1
|
Hu J, Liu C, Zeng X, Tang T, Zeng Z, Wu J, Tan X, Dai Q, Jin C. Prochloraz induced alterations in the expression of mRNA in the reproductive system of male offspring mice. PeerJ 2024; 12:e17917. [PMID: 39210919 PMCID: PMC11361262 DOI: 10.7717/peerj.17917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Prochloraz is a widely used fungicide worldwide. It is classified as an endocrine disrupting pesticide that affects the reproductive system. This study aimed to examine the impact of exposure to prochloraz of male mice on the reproductive system of their offspring male mice. Male father mice were intragastrically administered different dosages of prochloraz (group MA: 0 mg/kg/day; MB: 53.33 mg/kg/day; MD:160 mg/kg/day). Then, the testicular average weight of male offspring in the dose groups was found to be significantly lower than those in the control group (MB:0.312g, MD:0.294g, and MA:0.355 g; P < 0.05). Additionally, the testicular coefficient index in the MB and MD groups was also lower than that of the control group. Secondly,we observed that there were significantly different expressed genes clustered in groups B and D, in contrast to the control. Finally, the findings demonstrated a significant alteration in the response of male mice reproductive relative genes to prochloraz invasion. Two genes (Mt-nd6 and Slc12a4) were found to be involved in the regulation of sperm mitochondria function and six genes (Greb1, Esrrb, Catsperb, Mospd2, Sohlh1 and Specc1) were closely linked to sperm functions and estrogen response. The study revealed a significant impact of prochloraz on the reproductive system of male mice, thereby supporting further investigation into the reproductive toxicological effects of the drug.
Collapse
Affiliation(s)
- Junhe Hu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Chang Liu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Xianghui Zeng
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Tao Tang
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Zhi Zeng
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Juan Wu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Xiansheng Tan
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Qingxiang Dai
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Chenzhong Jin
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| |
Collapse
|
2
|
Qin X, Lai KP, Wu RSS, Kong RYC. Continuous 17α-ethinylestradiol exposure impairs the sperm quality of marine medaka (Oryzias melastigma). MARINE POLLUTION BULLETIN 2022; 183:114093. [PMID: 36084614 DOI: 10.1016/j.marpolbul.2022.114093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
17α-ethinylestradiol (EE2) is an anthropogenic estrogen that is widely used for hormone therapy and oral contraceptives. It was reported that EE2 exposure induced reproductive impairments through processes affecting reproduction behavior and inducing ovotestis. However, the effects of continuous EE2 exposure on the reproductive performance remain largely unknown. In this study, adult marine medaka fish (Oryzias melastigma) were exposed to EE2 (85 ng/L) for one (F0) and two (F1) generations. Our results indicate that continuous EE2 exposure reduced fecundity and sperm motility. The testicular transcriptome, followed by bioinformatic analysis revealed the dysregulation of pathways related to steroidogenesis, sperm motility, and reproductive system development. Collectively, our findings indicate that continuous EE2 exposure directly affected sperm quality via the alteration of steroidogenesis and dysregulation of reproductive system development. The identified key factors including DNM1, PINK1, PDE7B, and SLC12A7 can serve as biomarkers to assess EE2-reduced sperm motility.
Collapse
Affiliation(s)
- Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
van Son M, Våge DI, Skaugen M, Tremoen NH, Gaustad AH, Zeremichael TT, Myromslien FD, Grindflek E. Protein profiling of testicular tissue from boars with different levels of hyperactive sperm motility. Acta Vet Scand 2022; 64:21. [PMID: 36064611 PMCID: PMC9446748 DOI: 10.1186/s13028-022-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperactive sperm motility is important for successful fertilization. In the present study, a proteome profiling approach was performed to identify the differences between Landrace boars with different levels of hyperactive sperm motility in liquid extended semen. Two contrasts were studied: (i) high versus low levels of sperm hyperactivity at semen collection day and (ii) high versus low change in levels of sperm hyperactivity after 96 h semen storage. Testicular samples were analyzed on a Q Exactive mass spectrometer and more than 6000 proteins were identified in the 13 samples. The most significant differentially expressed proteins were mediator complex subunit 28 (MED28), cell division cycle 37 like 1 (CDC37L1), ubiquitin specific peptidase 10 (USP10), zinc finger FYVE-type containing 26 (ZFYVE26), protein kinase C delta (PRKCD), actinin alpha 4 (ACTN4), N(alpha)-acetyltransferase 30 (NAA30), C1q domain-containing (LOC110258309) and uncharacterized LOC100512926. Of the differentially expressed proteins, 11 have previously been identified as differentially expressed at the corresponding mRNA transcript level using the same samples and contrasts. These include sphingosine kinase 1 isoform 2 (SPHK1), serine and arginine rich splicing factor 1 (SRSF1), and tubulin gamma-1 (TUBG1) which are involved in the acrosome reaction and sperm motility. A mass spectrometry approach was applied to investigate the protein profiles of boars with different levels of hyperactive sperm motility. This study identified several proteins previously shown to be involved in sperm motility and quality, but also proteins with no known function for sperm motility. Candidates that are differentially expressed on both mRNA and protein levels are especially relevant as biological markers of semen quality.
Collapse
Affiliation(s)
| | - Dag Inge Våge
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Nina Hårdnes Tremoen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1432, Ås, Norway.,Department of Biotechnology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | - Ann Helen Gaustad
- Norsvin, Storhamargata 44, 2317, Hamar, Norway.,Department of Biotechnology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | | | | | | |
Collapse
|
4
|
Research update and opportunity of non-hormonal male contraception: Histone demethylase KDM5B-based targeting. Pharmacol Res 2019; 141:1-20. [DOI: 10.1016/j.phrs.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/28/2022]
|
5
|
Delpire E, Gagnon KB. Water Homeostasis and Cell Volume Maintenance and Regulation. CURRENT TOPICS IN MEMBRANES 2018; 81:3-52. [PMID: 30243436 PMCID: PMC6457474 DOI: 10.1016/bs.ctm.2018.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
From early unicellular organisms that formed in salty water environments to complex organisms that live on land away from water, cells have had to protect a homeostatic internal environment favorable to the biochemical reactions necessary for life. In this chapter, we will outline what steps were necessary to conserve the water within our cells and how mechanisms have evolved to maintain and regulate our cellular and organismal volume. We will first examine whole body water homeostasis and the relationship between kidney function, regulation of blood pressure, and blood filtration in the process of producing urine. We will then discuss how the composition of the lipid-rich bilayer affects its permeability to water and salts, and how the cell uses this differential to drive physiological and biochemical cellular functions. The capacity to maintain cell volume is vital to epithelial transport, neurotransmission, cell cycle, apoptosis, and cell migration. Finally, we will wrap up the chapter by discussing in some detail specific channels, cotransporters, and exchangers that have evolved to facilitate the movement of cations and anions otherwise unable to cross the lipid-rich bilayer and that are involved in maintaining or regulating cell volume.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine
| | | |
Collapse
|
6
|
Garneau AP, Marcoux AA, Frenette-Cotton R, Mac-Way F, Lavoie JL, Isenring P. Molecular insights into the normal operation, regulation, and multisystemic roles of K +-Cl - cotransporter 3 (KCC3). Am J Physiol Cell Physiol 2017; 313:C516-C532. [PMID: 28814402 DOI: 10.1152/ajpcell.00106.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Long before the molecular identity of the Na+-dependent K+-Cl- cotransporters was uncovered in the mid-nineties, a Na+-independent K+-Cl- cotransport system was also known to exist. It was initially observed in sheep and goat red blood cells where it was shown to be ouabain-insensitive and to increase in the presence of N-ethylmaleimide (NEM). After it was established between the early and mid-nineties, the expressed sequence tag (EST) databank was found to include a sequence that was highly homologous to those of the Na+-dependent K+-Cl- cotransporters. This sequence was eventually found to code for the Na+-independent K+-Cl- cotransport function that was described in red blood cells several years before. It was termed KCC1 and led to the discovery of three isoforms called KCC2, KCC3, and KCC4. Since then, it has become obvious that each one of these isoforms exhibits unique patterns of distribution and fulfills distinct physiological roles. Among them, KCC3 has been the subject of great attention in view of its important role in the nervous system and its association with a rare hereditary sensorimotor neuropathy (called Andermann syndrome) that affects many individuals in Quebec province (Canada). It was also found to play important roles in the cardiovascular system, the organ of Corti, and circulating blood cells. As will be seen in this review, however, there are still a number of uncertainties regarding the transport properties, structural organization, and regulation of KCC3. The same is true regarding the mechanisms by which KCC3 accomplishes its numerous functions in animal cells.
Collapse
Affiliation(s)
- A P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - A A Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - R Frenette-Cotton
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - F Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - J L Lavoie
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - P Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| |
Collapse
|
7
|
Chin YT, Hsieh MT, Yang SH, Tsai PW, Wang SH, Wang CC, Lee YS, Cheng GY, HuangFu WC, London D, Tang HY, Fu E, Yen Y, Liu LF, Lin HY, Davis PJ. Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro. Oncotarget 2015; 5:12891-907. [PMID: 25436977 PMCID: PMC4350334 DOI: 10.18632/oncotarget.2632] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022] Open
Abstract
We have used a perfusion bellows cell culture system to investigate resveratrolinduced anti-proliferation/apoptosis in a human estrogen receptor (ER)-negative breast cancer cell line (MDA-MB-231). Using an injection system to perfuse media with stilbene, we showed resveratrol (0.5 – 100 μM) to decrease cell proliferation in a concentration-dependent manner. Comparison of influx and medium efflux resveratrol concentrations revealed rapid disappearance of the stilbene, consistent with cell uptake and metabolism of the agent reported by others. Exposure of cells to 10 μM resveratrol for 4 h daily × 6 d inhibited cell proliferation by more than 60%. Variable extracellular acid-alkaline conditions (pH 6.8 – 8.6) affected basal cell proliferation rate, but did not alter anti-proliferation induced by resveratrol. Resveratrol-induced gene expression, including transcription of the most up-regulated genes and pro-apoptotic p53-dependent genes, was not affected by culture pH changes. The microarray findings in the context of induction of anti-proliferation with brief daily exposure of cells to resveratrol—and rapid disappearance of the compound in the perfusion system—are consistent with existence of an accessible initiation site for resveratrol actions on tumor cells, e.g., the cell surface receptor for resveratrol described on integrin αvβ3.
Collapse
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ti Hsieh
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Huei Yang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Po-Wei Tsai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yee-Shin Lee
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guei-Yun Cheng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan. PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - David London
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Earl Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yun Yen
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Department of Molecular Pharmacology, City of Hope National Medical Center and Beckman Research Center, Duarte, California, USA
| | - Leroy F Liu
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan. PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York, USA. Albany Medical College, Albany, New York, USA
| |
Collapse
|
8
|
Park IS, Lee J, Lee G, Nam K, Lee T, Chang WJ, Kim H, Lee SY, Seo J, Yoon DS, Lee SW. Real-Time Analysis of Cellular Response to Small-Molecule Drugs within a Microfluidic Dielectrophoresis Device. Anal Chem 2015; 87:5914-20. [PMID: 25811309 DOI: 10.1021/ac5041549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitative detection of the biological properties of living cells is essential for a wide range of purposes, from the understanding of cellular characteristics to the development of novel drugs in nanomedicine. Here, we demonstrate that analysis of cell biological properties within a microfluidic dielectrophoresis device enables quantitative detection of cellular biological properties and simultaneously allows large-scale measurement in a noise-robust and probeless manner. Applying this technique, the static and dynamic biological responses of live B16F10 melanoma cells to the small-molecule drugs such as N-ethylmaleimide (NEM) and [(dihydronindenyl)oxy]alkanoic acid (DIOA) were quantitatively and statistically examined by investigating changes in movement of the cells. Measurement was achieved using subtle variations in dielectrophoresis (DEP) properties of the cells, which were attributed to activation or deactivation of K(+)/Cl(-) cotransporter channels on the cell membrane by the small-molecule drugs, in a microfluidic device. On the basis of quantitative analysis data, we also provide the first report of the shift of the complex permittivity of a cell induced by the small-molecule drugs. In addition, we demonstrate interesting quantifiable parameters including the drug effectiveness coefficient, antagonistic interaction coefficient, kinetic rate, and full width at half-maximum, which corresponded to changes in biological properties of B16F10 cells over time when NEM and DIOA were introduced alone or in combination. Those demonstrated parameters represent very useful tools for evaluating the effect of small-molecule drugs on the biological properties of cells.
Collapse
Affiliation(s)
- In Soo Park
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | - Jaewoo Lee
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | - Gyudo Lee
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
- ∥T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Kihwan Nam
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | - Taewoo Lee
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | - Woo-Jin Chang
- ‡Department of Mechanical Engineering and Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Hansung Kim
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | - Sei-Young Lee
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | - Jongbum Seo
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | - Dae Sung Yoon
- §School of Biomedical Engineering, Korea University, Seoul, 136-703, Republic of Korea
| | - Sang Woo Lee
- †Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| |
Collapse
|
9
|
Abstract
Contraception is an accepted route for the control of population explosion in the world. Traditionally hormonal contraceptive methods have focused on women. Male contraception by means of hormonal and non hormonal methods is an attractive alternative. Hormonal methods of contraception using testosterone have shown good results. Non hormonal reversible methods of male contraception like reversible inhibition of sperm under guidanceare very promising. In this article we have reviewed the current available options for male contraception.
Collapse
Affiliation(s)
- Vivek Mathew
- Department of Endocrinology, St. Johns Medical College, Bangalore, India
| | - Ganapathi Bantwal
- Department of Endocrinology, St. Johns Medical College, Bangalore, India
| |
Collapse
|
10
|
Chávez JC, Hernández-González EO, Wertheimer E, Visconti PE, Darszon A, Treviño CL. Participation of the Cl-/HCO(3)- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Biol Reprod 2012; 86:1-14. [PMID: 21976599 DOI: 10.1095/biolreprod.111.094037] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sperm capacitation is required for fertilization and involves several ion permeability changes. Although Cl(-) and HCO(3)(-) are essential for capacitation, the molecular entities responsible for their transport are not fully known. During mouse sperm capacitation, the intracellular concentration of Cl(-) ([Cl(-)](i)) increases and membrane potential (Em) hyperpolarizes. As in noncapacitated sperm, the Cl(-) equilibrium potential appears to be close to the cell resting Em, opening of Cl(-) channels could not support the [Cl(-)](i) increase observed during capacitation. Alternatively, the [Cl(-)](i) increase might be mediated by anion exchangers. Among them, SLC26A3 and SLC26A6 are good candidates, since, in several cell types, they increase [Cl(-)](i) and interact with cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) channel present in mouse and human sperm. This interaction is known to be mediated and probably regulated by the Na(+)/H(+) regulatory factor-1 (official symbol, SLC9A3R1). Our RT-PCR, immunocytochemistry, Western blot, and immunoprecipitation data indicate that SLC26A3, SLC26A6, and SLC9A3R1 are expressed in mouse sperm, localize to the midpiece, and interact between each other and with CFTR. Moreover, we present evidence indicating that CFTR and SLC26A3 are involved in the [Cl(-)](i) increase induced by db-cAMP in noncapacitated sperm. Furthermore, we found that inhibitors of SLC26A3 (Tenidap and 5099) interfere with the Em changes that accompany capacitation. Together, these findings indicate that a CFTR/SLC26A3 functional interaction is important for mouse sperm capacitation.
Collapse
Affiliation(s)
- Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The blood-testis barrier (BTB), which is created by adjacent Sertoli cells near the basement membrane, serves as a 'gatekeeper' to prohibit harmful substances from reaching developing germ cells, most notably postmeiotic spermatids. The BTB also divides the seminiferous epithelium into the basal and adluminal (apical) compartment so that postmeiotic spermatid development, namely spermiogenesis, can take place in a specialized microenvironment in the apical compartment behind the BTB. The BTB also contributes, at least in part, to the immune privilege status of the testis, so that anti-sperm antibodies are not developed against antigens that are expressed transiently during spermatogenesis. Recent studies have shown that numerous drug transporters are expressed by Sertoli cells. However, many of these same drug transporters are also expressed by spermatogonia, spermatocytes, round spermatids, elongating spermatids, and elongated spermatids, suggesting that the developing germ cells are also able to selectively pump drugs 'in' and/or 'out' via influx or efflux pumps. We review herein the latest developments regarding the role of drug transporters in spermatogenesis. We also propose a model utilized by the testis to protect germ cell development from 'harmful' environmental toxicants and xenobiotics and/or from 'therapeutic' substances (e.g. anticancer drugs). We also discuss how drug transporters that are supposed to protect spermatogenesis can work against the testis in some instances. For example, when drugs (e.g. male contraceptives) that can perturb germ cell adhesion and/or maturation are actively pumped out of the testis or are prevented from entering the apical compartment, such as by efflux pumps.
Collapse
Affiliation(s)
- Linlin Su
- The Mary M Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | | | |
Collapse
|
12
|
Yeung CH, Cooper TG. Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 2010; 139:209-16. [PMID: 19812234 DOI: 10.1530/rep-09-0298] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AQP11 is one of the latest aquaporin (AQP) family members found, which differs from the other AQPs by its intracellular localisation and unusual water pore nucleotides with unclear function. Despite the highest mRNA expression among organs having been reported in the testis, the testicular molecule has not been studied in detail. Immunohistochemistry of rat adult testis localised AQP11 to the elongated spermatids (ES) and no other cell types except residual bodies inside Sertoli cells. It was absent from early ES at least until stage 13, and after a first diffuse appearance in the caudal cytoplasm became concentrated in intracellular organelles by stage 17, was strongest in vesicles in the anterior cytoplasm at the final ES stages and appeared in residual bodies. Staining was detected on the distal quarter of the sperm tail only immediately before spermiation. A similar localisation was found in the mouse and developmental profiles for both the open reading frame mRNA and protein expression in 8-50 dpp testis pinpointed its first appearance coinciding with late stage ES. Sequencing of PCR products of testicular Aqp11 containing the open reading frames confirmed a full match with GenBank databases for rat, mouse and human. Western blotting revealed two or more molecular forms with the 26/27 kDa species dominating in the rat/mouse testis and the 33/34 kDa form selectively allocated to the spermatozoa. In view of intracellular vacuolation leading to polycystic kidney in Aqp11-null mice, a possible role of testicular AQP11 in the recycling of surplus cytoplasmic components of the ES and sustaining Sertoli cell capacity in the support of spermatogenesis was discussed.
Collapse
Affiliation(s)
- C H Yeung
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, D48149 Münster, Germany.
| | | |
Collapse
|
13
|
Yeung CH, Callies C, Tüttelmann F, Kliesch S, Cooper TG. Aquaporins in the human testis and spermatozoa - identification, involvement in sperm volume regulation and clinical relevance. ACTA ACUST UNITED AC 2009; 33:629-41. [DOI: 10.1111/j.1365-2605.2009.00998.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Yeung CH, Beiglböck-Karau L, Luetjens CM, Wunsch A, Nieschlag E. Quantification of seminal germ cells in azoospermia: correlations with testicular histology and TESE outcome. ACTA ACUST UNITED AC 2009; 32:242-54. [DOI: 10.1111/j.1365-2605.2007.00843.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Druart X, Gatti JL, Huet S, Dacheux JL, Humblot P. Hypotonic resistance of boar spermatozoa: sperm subpopulations and relationship with epididymal maturation and fertility. Reproduction 2009; 137:205-13. [DOI: 10.1530/rep-08-0225] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypotonic resistance of boar spermatozoa was investigated by measuring the ratio of live/dead spermatozoa (SYBR-14/propidium iodide) by flow cytometry after hypotonic stress. The survival rate of ejaculated spermatozoa incubated in hypotonic solutions ranging from 3 to 330 mmol/kg followed a sigmoid curve that fitted a simple logistic model. The critical osmolality value (Osmcrit) at which 50% of spermatozoa died was determined with this model. Hypotonic resistance of spermatozoa increased with temperature between 15 and 39 °C and decreased after hydrogen superoxide treatment, but was not modified during 8 days of preservation in Beltsville thawing solution. Hypotonic resistance markedly decreased during epididymal maturation and after ejaculation as Osmcritat 15 °C was 54.7±3.2, 68.5±10.6, 116.7±2.1 and 194.3±3.7 mmol/kg for the caput, corpus, cauda and ejaculated spermatozoa respectively. Hypo-osmotic stress of 100 mmol/kg revealed a sperm subpopulation exhibiting increased hypotonic resistance compared with the whole ejaculate (Osmcrit=67.8±2.1 mmol/kg). Consistent differences were observed between lean and standard breeds (Pietrain versus Large White) and between boars within the same breed. According to data collected by artificial insemination centers during a large-scale field trial, hypotonic resistance of ejaculates was found to be positively correlated within vivofertility.
Collapse
|
16
|
Yeung CH, Callies C, Rojek A, Nielsen S, Cooper TG. Aquaporin isoforms involved in physiological volume regulation of murine spermatozoa. Biol Reprod 2008; 80:350-7. [PMID: 18829704 DOI: 10.1095/biolreprod.108.071928] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Murine epididymal spermatozoa were dispersed in a medium of native osmolality and then transferred to a hypo-osmotic medium to mimic the physiological osmotic challenge, as encountered upon ejaculation into the female tract. The addition of quinine to block sperm K(+)-channels for volume regulation resulted in a size increase of viable cells. Preincubation in 0.1 mM HgCl(2), a standard aquaporin inhibitor, prevented such cell swelling. Addition of the K(+)-ionophore valinomycin to quinine-swollen sperm reversed the swelling, but not after pretreatment of the swollen sperm by HgCl(2). Aqp7, Aqp8, and Aqp9 mRNAs were identified in spermatozoa by RT-PCR, and the entire open reading frames were sequenced and compared with the GenBank database. Western blotting demonstrated specific protein signals for sperm AQP7 and AQP8 expression but probably not AQP9. The role of Hg(2+)-insensitive AQP7, if any, in sperm volume regulation was studied in transgenic mice. Spermatozoa from Aqp7(-/-) mice were the same size as wild-type sperm in basal conditions. Quinine-swollen volume, swelling reversal by valinomycin, and inhibition by Hg(2+) were also similar, indicating efficient water transport in the absence of AQP7. However, both water influx and efflux occurred faster in Aqp7(-/-) sperm than wild-type. This faster water movement in the knockout mouse spermatozoa was explainable by an upregulation of Aqp8 expression as revealed by quantitative PCR. Therefore, the Hg(2+)-sensitive AQP8, which was localized in elongated spermatids and spermatozoa, is a likely candidate for a water channel responsible for physiological sperm volume regulation crucial to in vivo fertilization.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Centre of Reproductive Medicine and Andrology, University of Münster, D-48129 Münster, Germany.
| | | | | | | | | |
Collapse
|
17
|
Callies C, Cooper TG, Yeung CH. Channels for water efflux and influx involved in volume regulation of murine spermatozoa. Reproduction 2008; 136:401-10. [PMID: 18614623 DOI: 10.1530/rep-08-0149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nature of the membrane channels mediating water transport in murine spermatozoa adjusting to anisotonic conditions was investigated. The volume of spermatozoa subjected to physiologically relevant hypotonic conditions either simultaneously, or after isotonic pre-incubation, with putative water transport inhibitors was monitored. Experiments in which quinine prevented osmolyte efflux, and thus regulatory volume decrease (RVD), revealed whether water influx or efflux was being inhibited. There was no evidence that sodium-dependent solute transporters or facilitative glucose transporters were involved in water transport during RVD of murine spermatozoa since phloretin, cytochalasin B and phloridzin had no effect on volume regulation. However, there was evidence that Hg(2+)- and Ag(+)-sensitive channels were involved in water transport and the possibility that they include aquaporin 8 is discussed. Toxic effects of these heavy metals were ruled out by evidence that mitochondrial poisons had no such effect on volume regulation.
Collapse
Affiliation(s)
- C Callies
- Centre of Reproductive Medicine and Andrology of the University, Domagkstrasse 11, D-48129 Münster, Germany
| | | | | |
Collapse
|
18
|
Abstract
Despite significant advances in contraceptive options for women over the last 50 yr, world population continues to grow rapidly. Scientists and activists alike point to the devastating environmental impacts that population pressures have caused, including global warming from the developed world and hunger and disease in less developed areas. Moreover, almost half of all pregnancies are still unwanted or unplanned. Clearly, there is a need for expanded, reversible, contraceptive options. Multicultural surveys demonstrate the willingness of men to participate in contraception and their female partners to trust them to do so. Notwithstanding their paucity of options, male methods including vasectomy and condoms account for almost one third of contraceptive use in the United States and other countries. Recent international clinical research efforts have demonstrated high efficacy rates (90-95%) for hormonally based male contraceptives. Current barriers to expanded use include limited delivery methods and perceived regulatory obstacles, which stymie introduction to the marketplace. However, advances in oral and injectable androgen delivery are cause for optimism that these hurdles may be overcome. Nonhormonal methods, such as compounds that target sperm motility, are attractive in their theoretical promise of specificity for the reproductive tract. Gene and protein array technologies continue to identify potential targets for this approach. Such nonhormonal agents will likely reach clinical trials in the near future. Great strides have been made in understanding male reproductive physiology; the combined efforts of scientists, clinicians, industry and governmental funding agencies could make an effective, reversible, male contraceptive an option for family planning over the next decade.
Collapse
Affiliation(s)
- Stephanie T Page
- Center for Research in Reproduction and Contraception, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
19
|
Jiao Y, Jin X, Yan J, Zhang C, Jiao F, Li X, Roe BA, Mount DB, Gu W. A deletion mutation in Slc12a6 is associated with neuromuscular disease in gaxp mice. Genomics 2008; 91:407-14. [PMID: 18343091 DOI: 10.1016/j.ygeno.2007.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 12/17/2007] [Accepted: 12/31/2007] [Indexed: 11/17/2022]
Abstract
Giant axonopathy (gaxp), an autosomal recessive mouse mutation, exhibits ataxia of the hind legs with a slight side-to-side wobble while walking. Within the genomic region of the gaxp locus, a total of 94 transcripts were identified; the annotation of these genes using OMIM and PubMed yielded three potential candidate genes. By cDNA microarray analysis, 54 genes located on or near the gaxp locus were found to exhibit differential expression between gaxp and littermate controls. Based on microarray data and the known function of genes identified, Slc12a6 was selected as the primary candidate gene and analyzed using the Reveal technology of SpectruMedix. A 17-base deletion was detected from within exon 4 of Slc12a6. Reverse transcriptase polymerase chain reaction validated the difference in Slc12a6 expression in different types of mice at the mRNA level, revealing a marked reduction in gaxp mice. Western blot analysis indicated that the protein product of Slc12a6, the K(+)-Cl(-) cotransporter Kcc3, was not detectable in gaxp mice. The causative role of the exon 4 mutation within Slc12a6 in the gaxp phenotype was further confirmed by screening multiple inbred strains and by excluding the mutation of nearby genes within the gaxp locus.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Orthopaedic Surgery (Campbell Clinic), University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yeung C, Cooper T. Potassium channels involved in human sperm volume regulation—quantitative studies at the protein and mRNA levels. Mol Reprod Dev 2008; 75:659-68. [DOI: 10.1002/mrd.20812] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Yeung CH, Beiglböck-Karau L, Tüttelmann F, Nieschlag E. The presence of germ cells in the semen of azoospermic, cryptozoospermic and severe oligozoospermic patients: stringent flow cytometric analysis and correlations with hormonal status. Clin Endocrinol (Oxf) 2007; 67:767-75. [PMID: 17610519 DOI: 10.1111/j.1365-2265.2007.02961.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To understand the clinical significance of immature germ cells commonly found in ejaculates with low sperm counts by a novel and stringent flow cytometric quantitative method. PATIENTS/MEASUREMENTS: A total of 65 azoospermic, 38 cryptozoospermic and 42 severe oligozoospermic patients underwent routine hormone and semen analysis. Cells from each ejaculate were stained for DNA and mitochondria and analysed as spermatozoa (HC), round spermatids (1N), primary spermatocytes (4N) or diploid cells (2N). RESULTS About 90% of HC particles were eliminated as contaminants of the spermatozoa population by the analysis of their laser light scatter pattern and mitochondria staining intensity. Ploidy identification accuracy was improved by selection of singlets and elimination of cell aggregates for analysis. Distribution peaks for HC, 1N and 4N cells were displayed in 53%, 56% and 25% ejaculates, respectively, with prevalence in severe oligozoospermia > cryptozoospermia > azoospermia. 1N cell numbers were correlated with 4N and HC cells. For HC and 1N cells, the number/ejaculate and the incidence of distribution peaks were correlated with serum testosterone levels, and inversely with FSH for HC, 1N and 4N cells, suggesting that the abnormal shedding of 1N and 4N germ cells is the consequence rather than the cause of spermatogenic failure in these patients. Ploidy data bear no association with clinical diagnosis except for Klinefelter patients. CONCLUSION Whereas incidence of HC cells in azoospermic ejaculates may suggest minimal spermatogenic activity which evades detection by routine semen analysis, the presence of 1N and 4N cells in semen of patients provides noninvasive information about their spermatogenic status.
Collapse
Affiliation(s)
- C H Yeung
- Institute of Reproductive Medicine, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
22
|
Triphan X, Menzel VA, Petrunkina AM, Cassará MC, Wemheuer W, Hinsch KD, Hinsch E. Localisation and function of voltage-dependent anion channels (VDAC) in bovine spermatozoa. Pflugers Arch 2007; 455:677-86. [PMID: 17647012 DOI: 10.1007/s00424-007-0316-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/22/2007] [Accepted: 06/23/2007] [Indexed: 10/23/2022]
Abstract
Sperm motility, regulation of cell volume, sperm capacitation, acrosome reaction and tight binding of spermatozoa to the zona pellucida are crucial events in the process of fertilisation. Voltage-dependent anion channels (VDAC) are highly conserved pore-forming proteins implicated in apoptosis, metabolite transport between mitochondria and cytosol, energy metabolism, and cell volume regulation in somatic cells. Several studies have demonstrated the presence of VDAC in cell compartments other than mitochondria. In previous studies using immunofluorescence, we were able to localise VDAC2 and VDAC3 in outer dense fibres of the bovine sperm flagellum. Furthermore, we described the presence of VDAC2 in the head of bovine sperm. In the present study, we confirm the localisation of VDAC2 in the acrosomal region of bovine spermatozoa using immunoelectron microscopy. After incubation with anti-VDAC antibodies raised against each VDAC isoform, bovine spermatozoa showed an increased loss of the acrosomal cap, noticeable changes in the surface of the head, coiled tails and an increased cell volume. The incubation of bovine spermatozoa with anti-VDAC antibodies might lead to alteration of the intracellular ion concentration that causes changes in the cell volume, followed by destabilization of the cytoskeleton and, finally, to loss of the acrosomal cap.
Collapse
Affiliation(s)
- Xenia Triphan
- Centre of Dermatology and Andrology, Justus Liebig University of Giessen, Gaffkystr. 14, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Petrunkina AM, Waberski D, Günzel-Apel AR, Töpfer-Petersen E. Determinants of sperm quality and fertility in domestic species. Reproduction 2007; 134:3-17. [PMID: 17641084 DOI: 10.1530/rep-07-0046] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fertilization success cannot be attributed solely to the absolute number of vital, motile, morphologically normal spermatozoa inseminated into the female but more especially to their functional competence. A range ofin vitrotests has therefore been developed to monitor crucial aspects of sperm function: their ability to adapt to changing osmotic conditions, to bind to the oviductal epithelium, and to undergo capacitation in an appropriate and timely manner. The tests employ flow cytometry in conjunction with fluorescent techniques, electronic cell counting, and computer-assisted image area analysis. The highly quantitative analysis provided by electronic sizing and flow cytometry enables assessment of representative cell numbers in a very short time with high reproducibility. More importantly, it allows the detection of physiological heterogeneity within an ejaculate in terms of the development of cell subpopulations and enables the kinetic analysis of changes in living cell suspensions. The tests offer a promising strategy for evaluating fertility in domestic animals. The capability for volume regulation ensures that sperm recover from the tonic shocks experienced at ejaculation and during cryopreservation. Assessment of capacitationin vitroprovides valuable information on both the sperm’s ability to respond to fertilizing conditions and the sequence and rates of ongoing capacitation/destabilization processes. The monitoring of response to capacitating conditions in kinetic terms allows the sensitive and adequate detection of sperm populations expressing fertilization attributes and their ability to respond to external stimuli in a timely manner. However, subfertility is likely to be associated with a suboptimal response (i.e. too high or too low) rather than a minimal response.
Collapse
Affiliation(s)
- A M Petrunkina
- Unit for Reproductive Medicine of Clinics, Clinic for Horses, University of Veterinary Medicine Hannover Foundation, Bünteweg 15, 30559 Hannover, Germany.
| | | | | | | |
Collapse
|