1
|
The Role of Maternal-Effect Genes in Mammalian Development: Are Mammalian Embryos Really an Exception? Stem Cell Rev Rep 2017; 12:276-84. [PMID: 26892267 DOI: 10.1007/s12015-016-9648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The essential contribution of multiple maternal factors to early mammalian development is rapidly altering the view that mammals have a unique pattern of development compared to other species. Currently, over 60 maternal-effect mutations have been described in mammalian systems, including critical determinants of pluripotency. This data, combined with the evidence for lineage bias and differential gene expression in early blastomeres, strongly suggests that mammalian development is to some extent mosaic from the four-cell stage onward.
Collapse
|
2
|
Boiani M, Cibelli JB. What we can learn from single-cell analysis in development. Mol Hum Reprod 2016; 22:160-71. [DOI: 10.1093/molehr/gaw014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
3
|
Abstract
ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
Collapse
|
4
|
Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics 2014; 6:427-43. [DOI: 10.2217/epi.14.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA mutations and genomic recombinations are the origin of oncogenesis, yet parts of developmental programs as well as immunity are intimately linked to, or even depend on, such DNA damages. Therefore, the balance between deleterious DNA damages and organismal survival utilizing DNA editing (modification and repair) is in continuous flux. The cytosine deaminases AID/APOBEC are a DNA editing family and actively participate in various biological processes. In conjunction with altered DNA repair, the mutagenic potential of the family allows for APOBEC3 proteins to restrict viral infection and transposons propagation, while AID can induce somatic hypermutation and class switch recombination in antibody genes. On the other hand, the synergy between effective DNA repair and the nonmutagenic potential of the DNA deaminases can induce local DNA demethylation to support epigenetic cellular identity. Here, we review the current state of knowledge on the mechanisms of action of the AID/APOBEC family in immunity and epigenetics.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Svend K Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| |
Collapse
|
5
|
Chavez SL, McElroy SL, Bossert NL, De Jonge CJ, Rodriguez MV, Leong DE, Behr B, Westphal LM, Reijo Pera RA. Comparison of epigenetic mediator expression and function in mouse and human embryonic blastomeres. Hum Mol Genet 2014; 23:4970-84. [PMID: 24821703 PMCID: PMC4140471 DOI: 10.1093/hmg/ddu212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A map of human embryo development that combines imaging, molecular, genetic and epigenetic data for comparisons to other species and across pathologies would be greatly beneficial for basic science and clinical applications. Here, we compared mRNA and protein expression of key mediators of DNA methylation and histone modifications between mouse and human embryos, embryos from fertile/infertile couples, and following growth factor supplementation. We observed that individual mouse and human embryos are characterized by similarities and distinct differences in DNA methylation and histone modification patterns especially at the single-cell level. In particular, while mouse embryos first exhibited sub-compartmentalization of different histone modifications between blastomeres at the morula stage and cell sub-populations in blastocysts, differential histone modification expression was detected between blastomeres earlier in human embryos at the four- to eight-cell stage. Likewise, differences in epigenetic mediator expression were also observed between embryos from fertile and infertile couples, which were largely equalized in response to growth factor supplementation, suggesting that select growth factors might prevent alterations in epigenetic profiles during prolonged embryo culture. Finally, we determined that reduced expression via morpholino technologies of a single histone-modifying enzyme, Rps6ka4/Msk2, resulted in cleavage-stage arrest as assessed by time-lapse imaging and was associated with aneuploidy generation. Taken together, data document differences in epigenetic patterns between species with implications for fertility and suggest functional roles for individual epigenetic factors during pre-implantation development.
Collapse
Affiliation(s)
- Shawn L Chavez
- Center for Reproductive and Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sohyun L McElroy
- Center for Reproductive and Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancy L Bossert
- Reproductive Medicine Center, University of Minnesota, Minneapolis, MN 55414, USA
| | | | - Maria Vera Rodriguez
- Center for Reproductive and Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA Iviomics, Valencia, Spain
| | - Denise E Leong
- Center for Reproductive and Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barry Behr
- Department of Obstetrics and Gynecology and
| | | | - Renee A Reijo Pera
- Center for Reproductive and Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Condic ML. Totipotency: what it is and what it is not. Stem Cells Dev 2014; 23:796-812. [PMID: 24368070 PMCID: PMC3991987 DOI: 10.1089/scd.2013.0364] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/23/2013] [Indexed: 02/03/2023] Open
Abstract
There is surprising confusion surrounding the concept of biological totipotency, both within the scientific community and in society at large. Increasingly, ethical objections to scientific research have both practical and political implications. Ethical controversy surrounding an area of research can have a chilling effect on investors and industry, which in turn slows the development of novel medical therapies. In this context, clarifying precisely what is meant by "totipotency" and how it is experimentally determined will both avoid unnecessary controversy and potentially reduce inappropriate barriers to research. Here, the concept of totipotency is discussed, and the confusions surrounding this term in the scientific and nonscientific literature are considered. A new term, "plenipotent," is proposed to resolve this confusion. The requirement for specific, oocyte-derived cytoplasm as a component of totipotency is outlined. Finally, the implications of twinning for our understanding of totipotency are discussed.
Collapse
Affiliation(s)
- Maureen L Condic
- Department of Neurobiology, School of Medicine, University of Utah , Salt Lake City, Utah
| |
Collapse
|
7
|
Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry. Sci Rep 2014; 3:2278. [PMID: 23880666 PMCID: PMC3721081 DOI: 10.1038/srep02278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 12/24/2022] Open
Abstract
We have measured the expression of 41 maternal mRNAs in individual blastomeres collected from the 8 to 32-cell Xenopus laevis embryos to determine when and how asymmetry in the body plan is introduced. We demonstrate that the asymmetry along the animal-vegetal axis in the oocyte is transferred to the daughter cells during early cell divisions. All studied mRNAs are distributed evenly among the set of animal as well as vegetal blastomeres. We find no asymmetry in mRNA levels that might be ascribed to the dorso-ventral specification or the left-right axis formation. We hypothesize that while the animal-vegetal asymmetry is a consequence of mRNA gradients, the dorso-ventral and left-right axes specifications are induced by asymmetric distribution of other biomolecules, probably proteins.
Collapse
|
8
|
Sun Y, Zhou X, Yu Y. A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing. LAB CHIP 2014; 14:3603-10. [PMID: 25070461 DOI: 10.1039/c4lc00598h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a double-inkjet printing method for the generation of picoliter droplet-in-oil arrays on planar substrates, efficiently addressing droplet evaporation issues without the assistance of a humidifier or glycerol.
Collapse
Affiliation(s)
- Yingnan Sun
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing, China
| | - Xiaoguang Zhou
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing, China
- Joint Laboratory of Bioinformation Acquisition and Sensing Technology
| | - Yude Yu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing, China
- Joint Laboratory of Bioinformation Acquisition and Sensing Technology
| |
Collapse
|
9
|
Cagnone G, Sirard MA. The impact of exposure to serum lipids during in vitro culture on the transcriptome of bovine blastocysts. Theriogenology 2013; 81:712-22.e1-3. [PMID: 24439163 DOI: 10.1016/j.theriogenology.2013.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/27/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
In vitro culture has a detrimental impact on early embryonic development, and serum addition to IVC is recognized to compromise blastocyst quality. Particularly, serum fatty acids affect embryonic lipid composition and reduce cryopreservation survival. To understand the molecular pathways of serum-induced embryonic stress, this study examined the early development of bovine embryos produced in different protein- or lipid-supplemented culture media: BSA alone (control), BSA + serum lipid fraction (SELF), delipidated serum and total serum. These protein-lipid treatments were applied from the eight to 16 cell stages to the blastocyst stage. As planned, SELF treatment increased the fatty acid concentration in the medium compared with control medium but did not induce embryo toxicity. However, microarray comparison between blastocysts cultured in BSA without or with SELF revealed differential transcriptomic profile associated with ceramide-induced oxidative stress and inflammation. Moreover, the SELF treatment had a significant impact on genes involved in cholesterol metabolism (LDLR, HMGCS1), with the potential upstream control of the transcription factors SREBP and PPARA, two major regulators of cholesterol metabolism. In addition, the expression of pluripotence-related genes (APEX, CLDN6) was downregulated in blastocysts subjected to either SELF or total serum. Taken together, these results illustrate how the early embryonic transcriptome responds to increased lipid exposure through an inflammatory and metabolic signature.
Collapse
Affiliation(s)
- Gael Cagnone
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec City, Qc, Canada
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec City, Qc, Canada.
| |
Collapse
|
10
|
Epigenetics in fertilization and preimplantation embryo development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:423-32. [PMID: 23454467 DOI: 10.1016/j.pbiomolbio.2013.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/10/2013] [Accepted: 02/20/2013] [Indexed: 12/30/2022]
Abstract
Epigenetic reprogramming of the parental genomes upon fertilization is required for proper embryonic development. It has long been appreciated that asymmetric distribution of histone modifications as well as differences in the level of DNA methylation exist between the parental pronuclei in mammalian zygotes and during preimplantation development. The speed at which the paternal genome is demethylated after entering the oocyte and the fact that rapid demethylation occurs in the absence of DNA replication have led many to hypothesize that a DNA demethylase must exist. However, such an enzyme has not been found. That the genome of mammalian preimplantation embryos undergo a wave of global demethylation was first reported 25 years ago but only in the past three years has data surfaced that can partially explain the elusive nature of this phenomenon. In addition to the global reorganization of the methylation and histone modification patterns, oocyte development prior to germinal vesicle breakdown involves the production of numerous small RNA, including miRNA. Despite their presence, miRNA functional activity is thought to be limited in the mature mouse oocyte. Additionally, molecular signatures in the 3' untranslated region of maternally expressed transcripts may impact mRNA stability during the transcriptionally quiescent period following germinal vesicle breakdown and prior to the maternal to zygote transition. In this review, we reference some of the recent works which attempt to shed light into the importance of the dynamic epigenetic landscape observed during oocyte maturation and preimplantation embryo development in mammals.
Collapse
|
11
|
Linke M, May A, Reifenberg K, Haaf T, Zechner U. The Impact of Ovarian Stimulation on the Expression of Candidate Reprogramming Genes in Mouse Preimplantation Embryos. Cytogenet Genome Res 2012; 139:71-9. [DOI: 10.1159/000343755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2012] [Indexed: 11/19/2022] Open
|
12
|
Teperek-Tkacz M, Pasque V, Gentsch G, Ferguson-Smith AC. Epigenetic reprogramming: is deamination key to active DNA demethylation? Reproduction 2011; 142:621-32. [PMID: 21911441 DOI: 10.1530/rep-11-0148] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DNA demethylation processes are important for reproduction, being central in epigenetic reprogramming during embryonic and germ cell development. While the enzymes methylating DNA have been known for many years, identification of factors capable of mediating active DNA demethylation has been challenging. Recent findings suggest that cytidine deaminases may be key players in active DNA demethylation. One of the most investigated candidates is activation-induced cytidine deaminase (AID), best known for its role in generating secondary antibody diversity in B cells. We evaluate evidence for cytidine deaminases in DNA demethylation pathways in vertebrates and discuss possible models for their targeting and activity regulation. These findings are also considered along with alternative demethylation pathways involving hydroxymethylation.
Collapse
|
13
|
VerMilyea MD, Maneck M, Yoshida N, Blochberger I, Suzuki E, Suzuki T, Spang R, Klein CA, Perry ACF. Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J 2011; 30:1841-51. [PMID: 21468028 DOI: 10.1038/emboj.2011.92] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/03/2011] [Indexed: 11/09/2022] Open
Abstract
Transcriptome regionalization is an essential polarity determinant among metazoans, directing embryonic axis formation during normal development. Although conservation of this principle in mammals is assumed, recent evidence is conflicting and it is not known whether transcriptome asymmetries exist within unfertilized mammalian eggs or between the respective cleavage products of early embryonic divisions. We here address this by comparing transcriptome profiles of paired single cells and sub-cellular structures obtained microsurgically from mouse oocytes and totipotent embryos. Paired microsurgical spindle and remnant samples from unfertilized metaphase II oocytes possessed distinguishable profiles. Fertilization produces a totipotent 1-cell embryo (zygote) and associated spindle-enriched second polar body whose paired profiles also differed, reflecting spindle transcript enrichment. However, there was no programmed transcriptome asymmetry between sister cells within 2- or 3-cell embryos. Accordingly, there is transcriptome asymmetry within mouse oocytes, but not between the sister blastomeres of early embryos. This work places constraints on pre-patterning in mammals and provides documentation correlating potency changes and transcriptome partitioning at the single-cell level.
Collapse
Affiliation(s)
- Matthew D VerMilyea
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kantlehner M, Kirchner R, Hartmann P, Ellwart JW, Alunni-Fabbroni M, Schumacher A. A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res 2011; 39:e44. [PMID: 21266484 PMCID: PMC3074158 DOI: 10.1093/nar/gkq1357] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In recent years, the field of epigenetics has grown dramatically and has become one of the most dynamic and fast-growing branches of molecular biology. The amount of diseases suspected of being influenced by DNA methylation is rising steadily and includes common diseases such as schizophrenia, bipolar disorder, Alzheimer’s disease, diabetes, atherosclerosis, cancer, major psychosis, lupus and Parkinson’s disease. Due to cellular heterogeneity of methylation patterns, epigenetic analyses of single cells become a necessity. One rationale is that DNA methylation profiles are highly variable across individual cells, even in the same organ, dependent on the function of the gene, disease state, exposure to environmental factors (e.g. radiation, drugs or nutrition), stochastic fluctuations and various other causes. Using a polymerase chain reaction (PCR)-slide microreaction system, we present here a methylation-sensitive PCR analysis, the restriction enzyme-based single-cell methylation assay (RSMA), in the analysis of DNA methylation patterns in single cells. This method addresses the problems of cell heterogeneity in epigenetics research; it is comparably affordable, avoids complicated microfluidic systems and offers the opportunity for high-throughput screening, as many single cells can be screened in parallel. In addition to this study, critical principles and caveats of single cell methylation analyses are discussed.
Collapse
Affiliation(s)
- Martin Kantlehner
- Beckman Coulter Biomedical GmbH, Advalytix Products, Munich, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Sugimura S, Akai T, Somfai T, Hirayama M, Aikawa Y, Ohtake M, Hattori H, Kobayashi S, Hashiyada Y, Konishi K, Imai K. Time-Lapse Cinematography-Compatible Polystyrene-Based Microwell Culture System: A Novel Tool for Tracking the Development of Individual Bovine Embryos1. Biol Reprod 2010; 83:970-8. [DOI: 10.1095/biolreprod.110.085522] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
16
|
Schneider E, Pliushch G, El Hajj N, Galetzka D, Puhl A, Schorsch M, Frauenknecht K, Riepert T, Tresch A, Müller AM, Coerdt W, Zechner U, Haaf T. Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res 2010; 38:3880-90. [PMID: 20194112 PMCID: PMC2896520 DOI: 10.1093/nar/gkq126] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of gene-specific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism.
Collapse
Affiliation(s)
- Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, Biozentrum, Am Hubland, 97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shi L, Wu J. Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 2009; 7:59. [PMID: 19500360 PMCID: PMC2702308 DOI: 10.1186/1477-7827-7-59] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/05/2009] [Indexed: 12/11/2022] Open
Abstract
Preimplantation embryo development involves four stages: fertilization, cell cleavage, morula and blastocyst formation. During these stages, maternal and zygotic epigenetic factors play crucial roles. The gene expression profile is changed dramatically, chromatin is modified and core histone elements undergo significant changes. Each preimplantation embryo stage has its own characteristic epigenetic profile, consistent with the acquisition of the capacity to support development. Moreover, histone modifications such as methylation and acetylation as well as other epigenetic events can act as regulatory switches of gene transcription. Because the epigenetic profile is largely related to differentiation, epigenetic dysfunction can give rise to developmental abnormalities. Thus, epigenetic profiling of the embryo is of pivotal importance clinically. Given the importance of these aspects, this review will mainly focus on the epigenetic profile during preimplantation embryo development, as well as interactions between epigenetic and genetic regulation in these early developmental stages.
Collapse
Affiliation(s)
- Lingjun Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ji Wu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|