing female mouse embryo, with a focus on specific signaling events and cell-cell interactions that escort the primordial germ cell as it is specified into the germ cell fate, migrates through the hindgut into the gonad, differentiates into an oocyte, and culminates upon formation of the primordial and then primary follicle.
Collapse
Affiliation(s)
- Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
17
|
Abstract
RanBPM is a multimodular scaffold protein that interacts with a great variety of molecules including nuclear, cytoplasmic, and membrane proteins. By building multiprotein complexes, RanBPM is thought to regulate various signaling pathways, especially in the immune and nervous system. However, the diversity of these interactions does not facilitate the identification of its precise mechanism of action, and therefore the physiological role of RanBPM still remains unclear. Recently, RanBPM has been shown to be critical for the fertility of both genders in mouse. Although mechanistically it is still unclear how RanBPM affects gametogenesis, the data collected so far suggest that it is a key player in this process. Here, we examine the RanBPM sterility phenotype in the context of other genetic mutations affecting mouse gametogenesis to investigate whether this scaffold protein affects the function of other known proteins whose deficiency results in similar sterility phenotypes.
Collapse
Affiliation(s)
- Sandrine Puverel
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA.
| | | |
Collapse
|
18
|
Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AMM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1838-50. [PMID: 22366765 DOI: 10.1016/j.bbadis.2012.02.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is a complex developmental process that ultimately generates mature spermatozoa. This process involves a phase of proliferative expansion, meiosis, and cytodifferentiation. Mouse models have been widely used to study spermatogenesis and have revealed many genes and molecular mechanisms that are crucial in this process. Although meiosis is generally considered as the most crucial phase of spermatogenesis, mouse models have shown that pre-meiotic and post-meiotic phases are equally important. Using knowledge generated from mouse models and in vitro studies, the current review provides an overview of the molecular control of rodent spermatogenesis. Finally, we briefly relate this knowledge to fertility problems in humans and discuss implications for future research. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
Collapse
Affiliation(s)
- Sabrina Z Jan
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Ferlin A, Pengo M, Pizzol D, Carraro U, Frigo AC, Foresta C. Variants in KITLG predispose to testicular germ cell cancer independently from spermatogenic function. Endocr Relat Cancer 2012; 19:101-8. [PMID: 22194441 DOI: 10.1530/erc-11-0340] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological data suggest an association and a common pathogenetic link between male infertility and testicular germ cell tumor (TGCT) development. Genome-wide studies identified that TGCT susceptibility is associated with KITLG (c-KIT ligand), which regulates the formation of primordial germ cells, from which TGCT is believed to arise and spermatogenesis develops. In this study, we analyzed the link between KITLG, TGCT, and spermatogenic disruption by performing an association study between the KITLG markers rs995030 and rs4471514 and 426 TGCT cases and 614 controls with normal and abnormal sperm count. We found that TGCT risk was increased more than twofold per copy of the major G allele and A allele in KITLG rs995030 and rs4471514 (odds ratio (OR)=2.38, 95% confidence interval (95% CI)=1.81-3.12; OR=2.43, 95% CI=1.86-3.17 respectively), and homozygotes for the risk allele had a sevenfold increased risk of TGCT. KITLG markers were strongly associated with seminoma subtype (per allele risk increased more than threefold, homozygote risk increased by 13- to 16-fold) and weakly with nonseminoma. KITLG markers were not associated with sperm production, as no difference was observed in men with normozoospermia and azoo-oligozoospermia, both in controls and in TGCT cases. In conclusion, this study provides evidence that KITLG variants are involved in TGCT development and they represent an independent and strong specific risk factor for TGCT independently from spermatogenic function. A shared genetic cause and a common pathogenetic link between TGCT development and impairment of spermatogenesis are not evident from this study.
Collapse
Affiliation(s)
- Alberto Ferlin
- Section of Clinical Pathology and Centre for Human Reproduction Pathology, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Primordial Germ Cell Technologies for Avian Germplasm Cryopreservation and Investigating Germ Cell Development. J Poult Sci 2012. [DOI: 10.2141/jpsa.011161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Ror2 enhances polarity and directional migration of primordial germ cells. PLoS Genet 2011; 7:e1002428. [PMID: 22216013 PMCID: PMC3245308 DOI: 10.1371/journal.pgen.1002428] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
The trafficking of primordial germ cells (PGCs) across multiple embryonic structures to the nascent gonads ensures the transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated, resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant. We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF (secreted KitL), whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell. Egg and sperm derive from precursors in the early embryo called primordial germ cells (PGCs). The mechanisms underlying the migration of PGCs through the embryo to the forming gonads remain unclear. In a genetic screen, we identified a role for the receptor Ror2 and its ligand Wnt5a in promoting PGC colonization of the embryonic gonads. By ex vivo culture, we show that Ror2 acts autonomously in PGCs to enhance their polarized response to the chemotactic factor SCF. Asymmetric distribution of ROR2 within PGCs in vitro and in vivo suggests that signaling via Ror2 locally amplifies cell polarity in response to other directional cues. These studies identify a novel relationship between Ror2 and cKit signaling in polarized migration.
Collapse
|
22
|
Gu Y, Runyan C, Shoemaker A, Surani MA, Wylie C. Membrane-bound steel factor maintains a high local concentration for mouse primordial germ cell motility, and defines the region of their migration. PLoS One 2011; 6:e25984. [PMID: 21998739 PMCID: PMC3188585 DOI: 10.1371/journal.pone.0025984] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/14/2011] [Indexed: 11/29/2022] Open
Abstract
Steel factor, the protein product of the Steel locus in the mouse, is a multifunctional signal for the primordial germ cell population. We have shown previously that its expression accompanies the germ cells during migration to the gonads, forming a “travelling niche” that controls their survival, motility, and proliferation. Here we show that these functions are distributed between the alternatively spliced membrane-bound and soluble forms of Steel factor. The germ cells normally migrate as individuals from E7.5 to E11.5, when they aggregate together in the embryonic gonads. Movie analysis of Steel-dickie mutant embryos, which make only the soluble form, at E7.5, showed that the germ cells fail to migrate normally, and undergo “premature aggregation” in the base of the allantois. Survival and directionality of movement is not affected. Addition of excess soluble Steel factor to Steel-dickie embryos rescued germ cell motility, and addition of Steel factor to germ cells in vitro showed that a fourfold higher dose was required to increase motility, compared to survival. These data show that soluble Steel factor is sufficient for germ cell survival, and suggest that the membrane-bound form provides a higher local concentration of Steel factor that controls the balance between germ cell motility and aggregation. This hypothesis was tested by addition of excess soluble Steel factor to slice cultures of E11.5 embryos, when migration usually ceases, and the germ cells aggregate. This reversed the aggregation process, and caused increased motility of the germ cells. We conclude that the two forms of Steel factor control different aspects of germ cell behavior, and that membrane-bound Steel factor controls germ cell motility within a “motility niche” that moves through the embryo with the germ cells. Escape from this niche causes cessation of motility and death by apoptosis of the ectopic germ cells.
Collapse
Affiliation(s)
- Ying Gu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Molecular and Developmental Biology Graduate Program, School of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Christopher Runyan
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Amanda Shoemaker
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Christopher Wylie
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abe K, Naruse C, Kato T, Nishiuchi T, Saitou M, Asano M. Loss of heterochromatin protein 1 gamma reduces the number of primordial germ cells via impaired cell cycle progression in mice. Biol Reprod 2011; 85:1013-24. [PMID: 21778144 DOI: 10.1095/biolreprod.111.091512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Signals from extraembryonic tissues in mice determine which proximal epiblast cells become primordial germ cells (PGCs). After their specification, approximately 40 PGCs appear at the base of the allantoic bud and migrate to the genital ridges, where they expand to about 25 000 cells by Embryonic Day (E)13.5. The heterochromatin protein 1 (HP1) family members HP1alpha, HP1beta, and HP1gamma (CBX5, CBX1, and CBX3, respectively) are thought to induce heterochromatin structure and to regulate gene expression by binding methylated histone H3 lysine 9. We found a dramatic loss of germ cells before meiosis in HP1gamma mutant (HP1gamma(-/-)) mice that we generated previously. The reduction in PGCs in HP1gamma(-/-) embryos was detectable from the early bud stage (E7.25), and the number of HP1gamma(-/-) PGCs was gradually reduced thereafter. Bromodeoxyuridine incorporation into PGCs was significantly reduced in E7.25 and E12.5 HP1gamma(-/-) embryos. Furthermore, a lower proportion of HP1gamma(-/-) PGCs than wild-type PGCs was in S phase, and a higher proportion, respectively, was in G1 phase at E12.5. Moreover, the proportion of p21 (Cip, official symbol CDKN1A)-positive HP1gamma(-/-) PGCs was increased, suggesting that the G1/S phase transition was inhibited. However, no differences were detected between fate determination, migration, apoptosis, or histone modification of PGCs of control embryos and those of HP1gamma(-/-) embryos. Therefore, the reduction in PGCs in HP1gamma(-/-) embryos could be caused by impaired cell cycle in PGCs. These results suggest that HP1gamma plays an important role in keeping enough germ cells by regulating the PGC cell cycle.
Collapse
Affiliation(s)
- Kanae Abe
- Divisions of Transgenic Animal Science and Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
24
|
An XP, Hou JX, Li G, Song YX, Wang JG, Chen QJ, Cui YH, Wang YF, Cao BY. Polymorphism identification in the goat KITLG gene and association analysis with litter size. Anim Genet 2011; 43:104-7. [PMID: 22221032 DOI: 10.1111/j.1365-2052.2011.02219.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reported the analysis of KIT ligand (KITLG) gene polymorphisms in 681 goats of three breeds: Xinong Saanen (SN), Guanzhong (GZ), and Boer (BG). In addition, the study identified three allelic variants: g.769T>C and g.817G>T in SN and GZ breeds, and g.9760G>C in the three goat breeds. The g.769T>C and g.817G>T loci were closely linked (r(2) > 0.33). All the single nucleotide polymorphism loci were in Hardy-Weinberg disequilibrium (P < 0.05). Significant associations were found for litter size with all three loci. Therefore, these results suggest that the KITLG gene is a strong candidate gene affecting litter size in goats.
Collapse
Affiliation(s)
- X P An
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Strauss TJ, Castrillon DH, Hammes SR. GATA-like protein-1 (GLP-1) is required for normal germ cell development during embryonic oogenesis. Reproduction 2011; 141:173-81. [DOI: 10.1530/rep-10-0376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oogenesis and primordial follicle formation are tightly linked processes, requiring organized and precisely timed communication between somatic and germ cells. Deviations in ovarian cell cross talk, or aberrant gene expression within one of the cell populations, can lead to follicle loss or dysfunction, resulting in infertility. Expression of GATA-like protein-1 (GLP-1) in ovarian somatic cells is required for normal fertility in female mice, as GLP-1 deficiency leads to the absence of oocytes at birth. However, the timing and nature of this germ cell loss is not well understood. In this study, we characterize the embryonic germ cell loss in GLP-1 null mice. Quantitative PCR demonstrates that ovarian Glp-1 mRNA is expressed in a bimodal pattern during embryogenesis, peaking at E13.5–14.5 and again at birth. In contrast, adult ovaries express low but detectable levels of Glp-1 mRNA. Analysis of developing GLP-1 null mouse ovaries shows that germ cells are appropriately specified and migrate normally to nascent gonads. Upon arrival at the gonad, precocious loss of germ cells begins at around E13.5. This loss is completed by birth and is accompanied by defects in the expression of genes associated with meiotic entry. Interestingly, somatic pregranulosa cells still form basement membranes surrounding germ line cysts and express mRNA encoding paracrine signaling molecules that communicate with oocytes, albeit at lower levels than normal. Together, these data imply that the somatic cell protein GLP-1 is not necessary for many pregranulosa cell functions but is required for germ cell survival.
Collapse
|
26
|
Stadler ZK, Vijai J, Thom P, Kirchhoff T, Hansen NA, Kauff ND, Robson M, Offit K. Genome-wide Association Studies of Cancer Predisposition. Hematol Oncol Clin North Am 2010; 24:973-96. [DOI: 10.1016/j.hoc.2010.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Abstract
Primordial germ cells (PGCs) are embryonic progenitors for the gametes. In the gastrulating mouse embryo, a small group of cells begin expressing a unique set of genes and so commit to the germline. Over the next 3-5 days, these PGCs migrate anteriorly and increase rapidly in number via mitotic division before colonizing the newly formed gonads. PGCs then express a different set of unique genes, their inherited epigenetic imprint is erased and an individual methylation imprint is established, and for female PGCs, the silent X chromosome is reactivated. At this point, germ cells (GCs) commit to either a female or male sexual lineage, denoted by meiosis entry and mitotic arrest, respectively. This developmental program is determined by cues emanating from the somatic environment.
Collapse
Affiliation(s)
- Katherine A Ewen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
28
|
Bowles J, Koopman P. Sex determination in mammalian germ cells: extrinsic versus intrinsic factors. Reproduction 2010; 139:943-58. [DOI: 10.1530/rep-10-0075] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian germ cells do not determine their sexual fate based on their XX or XY chromosomal constitution. Instead, sexual fate is dependent on the gonadal environment in which they develop. In a fetal testis, germ cells commit to the spermatogenic programme of development during fetal life, although they do not enter meiosis until puberty. In a fetal ovary, germ cells commit to oogenesis by entering prophase of meiosis I. Although it was believed previously that germ cells are pre-programmed to enter meiosis unless they are actively prevented from doing so, recent results indicate that meiosis is triggered by a signaling molecule, retinoic acid (RA). Meiosis is avoided in the fetal testis because a male-specifically expressed enzyme actively degrades RA during the critical time period. Additional extrinsic factors are likely to influence sexual fate of the germ cells, and in particular, we postulate that an additional male-specific fate-determining factor or factors is involved. The full complement of intrinsic factors that underlie the competence of gonadal germ cells to respond to RA and other extrinsic factors is yet to be defined.
Collapse
|
29
|
Celestino JJH, Bruno JB, Lima-Verde IB, Matos MHT, Saraiva MVA, Chaves RN, Martins FS, Almeida AP, Cunha RMS, Lima LF, Name KPO, Campello CC, Silva JRV, Báo SN, Figueiredo JR. Steady-state level of kit ligand mRNA in goat ovaries and the role of kit ligand in preantral follicle survival and growth in vitro. Mol Reprod Dev 2010; 77:231-40. [PMID: 20014130 DOI: 10.1002/mrd.21138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aims of this study were to investigate steady-state level of Kit Ligand (KL) mRNA and its effects on in vitro survival and growth of caprine preantral follicles. RT-PCR was used to analyze caprine steady-state level of KL mRNA in primordial, primary, and secondary follicles, and in small (1-3 mm) and large (3-6 mm) antral follicles. Furthermore, ovarian fragments were cultured for 1 or 7 days in Minimal Essential Medium (MEM(+)) supplemented with KL (0, 1, 10, 50, 100, or 200 ng/ml). Noncultured (control) and cultured fragments were processed for histology and transmission electron microscopy (TEM). RT-PCR demonstrated an increase in steady-state level of KL mRNA during the transition from primary to secondary follicles. Small antral follicles had higher steady-state levels of KL mRNA in granulosa and theca cells than large follicles. After 7 days, only 50 ng/ml of KL had maintained the percentage of normal follicles similar to control. After 1 day, all KL concentrations reduced the percentage of primordial follicles and increased the percentage of growing follicles. KL at 10, 50, 100, or 200 ng/ml increased primary follicles, compared to MEM(+) after 7 days. An increase in oocyte and follicular diameter was observed at 50 ng/ml of KL. TEM confirmed ultrastructural integrity of follicles after 7 days at 50 ng/ml of KL. In conclusion, the KL mRNAs were detected in all follicular categories. Furthermore, 50 ng/ml of KL maintained the integrity of caprine preantral follicle cultured for 7 days and stimulated primordial follicle activation and follicle growth.
Collapse
Affiliation(s)
- Juliana J H Celestino
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza, CE, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dudley B, Palumbo C, Nalepka J, Molyneaux K. BMP signaling controls formation of a primordial germ cell niche within the early genital ridges. Dev Biol 2010; 343:84-93. [PMID: 20417197 DOI: 10.1016/j.ydbio.2010.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/17/2022]
Abstract
Stem cells are necessary to maintain tissue homeostasis and the microenvironment (a.k.a. the niche) surrounding these cells controls their ability to self-renew or differentiate. For many stem cell populations it remains unclear precisely what cells and signals comprise a niche. Here we identify a possible PGC niche in the mouse genital ridges. Conditional ablation of Bmpr1a was used to demonstrate that BMP signaling is required for PGC survival and migration as these cells colonize the genital ridges. Reduced BMP signaling within the genital ridges led to increased somatic cell death within the mesonephric mesenchyme. Loss of these supporting cells correlated with decreased levels of the mesonephric marker, Pax2, as well as a reduction in genes expressed in the coelomic epithelium including the putative PGC chemo-attractants Kitl and Sdf1a. We propose that BMP signaling promotes mesonephric cell survival within the genital ridges and that these cells support correct development of the coelomic epithelium, the target of PGC migration. Loss of BMP signaling leads to the loss of the PGC target resulting in reduced PGC numbers and disrupted PGC migration.
Collapse
Affiliation(s)
- Brian Dudley
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
31
|
Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 2010; 11:37-49. [PMID: 20027186 PMCID: PMC4521894 DOI: 10.1038/nrm2815] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regulated migration of cells is essential for development and tissue homeostasis, and aberrant cell migration can lead to an impaired immune response and the progression of cancer. Primordial germ cells (PGCs), precursors to sperm and eggs, have to migrate across the embryo to reach somatic gonadal precursors, where they carry out their function. Studies of model organisms have revealed that, despite important differences, several features of PGC migration are conserved. PGCs require an intrinsic motility programme and external guidance cues to survive and successfully migrate. Proper guidance involves both attractive and repulsive cues and is mediated by protein and lipid signalling.
Collapse
Affiliation(s)
- Brian E Richardson
- Howard Hughes Medical Institute, Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York University, New York, 10016, USA
| | | |
Collapse
|
32
|
West F, Roche-Rios M, Abraham S, Rao R, Natrajan M, Bacanamwo M, Stice S. KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Hum Reprod 2009; 25:168-78. [DOI: 10.1093/humrep/dep338] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 2009; 41:811-5. [PMID: 19483682 DOI: 10.1038/ng.393] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 05/05/2009] [Indexed: 12/19/2022]
Abstract
Testicular germ cell tumors (TGCT) have been expected to have a strong underlying genetic component. We conducted a genome-wide scan among 277 TGCT cases and 919 controls and found that seven markers at 12p22 within KITLG (c-KIT ligand) reached genome-wide significance (P < 5.0 x 10(-8) in discovery). In independent replication, TGCT risk was increased threefold per copy of the major allele at rs3782179 and rs4474514 (OR = 3.08, 95% CI = 2.29-4.13; OR = 3.07, 95% CI = 2.29-4.13, respectively). We found associations with rs4324715 and rs6897876 at 5q31.3 near SPRY4 (sprouty 4; P < 5.0 x 10(-6) in discovery). In independent replication, risk of TGCT was increased nearly 40% per copy of the major allele (OR = 1.37, 95% CI = 1.14-1.64; OR = 1.39, 95% CI = 1.16-1.66, respectively). All of the genotypes were associated with both seminoma and nonseminoma TGCT subtypes. These results demonstrate that common genetic variants affect TGCT risk and implicate KITLG and SPRY4 as genes involved in TGCT susceptibility.
Collapse
|
34
|
Paulhe F, Wehrle-Haller M, Jacquier MC, Imhof BA, Tabone-Eglinger S, Wehrle-Haller B. Dimerization of Kit-ligand and efficient cell-surface presentation requires a conserved Ser-Gly-Gly-Tyr motif in its transmembrane domain. FASEB J 2009; 23:3037-48. [PMID: 19386768 DOI: 10.1096/fj.09-129577] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Kit-ligand (Kitl), also known as stem cell factor, is a membrane-anchored, noncovalently bound dimer signaling via the c-kit receptor tyrosine kinase, required for migration, survival, and proliferation of hematopoietic stem and germ cells, melanocytes, and mastocytes. Despite its fundamental role in morphogenesis and stem cell biology, the mechanisms that regulate Kitl dimerization are not well understood. By employing cell-permeable cross-linker and quantitative bimolecular fluorescence complementation of wild-type and truncated forms of Kitl, we determined that Kitl dimerization is initiated in the endoplasmic reticulum and mediated to similar levels by the transmembrane and the extracellular growth factor domain. Further biochemical and mutational analysis revealed a conserved Ser-Gly-Gly-Tyr-containing motif that is required for transmembrane domain dimerization and efficient cell-surface expression of Kitl. A novel intracellular capture assay with the Kitl transmembrane domain as bait revealed specific interactions with Kitl, but not with unrelated transmembrane proteins. During evolution, the transmembrane dimerization motif appeared in Kitl at the transition from teleosts to tetrapods, which correlates with the emergence of Kitl as a supporter of stem cell populations. Thus, transmembrane-mediated association of membrane-anchored growth factors consists of a novel mechanism to improve paracrine signaling and morphogenesis.
Collapse
Affiliation(s)
- Frédérique Paulhe
- Department of Cellular Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Gu Y, Runyan C, Shoemaker A, Surani A, Wylie C. Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development 2009; 136:1295-303. [PMID: 19279135 DOI: 10.1242/dev.030619] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Steel factor is an essential survival and proliferation factor for primordial germ cells (PGCs) during their migration in the early mouse embryo. PGCs arise during gastrulation, and migrate into the posterior endoderm that becomes the hindgut. Previous reports have suggested that PGCs become dependent on Steel factor when they colonize the hindgut. However, in the absence of a good marker for living PGCs, their behavior before hindgut colonization has not been previously studied. We report here the normal behavior of PGCs in live embryos before hindgut colonization, and the roles of Steel factor, using a reporter line in which GFP is driven by the promoter of the Stella gene, whose activation accompanies the initial specification of PGCs. We show first that PGCs are surrounded by Steel factor-expressing cells from their first appearance in the allantois to the time they enter the genital ridges. Second, fewer PGCs are found in the allantois in Steel-null embryos, but this is not due to a failure of PGC specification. Third, the analysis of cultured Steel-null early embryos shows that Steel factor is required for normal PGC motility, both in the allantois and in the hindgut. Germ cells migrate actively in the allantois, and move directionally from the allantois into the proximal epiblast. In the absence of Steel factor, caused by either null mutation or antibody blockade, PGC motility is dramatically decreased, but directionality is maintained, demonstrating a primary role for Steel factor in PGC motility. This was found both before and after colonization of the hindgut. These data, together with previously published data, show that PGCs are Steel factor dependent from their initial specification until they colonize the genital ridges, and suggest the existence of a ;spatio-temporal niche' that travels with this important pluripotential cell population in the embryo.
Collapse
Affiliation(s)
- Ying Gu
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
36
|
Ding J, Jiang D, Kurczy M, Nalepka J, Dudley B, Merkel EI, Porter FD, Ewing AG, Winograd N, Burgess J, Molyneaux K. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse. BMC DEVELOPMENTAL BIOLOGY 2008; 8:120. [PMID: 19117526 PMCID: PMC2631600 DOI: 10.1186/1471-213x-8-120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/31/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. RESULTS We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. CONCLUSION In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.
Collapse
Affiliation(s)
- Jiaxi Ding
- Department of Genetics Case Western Reserve University, Cleveland, OH, USA
| | - DeChen Jiang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Kurczy
- Department of Chemistry, Penn State University, University Park, PA, USA
| | - Jennifer Nalepka
- Department of Genetics Case Western Reserve University, Cleveland, OH, USA
| | - Brian Dudley
- Department of Genetics Case Western Reserve University, Cleveland, OH, USA
| | - Erin I Merkel
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrew G Ewing
- Department of Chemistry, Penn State University, University Park, PA, USA
- Department of Chemistry, Gothenburg University, Kemivägen 4, SE-41296 Gothenburg, Sweden
| | - Nicholas Winograd
- Department of Chemistry, Penn State University, University Park, PA, USA
| | - James Burgess
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Kathleen Molyneaux
- Department of Genetics Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
37
|
Heaney JD, Lam MYJ, Michelson MV, Nadeau JH. Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res 2008; 68:5193-7. [PMID: 18593919 DOI: 10.1158/0008-5472.can-08-0779] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several genetic variants act as modifiers of testicular germ cell tumor (TGCT) susceptibility in the 129/Sv mouse model of human pediatric TGCTs. One such modifier, the Steel locus, encodes the transmembrane-bound and soluble ligand of the kit receptor. Some (Sl and SlJ) but not all (Sld) mutations of the Steel locus increase TGCT incidence in heterozygous mutant mice. Because Sl and SlJ are large deletions that affect multiple transcripts and Sld is an intragenic deletion of the kit ligand (Kitl) from which only the soluble protein is produced, it was uncertain whether Kitl or a neighboring gene is a modifier of TGCT susceptibility. We tested the effect of the small Steel grizzle-belly (Slgb) deletion on TGCT susceptibility to determine whether Kitl is a TGCT modifier gene. An increase in TGCT incidence was observed in Slgb/+ heterozygotes, and fine mapping of the deletion breakpoints revealed that Kitl is the only conventional gene deleted by the mutation, suggesting that Kitl is the TGCT modifier gene at the Steel locus. Additionally, we propose that soluble KITL in Sld/+ heterozygous mutant mice complements a dosage effect of transmembrane-associated kit ligand on TGCT susceptibility and that the kit receptor (Kit) is haplosufficient for primordial germ cell development.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
38
|
Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF. Oogenesis: Prospects and challenges for the future. J Cell Physiol 2008; 216:355-65. [PMID: 18452183 DOI: 10.1002/jcp.21473] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oogenesis serves a singular role in the reproductive success of plants and animals. Of their remarkable differentiation pathway what stands out is the ability of oocytes to transform from a single cell into the totipotent lineages that seed the early embryo. As our understanding that commonalities between diverse organisms at the genetic, cellular and molecular levels are conserved to achieve successful reproduction, the notion that embryogenesis presupposes oogenesis has entered the day-to-day parlance of regenerative medicine and stem cell biology. With emphasis on the mammalian oocyte, this review will cover (1) current concepts regarding the birth, survival and growth of oocytes that depends on complex patterns of cell communication between germ line and soma, (2) the notion of "maternal inheritance" from a genetic and epigenetic perspective, and (3) the relative value of model systems with reference to current clinical and biotechnology applications.
Collapse
Affiliation(s)
- P Rodrigues
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, USA
| | | | | | | | | |
Collapse
|
39
|
Farini D, La Sala G, Tedesco M, De Felici M. Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Dev Biol 2007; 306:572-83. [PMID: 17467686 DOI: 10.1016/j.ydbio.2007.03.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 02/05/2023]
Abstract
Using a Transwell chamber as migration assay for mouse primordial germ cells (PGCs), we show here that these cells posses directional migration in the absence of somatic cell and defined matrix support and in response to a Kit ligand (KL) gradient or medium conditioned by Aorta/Gonad/Mesonephros and gonadal ridges. Other putative PGC chemoattractants such as SDF1 and TGFbeta did not exert any attractive action on PGCs. The chemoattractant activity of KL and conditioned medium was also evidenced by their ability to stimulate actin reorganization in PGCs. In the aim to identify downstream signaling pathways governing KL chemoattraction on PGCs, we demonstrated that in such cells KL rapidly (5 min) increased autophosphorylation of its receptor c-Kit and caused phosphorylation of the serine-threonine kinase AKT through the action of PI3K. 740Y-P peptide, a direct activator of PI3 kinase, stimulated PGC migration at levels similar to those elicited by KL. LY294002 (a specific inhibitor of PI3K) abolished KL-dependent PGC migration or the chemoattractant activity of the conditioned medium and inhibited AKT phosphorylation; Src kinase inhibitors PP2 and SU6656, caused significant reduction of the KL-dependent PGC migration and AKT phosphorylation, while U0126, a selective inhibitor of the MEK/ERK protein kinase cascade, reduced PGC migration and AKT phosphorylation at lesser extent. SU6656 completely abolished the chemoattractant activity of the conditioned medium. Finally, SB202190 (a p38 inhibitor) and rapamycin (mTOR inhibitor) did not affect PGC migration. In addition, to demonstrate that somatic cells are not essential for PGC motility and directional migration, we evidenced a novel role for KL as PGC chemoattractant and for PI3K/AKT and Src kinase, as players involved in the activation of the PGC migratory machinery and likely important for their directional movement towards the gonadal ridges.
Collapse
Affiliation(s)
- Donatella Farini
- Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00173 Rome, Italy
| | | | | | | |
Collapse
|
40
|
Abstract
Cell differentiation, cell proliferation, cell death, and cell migration are tightly controlled during animal development and adult homeostasis. Failure to regulate these processes can result in tumor formation and metastasis. Aberrant cells are therefore often cleared by induction of cell death. Recent work has elucidated the mechanism of elimination of mouse primordial germ cells that fail to migrate properly and highlights the similarity of this mechanism to those governing the same phenomenon in Drosophila. In addition, these studies underscore the different functions a single signaling pathway can have in controlling cell survival, cell proliferation, and cell migration during different phases of development.
Collapse
Affiliation(s)
- Bijan Boldajipour
- Germ Cell Development, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
41
|
Pepling ME. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis 2007; 44:622-32. [PMID: 17146778 DOI: 10.1002/dvg.20258] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the final number of oocytes available for reproduction of the next generation is defined at birth. Establishment of this oocyte pool is essential for fertility. Mammalian primordial germ cells form and migrate to the gonad during embryonic development. After arriving at the gonad, the germ cells are called oogonia and develop in clusters of cells called germ line cysts or oocyte nests. Subsequently, the oogonia enter meiosis and become oocytes. The oocyte nests break apart into individual cells and become packaged into primordial follicles. During this time, only a subset of oocytes ultimately survive and the remaining immature eggs die by programmed cell death. This phase of oocyte differentiation is poorly understood but molecules and mechanisms that regulate oocyte development are beginning to be identified. This review focuses on these early stages of female germ cell development.
Collapse
Affiliation(s)
- Melissa E Pepling
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA.
| |
Collapse
|
42
|
Abstract
The basic concepts of the molecular machinery that mediates cell migration have been gleaned from cell culture systems. However, the three-dimensional environment within an organism presents migrating cells with a much greater challenge. They must move between and among other cells while interpreting multiple attractive and repulsive cues to choose their proper path. They must coordinate their cell adhesion with their surroundings and know when to start and stop moving. New insights into the control of these remaining mysteries have emerged from genetic dissection and live imaging of germ cell migration in Drosophila, zebrafish, and mouse embryos. In this review, we first describe germ cell migration in cellular and mechanistic detail in these different model systems. We then compare these systems to highlight the emerging principles. Finally, we contrast the migration of germ cells with that of immune and cancer cells to outline the conserved and different mechanisms.
Collapse
Affiliation(s)
- Prabhat S Kunwar
- Howard Hughes Medical Institute, Developmental Genetics Program, Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016-6402, USA.
| | | | | |
Collapse
|
43
|
Runyan C, Schaible K, Molyneaux K, Wang Z, Levin L, Wylie C. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 2006; 133:4861-9. [PMID: 17107997 DOI: 10.1242/dev.02688] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During germ-cell migration in the mouse, the dynamics of embryo growth cause many germ cells to be left outside the range of chemoattractive signals from the gonad. At E10.5, movie analysis has shown that germ cells remaining in the midline no longer migrate directionally towards the genital ridges, but instead rapidly fragment and disappear. Extragonadal germ cell tumors of infancy, one of the most common neonatal tumors, are thought to arise from midline germ cells that failed to die. This paper addresses the mechanism of midline germ cell death in the mouse. We show that at E10.5, the rate of apoptosis is nearly four-times higher in midline germ cells than those more laterally. Gene expression profiling of purified germ cells suggests this is caused by activation of the intrinsic apoptotic pathway. We then show that germ cell apoptosis in the midline is activated by down-regulation of Steel factor (kit ligand) expression in the midline between E9.5 and E10.5. This is confirmed by the fact that removal of the intrinsic pro-apoptotic protein Bax rescues the germ-cell apoptosis seen in Steel null embryos. Two interesting things are revealed by this: first, germ-cell proliferation does not take place in these embryos after E9.0; second, migration of germ cells is highly abnormal. These data show first that changing expression of Steel factor is required for normal midline germ cell death, and second, that Steel factor is required for normal proliferation and migration of germ cells.
Collapse
Affiliation(s)
- Christopher Runyan
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
44
|
Dudley BM, Runyan C, Takeuchi Y, Schaible K, Molyneaux K. BMP signaling regulates PGC numbers and motility in organ culture. Mech Dev 2006; 124:68-77. [PMID: 17112707 DOI: 10.1016/j.mod.2006.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/08/2006] [Accepted: 09/27/2006] [Indexed: 12/29/2022]
Abstract
Members of the bone morphogenetic protein (BMP) family play diverse roles in multiple developmental processes. However, in the mouse, mutations in many BMPs, BMP receptors and signaling components result in early embryonic lethality making it difficult to analyze the role of these factors during organogenesis or tissue homeostasis in the adult. To bypass this early lethality, we used an organ culture system to study the role of BMPs during primordial germ cell (PGC) migration. PGCs are the embryonic precursors of the sperm and eggs. BMPs induce formation of primordial germ cells within the proximal epiblast of embryonic day 7.5 (E7.5) mouse embryos. PGCs then migrate via the gut to arrive at the developing gonads by E10.5. Addition of BMP4 or the BMP-antagonist Noggin to transverse slices dissected from E9.5 embryos elevated PGC numbers or reduced PGC numbers, respectively. Noggin treatment also slowed and randomized PGC movements, resulting in a failure of PGCs to colonize the urogenital ridges (UGRs). Based on p-Smad1/5/8 staining, migratory PGCs do not respond to endogenous BMPs. Instead, the somatic cells of the urogenital ridges exhibit elevated p-Smad1/5/8 staining revealing active BMP signaling within the UGRs. Noggin treatment abrogated p-Smad staining within the UGRs and blocked localized expression of Kitl, a cytokine known to regulate the survival and motility of PGCs and Id1, a transcription factor expressed within the UGRs. We propose that BMP signaling regulates PGC migration by controlling gene expression within the somatic cells along the migration route and within the genital ridges.
Collapse
Affiliation(s)
- Brian M Dudley
- Department of Genetics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
45
|
Prabhu SM, Meistrich ML, McLaughlin EA, Roman SD, Warne S, Mendis S, Itman C, Loveland KL. Expression of c-Kit receptor mRNA and protein in the developing, adult and irradiated rodent testis. Reproduction 2006; 131:489-99. [PMID: 16514192 DOI: 10.1530/rep.1.00968] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Germ cell proliferation, migration and survival during all stages of spermatogenesis are affected by stem cell factor signalling through the c-Kit receptor, the expression and function of which are vital for normal male reproductive function. The present study comprehensively describes the c-Kit mRNA and protein cellular expression profiles in germ cells of the postnatal and adult rodent testis, revealing their significant elevation in synthesis at the onset of spermatogenesis. Real-time PCR analysis for both mice and rats matched the cellular mRNA expression profile where examined. Localization studies in normal mouse testes indicated that both c-Kit mRNA and protein are first detectable in differentiating spermatogonia. In addition, all spermatogonia isolated from 8-day-old mice displayed detectable c-Kit mRNA, but 30-50% of these lacked protein expression. The c-Kit mRNA and protein profile in normal rat testes indicated expression in gonocytes, in addition to differentiating spermatogonia. However, in the irradiated adult rat testes, in which undifferentiated spermatogonia are the only germ cell type, mRNA was also detected in the absence of protein. This persisted at 3 days and 1 and 2 weeks following treatment with gonadotrophin-releasing hormone (GnRH) antagonist to stimulate spermatogenesis recovery. By 4 weeks of GnRH antagonist treatment, accompanying the emergence of differentiating spermatogonia, both mRNA and protein were detected. Based on these observations, we propose that c-Kit mRNA and protein synthesis are regulated separately, possibly by influences linked to testis maturation and circulating hormone levels.
Collapse
Affiliation(s)
- Sridurga Mithra Prabhu
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hutt KJ, McLaughlin EA, Holland MK. KIT/KIT Ligand in Mammalian Oogenesis and Folliculogenesis: Roles in Rabbit and Murine Ovarian Follicle Activation and Oocyte Growth1. Biol Reprod 2006; 75:421-33. [PMID: 16790689 DOI: 10.1095/biolreprod.106.051516] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In rodent ovaries Kit ligand (KITL) and its receptor KIT have diverse roles, including the promotion of primordial follicle activation, oocyte growth, and follicle survival. Studies were undertaken to determine whether KITL and KIT carry out similar activities in rabbits. KitlandKitmRNA and protein were localized to oocytes and granulosa cells, respectively, in the rabbit ovary. Ovarian cortical explants from juvenile rabbits and neonatal mouse ovaries were subsequently cultured with recombinant mouse KITL and/or KITL neutralizing antibody. Indices of follicle growth initiation were compared with controls and between treatment groups for each species. Recombinant mouse KITL had no stimulatory effect on primordial follicle recruitment in cultured rabbit ovarian explants. However, the mean diameter of oocytes from primordial, early primary, primary, and growing primary follicles increased significantly in recombinant mouse KITL-treated explants compared with untreated tissues. In contrast, recombinant mouse KITL promoted both primordial follicle activation and an increase in the diameter of oocytes from primordial and early primary follicles in the mouse, and these effects were inhibited by coculture with KITL-neutralizing antibody. Recombinant mouse KITL had no effect on follicle survival for either species. These data demonstrate that KITL promotes the growth of rabbit and mouse oocytes and stimulates primordial follicle activation in the mouse but not in the rabbit. We propose that the physiologic roles of KITL and KIT may differ between species, and this has important implications for the design of in vitro culture systems for folliculogenesis in mammals, including the human.
Collapse
Affiliation(s)
- Karla J Hutt
- Pest Animal Control Cooperative Research Centre, CSIRO Sustainable Ecosystems, Canberra, Australian Capital Territory 2615, Australia
| | | | | |
Collapse
|
47
|
Barnett KR, Schilling C, Greenfeld CR, Tomic D, Flaws JA. Ovarian follicle development and transgenic mouse models. Hum Reprod Update 2006; 12:537-55. [PMID: 16728463 DOI: 10.1093/humupd/dml022] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ovarian follicle development is a complex process that begins with the establishment of what is thought to be a finite pool of primordial follicles and culminates in either the atretic degradation of the follicle or the release of a mature oocyte for fertilization. This review highlights the many advances made in understanding these events using transgenic mouse models. Specifically, this review describes the ovarian phenotypes of mice with genetic mutations that affect ovarian differentiation, primordial follicle formation, follicular growth, atresia, ovulation and corpus luteum (CL) formation. In addition, this review describes the phenotypes of mice with mutations in a variety of genes, which affect the hormones that regulate folliculogenesis. Because studies using transgenic animals have revealed a variety of reproductive abnormalities that resemble many reproductive disorders in women, it is likely that studies using transgenic mouse models will impact our understanding of ovarian function and fertility in women.
Collapse
Affiliation(s)
- K R Barnett
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|