1
|
Dudley JS, Renfree MB, Wagner GP, Griffith OW. The extension of mammalian pregnancy required taming inflammation: Independent evolution of extended placentation in the tammar wallaby. Proc Natl Acad Sci U S A 2024; 121:e2310047121. [PMID: 39378090 PMCID: PMC11494332 DOI: 10.1073/pnas.2310047121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2024] [Indexed: 10/10/2024] Open
Abstract
In the first live-bearing mammals, pregnancy was likely short and ended with a brief period of inflammatory maternal-fetal interaction. This mode of reproduction has been retained in many marsupials. While inflammation is key to successful implantation in eutherians, a key innovation in eutherians is the ability to switch off this inflammation after it has been initiated. This extended period, in which inflammation is suppressed, likely allowed for an extended period of placentation. Extended placentation has evolved independently in one lineage of marsupials, the macropodids (wallabies and kangaroos), with placentation lasting beyond the 2 to 4 d seen in other marsupial taxa, which allows us to investigate the role of inflammation response after attachment in the extension of placentation in mammals. By comparing gene expression changes at attachment in three marsupial species, the tammar wallaby, opossum, and fat-tailed dunnart, we show that inflammatory attachment is an ancestral feature of marsupial implantation. In contrast to eutherians, where attachment-related (quasi-) inflammatory reaction is even involved in epitheliochorial placentation (e.g., pig), this study found no evidence of a distinct attachment-related reaction in wallabies. Instead, only a small number of inflammatory genes are expressed at distinct points of gestation, including IL6 before attachment, LIF throughout placentation, and prostaglandins before birth. During parturition, a more distinct inflammatory reaction is detectable, likely involved in precipitating the parturition cascade similar to eutherians. We suggest that in wallaby, extended gestation became possible by avoiding an inflammatory attachment reaction, which is a different strategy than seen in eutherians.
Collapse
Affiliation(s)
- Jessica S. Dudley
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW2109, Australia
| | - Marilyn B. Renfree
- School of BioSciences, University of Melbourne, Melbourne, VIC3010, Australia
| | - Günter P. Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06520
- Yale Systems Biology Institute, Yale University, West Haven, CT06520
- Department of Evolutionary Biology, University of Vienna, ViennaA-1030, Austria
| | - Oliver W. Griffith
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW2109, Australia
| |
Collapse
|
2
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Lefevre CM, Cain JW, Kramer AC, Seo H, Lopez AN, Sah N, Wu G, Bazer FW, Johnson GA. Evidence for metabolism of creatine by the conceptus, placenta, and uterus for production of adenosine triphosphate during conceptus development in pigs†. Biol Reprod 2024; 111:694-707. [PMID: 38836439 DOI: 10.1093/biolre/ioae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
In pigs, the majority of embryonic mortality occurs when free-floating conceptuses (embryos/fetuses and associated placental membranes) elongate, and the uterine-placental interface undergoes folding and develops areolae. Both periods involve proliferation, migration, and changes in morphology of cells that require adenosine triphosphate (ATP). We hypothesize that insufficient ATP in conceptus and uterine tissues contributes to conceptus loss in pigs. Creatine is stored in cells as phosphocreatine for ATP regeneration through the creatine-creatine kinase- phosphocreatine pathway. However, the expression of components of this pathway in pigs has not been examined throughout gestation. Results of qPCR analyses indicated increases in AGAT, GAMT, CKM, CKB, and SLC6A8 mRNAs in elongating porcine conceptuses, and immunofluorescence microscopy localized guanidinoacetate N-methyltransferase, creatine kinase M, and creatine kinase B proteins to the trophectoderm of elongating conceptuses, to the columnar chorionic epithelial cells at the bottom of chorioallantoic troughs, and to endometrial luminal epithelium at the tops of the endometrial ridges of uterine-placental folds on Days 40, 60, and 90 of gestation. Guanidinoacetate N-methyltransferase protein is expressed in endometrial luminal epithelium at the uterine-placental interface, but immunostaining is more intense in luminal epithelium at the bottoms of the endometrial ridges. Results of this study indicate that key elements of the pathway for creatine metabolism are expressed in cells of the conceptus, placenta, and uterus for potential production of ATP during two timepoints in pregnancy with a high demand for energy; elongation of the conceptus for implantation and development of uterine-placental folding during placentation.
Collapse
Affiliation(s)
- Carli M Lefevre
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Joe W Cain
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Arianna N Lopez
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Dugershaw‐Kurzer B, Bossart J, Buljan M, Hannig Y, Zehnder S, Gupta G, Kissling VM, Nowak‐Sliwinska P, van Beijnum JR, Griffioen AW, Masjosthusmann S, Zühr E, Fritsche E, Hornung R, Rduch T, Buerki‐Thurnherr T. Nanoparticles Dysregulate the Human Placental Secretome with Consequences on Angiogenesis and Vascularization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401060. [PMID: 38767187 PMCID: PMC11267331 DOI: 10.1002/advs.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Indexed: 05/22/2024]
Abstract
Exposure to nanoparticles (NPs) in pregnancy is increasingly linked to adverse effects on embryo-fetal development and health later in life. However, the developmental toxicity mechanisms of NPs are largely unknown, in particular potential effects on the placental secretome, which orchestrates many developmental processes pivotal for pregnancy success. This study demonstrates extensive material- and pregnancy stage-specific deregulation of placental signaling from a single exposure of human placental explants to physiologically relevant concentrations of engineered (silica (SiO2) and titanium dioxide (TiO2) NPs) and environmental NPs (diesel exhaust particles, DEPs). This includes a multitude of secreted inflammatory, vascular, and endocrine placental factors as well as extracellular vesicle (EV)-associated proteins. Moreover, conditioned media (CM) from NP-exposed explants induce pronounced anti-angiogenic and anti-vasculogenic effects, while early neurodevelopmental processes are only marginally affected. These findings underscore the potential of metal oxide NPs and DEPs for widespread interference with the placental secretome and identify vascular morphogenesis as a sensitive outcome for the indirect developmental toxicity of different NPs. Overall, this work has profound implications for the future safety assessment of NPs for industrial, commercial, or medical applications in pregnancy, which should consider placenta-mediated toxicity by holistic secretomics approaches to ensure the development of safe nanotechnologies.
Collapse
Affiliation(s)
- Battuja Dugershaw‐Kurzer
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Jonas Bossart
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
- SIBSwiss Institute of BioinformaticsLausanne1015Switzerland
| | - Marija Buljan
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- SIBSwiss Institute of BioinformaticsLausanne1015Switzerland
| | - Yvette Hannig
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| | - Sarah Zehnder
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| | - Govind Gupta
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| | - Vera M. Kissling
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| | - Patrycja Nowak‐Sliwinska
- Institute of Pharmaceutical Sciences of Western SwitzerlandGeneva1211Switzerland
- School of Pharmaceutical SciencesUniversity of GenevaGeneva1205Switzerland
| | - Judy R. van Beijnum
- Angiogenesis LaboratoryDepartment of Medical OncologyUMC loacation Vrije Universiteit AmsterdamAmsterdam1081The Netherlands
| | - Arjan W. Griffioen
- Angiogenesis LaboratoryDepartment of Medical OncologyUMC loacation Vrije Universiteit AmsterdamAmsterdam1081The Netherlands
| | | | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine40225DuesseldorfGermany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine40225DuesseldorfGermany
- Medical FacultyHeinrich Heine University40225DuesseldorfGermany
- DNTOX GmbH40223DuesseldorfGermany
| | - René Hornung
- Department of Gynaecology and ObstetricsCantonal Hospital St.Gallen (KSSG)St. Gallen9007Switzerland
| | - Thomas Rduch
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Gynaecology and ObstetricsCantonal Hospital St.Gallen (KSSG)St. Gallen9007Switzerland
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| |
Collapse
|
5
|
Poh QH, Rai A, Cross J, Greening DW. HB-EGF-loaded nanovesicles enhance trophectodermal spheroid attachment and invasion. Proteomics 2024; 24:e2200145. [PMID: 38214697 DOI: 10.1002/pmic.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential. We have previously established generation of cell-derived nanovesicles (NVs) from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to encapsulate potent implantation molecules such as HB-EGF (NVHBEGF). We show these loaded NVs elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell attachment and invasion. The phosphoproteomics and proteomics approach highlight NVHBEGF-mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jonathon Cross
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Fitzgerald HC, Kelleher AM, Ranjit C, Schust DJ, Spencer TE. Basolateral secretions of human endometrial epithelial organoids impact stromal cell decidualization. Mol Hum Reprod 2023; 29:gaad007. [PMID: 36821428 PMCID: PMC10321591 DOI: 10.1093/molehr/gaad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
Uterine glands and, by inference, their secretions impact uterine receptivity, blastocyst implantation, stromal cell decidualization, and placental development. Changes in gland function across the menstrual cycle are primarily governed by the steroid hormones estrogen (E2) and progesterone (P4) but can also be influenced by extrinsic factors from the stroma. Using a human endometrial epithelial organoid system, transcriptome and proteome analyses identified distinct responses of the organoids to steroid hormones and prostaglandin E2 (PGE2). Notably, P4 and PGE2 modulated the basolateral secretion of organoid proteins, particularly cystatin C (CST3), serpin family A member 3 (SERPINA3), and stanniocalcin 1 (STC1). CST3, but not SERPINA3 or STC1, attenuated the in vitro stromal decidualization response to steroid hormones and PGE2. These findings provide evidence that uterine gland-derived factors impact stromal cell decidualization, which has implications for pregnancy establishment and fertility in women.
Collapse
Affiliation(s)
- Harriet C Fitzgerald
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Present address: The Ritchie Centre, Hudson Institute of Medical Research, Clayton, 3168 Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, 3168 Victoria, Australia
| | - Andrew M Kelleher
- Division of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| | - Chaman Ranjit
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Danny J Schust
- Division of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
- Present address: Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Division of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Mahé C, Marcelo P, Tsikis G, Tomas D, Labas V, Saint-Dizier M. The bovine uterine fluid proteome is more impacted by the stage of the estrous cycle than the proximity of the ovulating ovary in the periconception period. Theriogenology 2023; 198:332-343. [PMID: 36640738 DOI: 10.1016/j.theriogenology.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Uterine secretions provide a suitable environment for sperm selective migration during a couple of days preceding ovulation and for early embryo development before implantation. Our goal was to identify and quantify proteins in the bovine uterine fluid during the periovulatory period of the estrous cycle. Genital tracts with normal morphology were collected from adult cyclic Bos taurus females in a local slaughterhouse and classified into pre-ovulatory or post-ovulatory stages of cycle (around days 19-21 and 0-5 of cycle, respectively; n = 8 cows per stage) based on ovarian morphology. Proteins from uterine fluid collected from the utero-tubal junction to the base of each horn (four pools of two cows per condition) were analyzed by nanoLiquid Chromatography coupled with tandem Mass Spectrometry (nanoLC-MS/MS). A total of 1214 proteins were identified, of which 91% were shared between all conditions. Overall, 57% of proteins were predicted to be secreted and 17% were previously reported in uterine extracellular vesicles. Paired comparisons between uterine horns ipsilateral and contralateral to ovulation evidenced 12 differentially abundant proteins, including five at pre-ovulatory stage. Furthermore, 35 proteins differed in abundance between pre- and post-ovulatory stages, including 21 in the ipsilateral side of ovulation. Functional analysis of identified proteins demonstrated roles in binding, metabolism, cellular detoxification and the immune response. This study provides a valuable database of uterine proteins for functional studies on sperm physiology and early embryo development.
Collapse
Affiliation(s)
- Coline Mahé
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Paulo Marcelo
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, Amiens, France
| | - Guillaume Tsikis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Daniel Tomas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage par Imagerie in/eX vivo de l'ANImal à la Molécule (PIXANIM), 37380, Nouzilly, France
| | - Valérie Labas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage par Imagerie in/eX vivo de l'ANImal à la Molécule (PIXANIM), 37380, Nouzilly, France
| | | |
Collapse
|
8
|
Abbas M, Hayirli Z, Drakesmith H, Andrews SC, Lewis MC. Effects of iron deficiency and iron supplementation at the host-microbiota interface: Could a piglet model unravel complexities of the underlying mechanisms? Front Nutr 2022; 9:927754. [PMID: 36267902 PMCID: PMC9577221 DOI: 10.3389/fnut.2022.927754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023] Open
Abstract
Iron deficiency is the most prevalent human micronutrient deficiency, disrupting the physiological development of millions of infants and children. Oral iron supplementation is used to address iron-deficiency anemia and reduce associated stunting but can promote infection risk since restriction of iron availability serves as an innate immune mechanism against invading pathogens. Raised iron availability is associated with an increase in enteric pathogens, especially Enterobacteriaceae species, accompanied by reductions in beneficial bacteria such as Bifidobacteria and lactobacilli and may skew the pattern of gut microbiota development. Since the gut microbiota is the primary driver of immune development, deviations from normal patterns of bacterial succession in early life can have long-term implications for immune functionality. There is a paucity of knowledge regarding how both iron deficiency and luminal iron availability affect gut microbiota development, or the subsequent impact on immunity, which are likely to be contributors to the increased risk of infection. Piglets are naturally iron deficient. This is largely due to their low iron endowments at birth (primarily due to large litter sizes), and their rapid growth combined with the low iron levels in sow milk. Thus, piglets consistently become iron deficient within days of birth which rapidly progresses to anemia in the absence of iron supplementation. Moreover, like humans, pigs are omnivorous and share many characteristics of human gut physiology, microbiota and immunity. In addition, their precocial nature permits early maternal separation, individual housing, and tight control of nutritional intake. Here, we highlight the advantages of piglets as valuable and highly relevant models for human infants in promoting understanding of how early iron status impacts physiological development. We also indicate how piglets offer potential to unravel the complexities of microbiota-immune responses during iron deficiency and in response to iron supplementation, and the link between these and increased risk of infectious disease.
Collapse
Affiliation(s)
- Munawar Abbas
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Zeynep Hayirli
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon C. Andrews
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Marie C. Lewis
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
9
|
Wiesak T, Goryszewska-Szczurek E. Effect of vitrification on the expression of genes in porcine blastocysts derived from in vitro matured oocytes. Syst Biol Reprod Med 2022; 68:239-246. [PMID: 35722676 DOI: 10.1080/19396368.2022.2072788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study aimed to examine the effect of vitrification on the expression of genes that are crucial for porcine early embryo development; cathepsin B (CTSB), growth differentiation factor 9 (GDF9), caudal type homeobox 2 (CDX2), and OCT-4, which play an important role in the maintenance of embryonic cell pluripotency. Their gene expression was investigated in expanded blastocysts (day 6-7) derived from in vitro matured oocytes. The quantitative real-time PCR method was used to assess the amount of relative specific transcripts in 20 vitrified (treatment group) and 32 fresh non-vitrified (control group) blastocysts. Vitrification was performed using 7.5% dimethyl sulfoxide (DMSO) plus 7.5% ethylene glycol (EG), and in the final step, 15% DMSO plus 15% EG and a 0.5 M sucrose solution and cryotop as a vitrification device. The blastocysts were warmed in 1 M, 0.5 M, and 0.25 M sucrose solution and kept in a culture medium for six hours before their fixation and further qPCR analysis. A significant upregulation in the targeted genes CTSB (p<.006), GDF9 (p<.04), and CDX2 (p<.003) was observed in the vitrified embryos compared to the fresh control group. Interestingly, the OCT-4 mRNA expression level was not affected by vitrification and remained comparable to that of the fresh non-vitrified embryos. In summary, the results of this pilot study showed, that vitrification induced substantial alteration in the expression of CTSB, GDF9, and CDX2 genes but did not influence the expression of OCT-4 gene in porcine in vitro derived blastocysts. Our data on the expression of developmentally important genes in vitrified porcine blastocyst may facilitate: (1) future improvements in culture conditions and/or cryopreservation protocol and (2) understanding the mechanism(s) of cryoinjuries inducing compromised post-thaw embryo development followed by the poor pregnancy outcome after blastocyst transfer.
Collapse
Affiliation(s)
- Teresa Wiesak
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Ewelina Goryszewska-Szczurek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
10
|
Yang Q, Liu J, Wang Y, Zhao W, Wang W, Cui J, Yang J, Yue Y, Zhang S, Chu M, Lyu Q, Ma L, Tang Y, Hu Y, Miao K, Zhao H, Tian J, An L. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling. J Biol Chem 2021; 298:101456. [PMID: 34861240 PMCID: PMC8733267 DOI: 10.1016/j.jbc.2021.101456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Well-orchestrated maternal–fetal cross talk occurs via secreted ligands, interacting receptors, and coupled intracellular pathways between the conceptus and endometrium and is essential for successful embryo implantation. However, previous studies mostly focus on either the conceptus or the endometrium in isolation. The lack of integrated analysis impedes our understanding of early maternal–fetal cross talk. Herein, focusing on ligand–receptor complexes and coupled pathways at the maternal–fetal interface in sheep, we provide the first comprehensive proteomic map of ligand–receptor pathway cascades essential for embryo implantation. We demonstrate that these cascades are associated with cell adhesion and invasion, redox homeostasis, and the immune response. Candidate interactions and their physiological roles were further validated by functional experiments. We reveal the physical interaction of albumin and claudin 4 and their roles in facilitating embryo attachment to endometrium. We also demonstrate a novel function of enhanced conceptus glycolysis in remodeling uterine receptivity by inducing endometrial histone lactylation, a newly identified histone modification. Results from in vitro and in vivo models supported the essential role of lactate in inducing endometrial H3K18 lactylation and in regulating redox homeostasis and apoptotic balance to ensure successful implantation. By reconstructing a map of potential ligand–receptor pathway cascades at the maternal–fetal interface, our study presents new concepts for understanding molecular and cellular mechanisms that fine-tune conceptus–endometrium cross talk during implantation. This provides more direct and accurate insights for developing potential clinical intervention strategies to improve pregnancy outcomes following both natural and assisted conception.
Collapse
Affiliation(s)
- Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiajun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuan Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meiqiang Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingji Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lizhu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yawen Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yupei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haichao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Gegenfurtner K, Fröhlich T, Flenkenthaler F, Kösters M, Fritz S, Desnoës O, Le Bourhis D, Salvetti P, Sandra O, Charpigny G, Mermillod P, Lonergan P, Wolf E, Arnold GJ. Genetic merit for fertility alters the bovine uterine luminal fluid proteome†. Biol Reprod 2021; 102:730-739. [PMID: 31786596 DOI: 10.1093/biolre/ioz216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023] Open
Abstract
Over the last decades, fertility of dairy cows has declined due to selection strategies focusing on milk yield. To study the effect of genetic merit for fertility on the proteome of the bovine uterine luminal fluid, Holstein heifers with low- and two groups of heifers with high-fertility index (high-fertility Holstein and Montbéliarde) were investigated. To focus on the maternal effect, heifers from all groups were synchronized and received on Day 7 high-quality embryos. Uterine luminal fluid from Day 19 pregnant heifers was analyzed in a holistic proteomic approach using nano-LC-MS/MS analysis combined with a label-free quantification approach. In total, 1737 proteins were identified, of which 597 differed significantly in abundance between the three groups. The vast majority of proteome differences was found comparing both high-fertility groups to the low-fertility Holstein group, showing that the genetic predisposition for fertility is prevalent regarding the uterine luminal fluid proteome. Evaluation of this dataset using bioinformatic tools revealed an assignment of higher abundant proteins in low-fertility Holstein to several metabolic processes, such as vitamin metabolic process, which comprises folate receptor alpha (FOLR1) and retinol-binding protein, indicating an involvement of disturbed metabolic processes in decreased fertility. Moreover, immune system-related proteins - lactotransferrin and chromogranin A - were enriched in low-fertility cows together with interferon tau 3 h and interferon tau-2. Our results indicate that the genetic merit for fertility leads to substantial quantitative differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Miwako Kösters
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | | | | | | | | | - Olivier Sandra
- Unités Mixtes de Recherche Biologie du Développement et Reproduction, Institut National de Recherche Agronomique (INRA), Environment and Agronomy (ENVA), Université Paris Saclay, Jouy en Josas, France
| | - Gilles Charpigny
- Unités Mixtes de Recherche Biologie du Développement et Reproduction, Institut National de Recherche Agronomique (INRA), Environment and Agronomy (ENVA), Université Paris Saclay, Jouy en Josas, France
| | - Pascal Mermillod
- Institut National de Recherche Agronomique, UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| |
Collapse
|
12
|
Screening Candidate Genes Regulating Placental Development from Trophoblast Transcriptome at Early Pregnancy in Dazu Black Goats ( Capra hircus). Animals (Basel) 2021; 11:ani11072132. [PMID: 34359260 PMCID: PMC8300351 DOI: 10.3390/ani11072132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The trophoblast is an original placental tissue whose normal proliferation, differentiation, migration, adhesion, and angiopoiesis are essential for placenta formation and fetal survival during early pregnancy. However, the key genes and molecular mechanisms involved in placenta development in goats are unknown. Herein, the morphology and histological structures of trophoblast tissues from day 20 to 30 of pregnancy were determined. RNA-sequencing was used to screen potential functional genes in common highly expressed and differentially expressed genes. RAP1 signaling pathway was used as the contact center and coordinated with other pathways to regulate placenta development. This study could provide insights into the molecular mechanisms underlying ruminant placentation. Abstract This study explored the trophoblast transcriptome to understand potential functional genes involved in early placental development in goats and their enriched signaling pathways. Trophoblast samples were collected from nine Dazu Black goats on days 20, 25, and 30 of pregnancy (D20, D25, and D30). As the pregnancy progressed, the morphology and histological structures showed significant growth, adhesion, and angiogenesis. A total of 23,253 commonly expressed genes (CEGs) and 4439 differently expressed genes (DEGs) were detected by RNA sequencing. The common highly expressed genes (ChEGs) (the top 100 CEGs) with the highest FPKM percentage (29.9%) of all CEGs were annotated to the ribosome pathway and maintain pregnancy. DEGs were abundant in D30 vs. D20 (3715 DEGs). Besides, the DEGs were associated with the inhibition of oxidative phosphorylation and activation of PI3K-Akt, focal adhesion, ECM–receptor interaction, Rap1, and CAM signaling pathways. The RAP1 may be a central pathway since it coordinates with others to regulate the cell proliferation, invasion, migration, and fusion of trophoblasts. qRT-PCR and Western blot analysis confirmed the transcriptional expression in IGF1, VEGFC, RAPGEF3, PIK3CA, AKT3, ITGB3, ITGA11, SPP1, NOS1, and ATP6V0B genes and protein levels in VEGF, RAPGEF3, and Akt. This is the first study of transcriptome profiling in goat placenta and provides diverse genetic resources for further research on placenta development.
Collapse
|
13
|
Seo H, Johnson GA, Bazer FW, Wu G, McLendon BA, Kramer AC. Cell-Specific Expression of Enzymes for Serine Biosynthesis and Glutaminolysis in Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:17-28. [PMID: 33770400 DOI: 10.1007/978-3-030-54462-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During the peri-implantation period, conceptuses [embryo and placental membranes, particularly the trophectoderm (Tr)] of farm animals (e.g., sheep and pigs) rapidly elongate from spherical to tubular to filamentous forms. In concert with Tr outgrowth during conceptus elongation, the Tr of sheep and pig conceptuses attaches to the endometrial luminal epithelium (LE) to initiate placentation. In sheep, binucleate cells (BNCs) begin to differentiate from the mononuclear trophectoderm cells and migrate to the endometrial LE to form syncytial plaques. These events require Tr cells to expend significant amounts of energy to undergo timely and extensive proliferation, migration and fusion. It is likely essential that conceptuses optimally utilize multiple biosynthetic pathways to convert molecules such as glucose, fructose, and glutamine (components of histotroph transport by sheep and pig endometria into the uterine lumen), into ATP, amino acids, ribose, hexosamines and nucleotides required to support early conceptus development and survival. Elongating and proliferating conceptus Tr cells potentially act, in a manner similar to cancer cells, to direct carbon generated from glucose and fructose away from the TCA cycle for utilization in branching pathways of glycolysis, including the pentose phosphate pathway, one-carbon metabolism, and hexosamine biosynthesis. The result is a limited availability of pyruvate for maintaining the TCA cycle within mitochondria, and Tr cells replenish TCA cycle metabolites via a process known as anaplerosis, primarily through glutaminolysis to convert glutamine into TCA cycle intermediates. Here we describe the cell-specific expression of enzymes required for serine biosynthesis, one-carbon metabolism and glutaminolysis at the uterine-placental interface of sheep and pigs, and propose that these biosynthetic pathways are essential to support early placental development including Tr elongation, cell migration, cell fusion and implantation by ovine and porcine conceptuses.
Collapse
Affiliation(s)
- Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Johnson GA, Bazer FW, Seo H. The Early Stages of Implantation and Placentation in the Pig. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:61-89. [PMID: 34694478 DOI: 10.1007/978-3-030-77360-1_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Pregnancy in pigs includes the events of conceptus (embryo/fetus and placental membranes) elongation, implantation, and placentation. Placentation in pigs is defined microscopically as epitheliochorial and macroscopically as diffuse. In general, placentation can be defined as the juxtapositioning of the endometrial/uterine microvasculature to the chorioallantoic/placental microvasculature to facilitate the transport of nutrients from the mother to the fetus to support fetal development and growth. Establishment of epitheliochorial placentation in the pig is achieved by: (1) the secretions of uterine glands prior to conceptus attachment to the uterus; (2) the development of extensive folding of the uterine-placental interface to maximize the surface area for movement of nutrients across this surface; (3) increased angiogenesis of the vasculature that delivers both uterine and placental blood and, with it, nutrients to this interface; (4) the minimization of connective tissue that lies between these blood vessels and the uterine and placental epithelia; (5) interdigitation of microvilli between the uterine and placental epithelia; and (6) the secretions of the uterine glands, called histotroph, that accumulate in areolae for transport though the placenta to the fetus. Placentation in pigs is not achieved by invasive growth of the placenta into the uterus. In this chapter, we summarize current knowledge about the major events that occur during the early stages of implantation and placentation in the pig. We will focus on the microanatomy of porcine placentation that builds off the excellent histological work of Amoroso and others and provide a brief review of some of the key physiological, cellular, and molecular events that accompany the development of "implantation" in pigs.
Collapse
Affiliation(s)
- Gregory A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
15
|
Tu C, Tao F, Qin Y, Wu M, Cheng J, Xie M, Shen B, Ren J, Xu X, Huang D, Chen H. Serum proteins differentially expressed in early- and late-onset preeclampsia assessed using iTRAQ proteomics and bioinformatics analyses. PeerJ 2020; 8:e9753. [PMID: 32953262 PMCID: PMC7473043 DOI: 10.7717/peerj.9753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Preeclampsia remains a serious disorder that puts at risk the lives of perinatal mothers and infants worldwide. This study assessed potential pathogenic mechanisms underlying preeclampsia by investigating differentially expressed proteins (DEPs) in the serum of patients with early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE) compared with healthy pregnant women. METHODS Blood samples were collected from four women with EOPE, four women with LOPE, and eight women with normal pregnancies, with four women providing control samples for each preeclampsia group. Serum proteins were identified by isobaric tags for relative and absolute quantitation combined with liquid chromatography-tandem mass spectrometry. Serum proteins with differences in their levels compared with control groups of at least 1.2 fold-changes and that were also statistically significantly different between the groups at P < 0.05 were further analyzed. Bioinformatics analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses, were used to determine the key proteins and signaling pathways associated with the development of PE and to determine those DEPs that differed between women with EOPE and those with LOPE. Key protein identified by mass spectrometry was verified by enzyme linked immunosorbent assay (ELISA). RESULTS Compared with serum samples from healthy pregnant women, those from women with EOPE displayed 70 proteins that were differentially expressed with significance. Among them, 51 proteins were significantly upregulated and 19 proteins were significantly downregulated. In serum samples from women with LOPE, 24 DEPs were identified , with 10 proteins significantly upregulated and 14 proteins significantly downregulated compared with healthy pregnant women. Bioinformatics analyses indicated that DEPs in both the EOPE and LOPE groups were associated with abnormalities in the activation of the coagulation cascade and complement system as well as with lipid metabolism. In addition, 19 DEPs in the EOPE group were closely related to placental development or invasion of tumor cells. Downregulationof pregnancy-specific beta-1-glycoprotein 9 (PSG9) in the LOPE group was confirmed by ELISA. CONCLUSION The pathogenesis of EOPE and LOPE appeared to be associated with coagulation cascade activation, lipid metabolism, and complement activation. However, the pathogenesis of EOPE also involved processes associated with greater placental injury. This study provided several new proteins in the serum which may be valuable for clinical diagnosis of EOPE and LOPE, and offered potential mechanisms underpinning the development of these disorders.
Collapse
Affiliation(s)
- Chengcheng Tu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Feng Tao
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Ying Qin
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mingzhu Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Ji Cheng
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Min Xie
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Junjiao Ren
- Department of Science and Education, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Dayan Huang
- Department of Science and Education, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
16
|
Transcriptomic and ChIP-seq Integrative Analysis Reveals Important Roles of Epigenetically Regulated lncRNAs in Placental Development in Meishan Pigs. Genes (Basel) 2020; 11:genes11040397. [PMID: 32268606 PMCID: PMC7230623 DOI: 10.3390/genes11040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022] Open
Abstract
The development of the placental fold, which increases the maternal–fetal interacting surface area, is of primary importance for the growth of the fetus throughout the whole pregnancy. However, the mechanisms involved remain to be fully elucidated. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) are a new class of RNAs with regulatory functions and could be epigenetically regulated by histone modifications. In this study, 141 lncRNAs (including 73 up-regulated and 68 down-regulated lncRNAs) were identified to be differentially expressed in the placentas of pigs during the establishment and expanding stages of placental fold development. The differentially expressed lncRNAs and genes (DElncRNA-DEgene) co-expression network analysis revealed that these differentially expressed lncRNAs (DElncRNAs) were mainly enriched in pathways of cell adhesion, cytoskeleton organization, epithelial cell differentiation and angiogenesis, indicating that the DElncRNAs are related to the major events that occur during placental fold development. In addition, we integrated the RNA-seq (RNA sequencing) data with the ChIP-seq (chromatin immunoprecipitation sequencing) data of H3K4me3/H3K27ac produced from the placental samples of pigs from the two stages (gestational days 50 and 95). The analysis revealed that the changes in H3K4me3 and/or H3K27ac levels were significantly associated with the changes in the expression levels of 37 DElncRNAs. Furthermore, several H3K4me3/H3K27ac-lncRNAs were characterized to be significantly correlated with genes functionally related to placental development. Thus, this study provides new insights into understanding the mechanisms for the placental development of pigs.
Collapse
|
17
|
Billhaq DH, Lee SH, Lee S. The potential function of endometrial-secreted factors for endometrium remodeling during the estrous cycle. Anim Sci J 2020; 91:e13333. [PMID: 31909524 DOI: 10.1111/asj.13333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 01/05/2023]
Abstract
Uterine has a pivotal role in implantation and conceptus development. To prepare a conducive uterine condition for possibly new gestation during the estrous cycle, uterine endometrium undergoes dramatic remodeling. In addition, angiogenesis is an indispensable biological process of endometrium remodeling. Furthermore, essential protein expressions related to important biological processes of endometrium remodeling, which are vascular endothelial growth factor (VEGF), myoglobin (MYG), collagen type IV (COL4), fucosyltransferase IV (FUT4), and cysteine-rich protein 2 (CRP2), were detected in the endometrial tissue reported in many previous studies and recently discovered in histotroph substrates during the estrous cycle. Those proteins, which are liable for provoking new vessel development, cell proliferation, cell adhesion, and cell migration, were expressed higher in the histotroph during the luteal phase than follicular phase. Histotroph proteins considerably contribute to endometrium remodeling during the estrous cycle. To that end, the following review will discuss and highlight the relevant information and evidence of the uterine fluid proteins as endometrial-secreted factors that adequately indicate the potential role of the uterine secretions to be involved in the endometrial remodeling process.
Collapse
Affiliation(s)
- Dody Houston Billhaq
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Hee Lee
- Institute of Animal Resources, Kangwon National University, Chuncheon, Republic of Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
18
|
Peng J, Wang W, Zheng L, Guan Y, Ye G, Tong H, Wang Y, Wang Q. Serum Cystatin C Levels in Twin Pregnancy versus Singleton Pregnancy. Lab Med 2019; 50:163-167. [PMID: 30517681 DOI: 10.1093/labmed/lmy059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To explore whether there was an increased secretion of cystatin C (Cys C) in twin pregnancy. METHODS Patients with a total of 281 singleton pregnancies (including 38 patients with preeclampsia) and 72 twin pregnancies, as well as 42 patients who were not pregnant, were included in this study. We tested levels of serum Cys C, creatinine, and uric acid, along with the estimated glomerular filtration rate (eGFR), in different groups. RESULTS The levels of serum Cys C in all 3 trimesters for women with twin pregnancy were much higher than those in the corresponding trimesters for women with singleton pregnancy. However, we observed little change in eGFR in the corresponding trimesters. Cys C/eGFR in the second and third trimester of twin pregnancy increased, compared with the corresponding trimesters of women with singleton pregnancy. Levels of serum Cys C were higher in the third trimester in women with twin pregnancy than that in patients with preeclampsia. Also, Cys C/eGFR in the third trimester of twin pregnancy was close to the level observed in patients with preeclampsia. CONCLUSIONS Increased secretion of Cys C could contribute to the elevated serum Cys C levels that we observed in twin pregnancy.
Collapse
Affiliation(s)
- Jianming Peng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Medical Laboratory Department, Zhongshan Boai Hospital affiliated with Southern Medical University, Zhongshan, China
| | - Wen Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfei Guan
- Medical Laboratory Department, Zhongshan Boai Hospital affiliated with Southern Medical University, Zhongshan, China
| | - Guicheng Ye
- Medical Laboratory Department, Zhongshan Boai Hospital affiliated with Southern Medical University, Zhongshan, China
| | - Huichun Tong
- Medical Laboratory Department, Zhongshan Boai Hospital affiliated with Southern Medical University, Zhongshan, China
| | - Ying Wang
- Medical Laboratory Department, Zhongshan Boai Hospital affiliated with Southern Medical University, Zhongshan, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Spencer TE, Kelleher AM, Bartol FF. Development and Function of Uterine Glands in Domestic Animals. Annu Rev Anim Biosci 2019; 7:125-147. [DOI: 10.1146/annurev-animal-020518-115321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All mammalian uteri contain glands that synthesize or transport and secrete substances into the uterine lumen. Uterine gland development, or adenogenesis, is uniquely a postnatal event in sheep and pigs and involves differentiation of glandular epithelium from luminal epithelium, followed by invagination and coiling morphogenesis throughout the stroma. Intrinsic transcription factors and extrinsic factors from the ovary and pituitary as well as the mammary gland (lactocrine) regulate uterine adenogenesis. Recurrent pregnancy loss is observed in the ovine uterine gland knockout sheep, providing unequivocal evidence that glands and their products are essential for fertility. Uterine gland hyperplasia and hypertrophy during pregnancy are controlled by sequential actions of hormones from the ovary and/or pituitary as well as the placenta. Gland-derived histotroph is transported by placental areolae for fetal growth. Increased knowledge of uterine gland biology is expected to improve pregnancy outcomes, as well as the health and productivity of mothers and their offspring.
Collapse
Affiliation(s)
- Thomas E. Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211, USA;,
| | - Andrew M. Kelleher
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211, USA;,
| | - Frank F. Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5517, USA
| |
Collapse
|
20
|
Wang HL, Cheng X, Ding SW, Wang DW, Chen C, Xu CL, Xie H. Molecular identification and functional characterization of the cathepsin B gene (Ab-cb-1) in the plant parasitic nematode Aphelenchoides besseyi. PLoS One 2018; 13:e0199935. [PMID: 29958285 PMCID: PMC6025850 DOI: 10.1371/journal.pone.0199935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/15/2018] [Indexed: 11/23/2022] Open
Abstract
The rice white tip nematode, Aphelenchoides besseyi, is widely distributed in rice planting areas worldwide and causes serious economic losses. Cathepsin genes have been demonstrated to have importance in studying the reproduction, development, pathogenicity, and control methods of plant nematodes. In this paper, a novel cathepsin B gene, Ab-cb-1, was found and cloned. The Ab-cb-1 gene was 1347 bp in length and encodes 369 amino acids. The Ab-CB-1 protein contains characteristic occluding loops but no signal peptide. A homology analysis showed that Ab-CB-1 had the highest identity value (64%) to the known amino acid sequence of cathepsin B-like cysteine protease 6 from Toxocara canis. When Ab-cb-1 was expressed in a prokaryotic system, the protein massed approximately 45 kDa and could decompose carrot callus. Ab-cb-1 mRNA was localized in the nematode intestine. The relative expression level of Ab-cb-1 in the A. besseyi Ab-S24 population, which had high reproductivity, was approximately 6.9 times that in the Ab-N10 population, which had low reproductivity, and the difference was significant (p<0.05). The Ab-cb-1 expression level was highest in females; the expression levels in males, juveniles and eggs were 30%, 12.2% and 5% of that in females, respectively, and the differences were significant among all four stages (p<0.05). Nematodes of the Ab-S24 population were treated with Ab-cb-1 dsRNA for 12 h, 24 h, 36 h and 48 h, and their reproduction decreased with increasing time. These results demonstrated that Ab-CB-1 was a digestive enzyme with hydrolytic protease properties and that Ab-cb-1 played an important role in the reproduction of A. besseyi.
Collapse
Affiliation(s)
- Hong-Le Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xi Cheng
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Shan-Wen Ding
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
Detection of genomic structural variations in Guizhou indigenous pigs and the comparison with other breeds. PLoS One 2018; 13:e0194282. [PMID: 29558483 PMCID: PMC5860705 DOI: 10.1371/journal.pone.0194282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Genomic structural variation (SV) is noticed for the contribution to genetic diversity and phenotypic changes. Guizhou indigenous pig (GZP) has been raised for hundreds of years with many special characteristics. The present paper aimed to uncover the influence of SV on gene polymorphism and the genetic mechanisms of phenotypic traits for GZP. Eighteen GZPs were chosen for resequencing by Illumina sequencing platform. The confident SVs of GZP were called out by both programs of pindel and softSV simultaneously and compared with the SVs deduced from the genomic data of European pig (EUP) and the native pig outside of Guizhou, China (NPOG). A total of 39,166 SVs were detected and covered 27.37 Mb of pig genome. All of 76 SVs were confirmed in GZP pig population by PCR method. The SVs numbers in NPOG and GZP were about 1.8 to 1.9 times higher than that in EUP. And a SV hotspot was found out from the 20 Mb of chromosome X of GZP, which harbored 29 genes and focused on histone modification. More than half of SVs was positioned in the intergenic regions and about one third of SVs in the introns of genes. And we found that SVs tended to locate in genes produced multi-transcripts, in which a positive correlation was found out between the numbers of SV and the gene transcripts. It illustrated that the primary mode of SVs might function on the regulation of gene expression or the transcripts splicing process. A total of 1,628 protein-coding genes were disturbed by 1,956 SVs specific in GZP, in which 93 GZP-specific SV-related genes would lose their functions due to the SV interference and gathered in reproduction ability. Interestingly, the 1,628 protein-coding genes were mainly enriched in estrogen receptor binding, steroid hormone receptor binding, retinoic acid receptor binding, oxytocin signaling pathway, mTOR signaling pathway, axon guidance and cholinergic synapse pathways. It suggested that SV might be a reason for the strong adaptability and low fecundity of GZP, and 51 candidate genes would be useful for the configuration phenotype in Xiang pig breed.
Collapse
|
22
|
Transcriptomic changes in the pre-implantation uterus highlight histotrophic nutrition of the developing marsupial embryo. Sci Rep 2018; 8:2412. [PMID: 29402916 PMCID: PMC5799185 DOI: 10.1038/s41598-018-20744-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Early pregnancy is a critical time for successful reproduction; up to half of human pregnancies fail before the development of the definitive chorioallantoic placenta. Unlike the situation in eutherian mammals, marsupial pregnancy is characterised by a long pre-implantation period prior to the development of the short-lived placenta, making them ideal models for study of the uterine environment promoting embryonic survival pre-implantation. Here we present a transcriptomic study of pre-implantation marsupial pregnancy, and identify differentially expressed genes in the Sminthopsis crassicaudata uterus involved in metabolism and biosynthesis, transport, immunity, tissue remodelling, and uterine receptivity. Interestingly, almost one quarter of the top 50 genes that are differentially upregulated in early pregnancy are putatively involved in histotrophy, highlighting the importance of nutrient transport to the conceptus prior to the development of the placenta. This work furthers our understanding of the mechanisms underlying survival of pre-implantation embryos in the earliest live bearing ancestors of mammals.
Collapse
|
23
|
Lee RKK, Tseng HC, Hwu YM, Fan CC, Lin MH, Yu JJ, Yeh LY, Li SH. Expression of cystatin C in the female reproductive tract and its effect on human sperm capacitation. Reprod Biol Endocrinol 2018; 16:8. [PMID: 29378615 PMCID: PMC5789661 DOI: 10.1186/s12958-018-0327-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/23/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cystatin C (CST3), a cysteine protease inhibitor in seminal plasma, is expressed in animal uteri. However, its expression in the human female reproductive tract and its effect on human sperm capacitation are unclear. METHODS The cellular localization of CST3 was observed using immunohistochemistry. The binding of CST3 to sperm was examined using immunocytochemistry. Sperm motility parameters were analyzed using computer-assisted sperm analysis. Sperm capacitation was evaluated by analyzing cholesterol content, protein tyrosine phosphorylation levels, and the acrosome reaction. RESULTS Immunohistochemical staining demonstrated that CST3 is prominently expressed in the female reproductive tract, including the epithelial lining and cervix and endometrium fluids, particularly at times near ovulation. It can bind to human sperm on the post-acrosomal head region and the mid and principal piece of the tail. CST3 enhances sperm motility and inhibits the signal initiating sperm capacitation, i.e., efflux of cholesterol from the sperm plasma membrane and a late sperm capacitation event, i.e., the increase in the sperm protein tyrosine phosphorylation. The suppressive trend on sperm acrosome reaction further supports CST3's ability to inhibit sperm capacitation. CONCLUSIONS These findings suggest that cervical CST3 may prevent precocious capacitation and acrosome reaction, thus preserving sperm fertilizing ability before it reaches the fallopian tube. Additionally, CST3 may help sperm enter the upper reproductive tract by enhancing sperm motility.
Collapse
Affiliation(s)
- Robert Kuo-Kuang Lee
- 0000 0004 0573 007Xgrid.413593.9Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City, 251 Taiwan
- 0000 0004 0573 007Xgrid.413593.9Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, 104 Taiwan
- 0000 0000 9337 0481grid.412896.0Department of Obstetrics and Gynecology, Taipei Medical University, Taipei City, 110 Taiwan
| | - Huan-Chin Tseng
- 0000 0004 0573 007Xgrid.413593.9Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City, 251 Taiwan
| | - Yuh-Ming Hwu
- 0000 0004 0573 007Xgrid.413593.9Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, 104 Taiwan
- 0000 0004 1762 5613grid.452449.aMackay Medical College, Sanzhi District, New Taipei City, 252 Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Beitou District, Taipei City, 112 Taiwan
| | - Chi-Chen Fan
- 0000 0004 0573 007Xgrid.413593.9Office of Superintendent, Mackay Memorial Hospital, Taipei City, Taiwan
- 0000 0004 0444 7352grid.413051.2Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, 300 Taiwan
| | - Ming-Huei Lin
- 0000 0004 0573 007Xgrid.413593.9Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, 104 Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Beitou District, Taipei City, 112 Taiwan
| | - Jhih-Jie Yu
- 0000 0004 0573 007Xgrid.413593.9Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City, 251 Taiwan
| | - Ling-Yu Yeh
- 0000 0004 0573 007Xgrid.413593.9Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City, 251 Taiwan
| | - Sheng-Hsiang Li
- 0000 0004 0573 007Xgrid.413593.9Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City, 251 Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Beitou District, Taipei City, 112 Taiwan
| |
Collapse
|
24
|
Hong L, Han K, Wu K, Liu R, Huang J, Lunney JK, Zhao S, Yu M. E-cadherin and ZEB2 modulate trophoblast cell differentiation during placental development in pigs. Reproduction 2017; 154:765-775. [DOI: 10.1530/rep-17-0254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/08/2017] [Accepted: 09/14/2017] [Indexed: 01/02/2023]
Abstract
It is one of the important events that trophoblast cells within the placental folds differentiate into two types that differ in cell shape during placental development in pigs. This study showed that all the trophoblast cells were of similar shape between Yorkshire and Chinese Meishan pigs on day 26 of gestation; thereafter, the trophoblast cells located at the top of the placental folds became high columnar, while those cells at the base of the placental folds were cuboidal on day 50 of gestation. Additionally, on day 95 of gestation, all the trophoblast cells in Meishan pigs became cuboidal, but the trophoblast cells located at the top of the placental folds in Yorkshire pigs still remained columnar. The membranous E-cadherin and β-catenin were strongly co-expressed by the high columnar trophoblast cells but very weakly expressed by those cuboidal cells. Consistently, the expression pattern of ZEB2, the E-cadherin repressor, was inversely correlated with that of E-cadherin in the two types of trophoblast cells in the two breeds. Furthermore, electrophoretic mobility shift assays demonstrated the binding of ZEB2 to the E-cadherin promoter in nuclear extracts from porcine placental tissue. These findings suggest a ZEB2-dependent mechanism of trophoblast cell differentiation during placental development in pigs.
Collapse
|
25
|
Candidate genes involved in the evolution of viviparity: a RAD sequencing experiment in the lizard Zootoca vivipara (Squamata: Lacertidae). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
26
|
Swegen A, Grupen CG, Gibb Z, Baker MA, Ruijter‐Villani M, Smith ND, Stout TAE, Aitken RJ. From Peptide Masses to Pregnancy Maintenance: A Comprehensive Proteomic Analysis of The Early Equine Embryo Secretome, Blastocoel Fluid, and Capsule. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/19/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Aleona Swegen
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Christopher G. Grupen
- Faculty of Veterinary Science School of Life and Environmental Sciences University of Sydney Camden NSW Australia
| | - Zamira Gibb
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| | - Marta Ruijter‐Villani
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | - Nathan D. Smith
- Analytical and Biomolecular Research Facility University of Newcastle Callaghan NSW Australia
| | - Tom A. E. Stout
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | - R. John Aitken
- Priority Research Centre in Reproductive Science University of Newcastle Callaghan NSW Australia
| |
Collapse
|
27
|
Moore SG, McCabe MS, Green JC, Newsom EM, Lucy MC. The transcriptome of the endometrium and placenta is associated with pregnancy development but not lactation status in dairy cows†,‡. Biol Reprod 2017; 97:18-31. [DOI: 10.1093/biolre/iox059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/17/2017] [Indexed: 01/08/2023] Open
|
28
|
Laird MK, Turancova M, McAllan BM, Murphy CR, Thompson MB. Uterine focal adhesion dynamics during pregnancy in a marsupial (
Sminthopsis crassicaudata
; Dasyuridae). Anat Rec (Hoboken) 2017; 300:1150-1159. [DOI: 10.1002/ar.23535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/31/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Melanie K. Laird
- School of Life and Environmental SciencesUniversity of Sydney New South Wales2006 Australia
| | - Michaela Turancova
- School of Life and Environmental SciencesUniversity of Sydney New South Wales2006 Australia
| | - Bronwyn M. McAllan
- Department of Physiology, School of Medical Sciences and Bosch InstituteUniversity of Sydney New South Wales2006 Australia
| | - Christopher R. Murphy
- Department of Anatomy and Histology, School of Medical Sciences and Bosch InstituteUniversity of Sydney New South Wales2006 Australia
| | - Michael B. Thompson
- School of Life and Environmental SciencesUniversity of Sydney New South Wales2006 Australia
| |
Collapse
|
29
|
Whole Blood Transcriptome Sequencing Reveals Gene Expression Differences between Dapulian and Landrace Piglets. BIOMED RESEARCH INTERNATIONAL 2017; 2016:7907980. [PMID: 28105431 PMCID: PMC5220446 DOI: 10.1155/2016/7907980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/04/2016] [Accepted: 11/27/2016] [Indexed: 11/18/2022]
Abstract
There is little genomic information regarding gene expression differences at the whole blood transcriptome level of different pig breeds at the neonatal stage. To solve this, we characterized differentially expressed genes (DEGs) in the whole blood of Dapulian (DPL) and Landrace piglets using RNA-seq (RNA-sequencing) technology. In this study, 83 DEGs were identified between the two breeds. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified immune response and metabolism as the most commonly enriched terms and pathways in the DEGs. Genes related to immunity and lipid metabolism were more highly expressed in the DPL piglets, while genes related to body growth were more highly expressed in the Landrace piglets. Additionally, the DPL piglets had twofold more single nucleotide polymorphisms (SNPs) and alternative splicing (AS) than the Landrace piglets. These results expand our knowledge of the genes transcribed in the piglet whole blood of two breeds and provide a basis for future research of the molecular mechanisms underlying the piglet differences.
Collapse
|
30
|
Teng L, Hong L, Liu R, Chen R, Li X, Yu M. Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta. Int J Mol Sci 2016; 17:ijms17122048. [PMID: 27941613 PMCID: PMC5187848 DOI: 10.3390/ijms17122048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/24/2022] Open
Abstract
The placenta expressed transcript 1 (PLET1) gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA and protein were expressed exclusively in trophoblast cells on Days 15, 26, 50, and 95 of gestation (gestation length in the pig is 114 days), indicating that the PLET1 could be a useful marker for porcine trophoblast cells. Additionally, PLET1 protein was found to be redistributed from cytoplasm to the apical side of trophoblast cells as gestation progresses, which suggests a role of PLET1 in the establishment of a stable trophoblast and endometrial epithelial layers. In addition, two transcripts that differ in the 3′ UTR length but encode identical protein were identified to be generated by the alternative cleavage and polyadenylation (APA), and the expression of PLET1-L transcript was significantly upregulated in porcine placentas as gestation progresses. Furthermore, we demonstrated the interaction between the miR-365-3p and PLET1 gene using luciferase assay system. Our findings imply an important role of PLET1 in the placental development in pigs.
Collapse
Affiliation(s)
- Liu Teng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Linjun Hong
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ruize Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ran Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
31
|
Griffith OW, Brandley MC, Belov K, Thompson MB. Reptile Pregnancy Is Underpinned by Complex Changes in Uterine Gene Expression: A Comparative Analysis of the Uterine Transcriptome in Viviparous and Oviparous Lizards. Genome Biol Evol 2016; 8:3226-3239. [PMID: 27635053 PMCID: PMC5174741 DOI: 10.1093/gbe/evw229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The evolution of new organs is difficult to study because most vertebrate organs evolved only once, more than 500 million years ago. An ideal model for understanding complex organ evolution is the placenta, a structure that is present in live bearing reptiles and mammals (amniotes), which has evolved independently more than 115 times. Using transcriptomics, we characterized the uterine gene expression patterns through the reproductive cycle of a viviparous skink lizard, Pseudemoia entrecasteauxii. Then we compare these patterns with the patterns of gene expression from two oviparous skinks Lampropholis guichenoti and Lerista bougainvillii. While thousands of genes are differentially expressed between pregnant and non-pregnant uterine tissue in the viviparous skink, few differentially expressed genes were identified between gravid and non-gravid oviparous skinks. This finding suggests that in P. entrecasteauxii, a pregnant-specific gene expression profile has evolved, allowing for the evolution of pregnancy-specific innovations in the uterus. We find substantial gene expression differences between the uterus of the chorioallantoic and the yolk sac placenta in P. entrecasteauxii, suggesting these placental regions are specialized for different placental functions. In particular, the chorioallantoic placenta is likely a major site of nutrient transport by membrane-bound transport proteins, while the yolk sac placenta also likely transports nutrients but via apocrine secretions. We discuss how the evolution of transcription factor networks is likely to underpin the evolution of the new transcriptional states in the uterine tissue of viviparous reptiles.
Collapse
Affiliation(s)
- Oliver W Griffith
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia .,Department of Ecology and Evolutionary Biology, Yale University
| | - Matthew C Brandley
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia.,New York University-Sydney, The Rocks, NSW, Australia
| | - Katherine Belov
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Thompson
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
32
|
Whitworth KM, Mao J, Lee K, Spollen WG, Samuel MS, Walters EM, Spate LD, Prather RS. Transcriptome Analysis of Pig In Vivo, In Vitro-Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cell Reprogram 2016; 17:243-58. [PMID: 26731590 DOI: 10.1089/cell.2015.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro-fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT.
Collapse
Affiliation(s)
- Kristin M Whitworth
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Jiude Mao
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Kiho Lee
- 2 Department of Animal and Poultry Science, Virginia Tech , Blacksburg, VA, 24061
| | - William G Spollen
- 3 Informatics Research Core Facility, University of Missouri , Columbia, MO, 65211
| | - Melissa S Samuel
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Eric M Walters
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Lee D Spate
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Randall S Prather
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| |
Collapse
|
33
|
Novakovic P, Harding JCS, Ladinig A, Al-Dissi AN, MacPhee DJ, Detmer SE. Relationships of CD163 and CD169 positive cell numbers in the endometrium and fetal placenta with type 2 PRRSV RNA concentration in fetal thymus. Vet Res 2016; 47:76. [PMID: 27494990 PMCID: PMC4974782 DOI: 10.1186/s13567-016-0364-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/25/2016] [Indexed: 11/10/2022] Open
Abstract
Several routes of porcine reproductive and respiratory virus PRRSV transmission across the porcine diffuse epitheliochorial placentation have been proposed, but none have been proven. The objectives of this study were to investigate associations between numbers of CD163 and CD169 positive macrophages, cathepsin positive areolae, and type 2 PRRSV load at the maternal-fetal interface in order to examine important factors related to transplacental infection. On gestation day 85 ± 1, naïve pregnant gilts were inoculated with PRRSV (n = 114) or were sham inoculated (n = 19). At 21 days post-inoculation (dpi), dams and their litters were humanely euthanized and necropsied. Samples of the maternal-fetal interface (uterus with fully attached placenta) and fetal thymus were collected for analysis by RT-qPCR to quantify PRRSV RNA concentration. The corresponding paraffin-embedded uterine tissue sections were subjected to immunohistochemistry for PRRSV nucleocapsid N protein, CD163, CD169, and cathepsin. Our findings confirm significant increases in the numbers of PRRSV, CD163 and CD169 positive cells at the maternal-fetal interface during type 2 PRRSV infection in pregnant gilts. PRRSV load in fetal thymus was positively related to CD163(+) cell count in endometrium and negatively related to CD163(+) cell count in placenta, but unrelated to CD169 counts or cathepsin positive areolae. The endometrium:placenta ratio of CD163 cells, and to a lesser extent CD169 cells, was significantly associated with an increase fetal viral load in thymus. These findings suggest a more important role for CD163(+) cells following trans-placental PRRSV infection, but dichotomous responses in endometrium and placenta for both CD163 and CD169 cells.
Collapse
Affiliation(s)
- Predrag Novakovic
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrea Ladinig
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ahmad N Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
34
|
Activity of Proteolytic Enzymes and Level of Cystatin C in the Peripartum Period. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7065821. [PMID: 26904684 PMCID: PMC4745279 DOI: 10.1155/2016/7065821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/03/2016] [Indexed: 12/03/2022]
Abstract
Objectives. The aim of the study was to evaluate the activity of cathepsin B, collagenases, trypsin, and plasmin and concentration of cystatin C in serum of healthy pregnant women in peripartum period. Study Design. The study group included 45 women in uncomplicated pregnancies. Blood samples were collected in four time points. Enzyme activity was measured by spectrofluorometric method. The level of cystatin C was measured using immunonephelometric method. Results. Mean activity of cathepsin B and the level of serum cystatin C were significantly higher in the study group. Collagenase activity was significantly lower in the study group than the control group. No differences in collagenase, plasmin, and trypsin activity on each day of the peripartum period were found. Conclusion. High activity of cathepsin B and increased level of cystatin C are typical for women in late pregnancy. Those levels significantly decrease after delivery which can be associated with potential role of those markers in placental separation. The insignificant changes of cystatin C level in the peripartum period seem to exclude the possibility of using cystatin C as a marker for renal insufficiency in the peripartum period but additional research is necessary to investigate the matter further.
Collapse
|
35
|
Difference in expression patterns of placental cholesterol transporters, ABCA1 and SR-BI, in Meishan and Yorkshire pigs with different placental efficiency. Sci Rep 2016; 6:20503. [PMID: 26852751 PMCID: PMC4745079 DOI: 10.1038/srep20503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/05/2016] [Indexed: 11/08/2022] Open
Abstract
Cholesterol is a key cell membrane component and precursor of steroid hormones. The maternal cholesterol is an important exogenous cholesterol source for the developing embryos and its transportation is mediated by ABCA1 and SR-BI. Here we reported that during the peri-implantation period in pigs, ABCA1 was expressed by uterine luminal epithelium (LE) and interestingly, its expression was more abundantly in LE on mesometrial side of uterus. However, SR-BI was expressed primarily by LE, glandular epithelial cells (GE) and trophoblast cells (Tr). During the placentation period, the expression levels of ABCA1 and SR-BI proteins at epithelial bilayer and placental areolae were significantly higher in Chinese Meishan pigs compared to Yorkshire pigs. Consisitently, mRNA levels of HMGCR, the rate-limiting enzyme for cholesterol synthesis, were significantly higher in Meishan placentas than in Yorkshire placentas. Our findings revealed the routes of transplacental cholesterol transport mediated by ABCA1 and SR-BI in pigs and indicated that ABCA1 related pathway may participate in anchoring the conceptus to the mesometrial side of uterus. Additionally, an ABCA1 dependent compensatory mechanism related to the placental efficiency in response to the smaller placenta size in Meishan pigs was suggested.
Collapse
|
36
|
Zhao W, Pan J, Li H, Huang Y, Liu F, Tao M, Jia W. Relationship between High Serum Cystatin C Levels and the Risk of Gestational Diabetes Mellitus. PLoS One 2016; 11:e0147277. [PMID: 26849560 PMCID: PMC4743926 DOI: 10.1371/journal.pone.0147277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/02/2016] [Indexed: 11/21/2022] Open
Abstract
Aims Serum cystatin C (CysC) has recently been shown to be associated with the incidence of type 2 diabetes mellitus (T2DM) and progression to the pre-diabetic state. The aim of this study was to explore the relationship between serum CysC and the risk of gestational diabetes mellitus (GDM) in Chinese pregnant women. Methods This cross-sectional study consisted of 400 pregnant women including111 with GDM and 289 with normal glucose tolerance at 24–28 weeks of gestation. The subjects were further divided into four groups according to the CysC quartiles, and their clinical characteristics were compared. The serum CysC concentration was measured using immunoturbidimetry and the degree of insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA-IR). Results Serum CysC levels were significantly higher in pregnant women with GDM than in the healthy pregnant women[1.0(0.8–1.8) vs 0.7(0.6–1.0), P<0.01). The Spearman’s correlation analysis showed that serum CysC was positively associated with HOMA-IR(r = 0.118, P<0.05) and the occurrence of GDM(r = 0.348, P<0.01). The pregnant women were divided into quartiles according to their serum CysC concentrations. Compared to the first quartile, pregnant women in Q2 (OR, 2.441; P = 0.025), Q3 (OR, 3.383; P = 0.001) and Q4 (OR, 5.516; P<0.001) had higher risk of GDM after adjusted for age, BMI, HbA1c and HOMA-IR. Further, with a rise in the serum CysC, there was an increasing trend in the HOMA-IR levels (P<0.05). A binary logistic regression analysis after adjusting for other confounding variables revealed a significant and independent association between serum CysC and GDM [OR = 14.269; 95% confidence interval, 4.977–40.908, P<0.01].The receiver operating characteristic curve analysis revealed that the optimal cutoff point for serum CysC to indicate GDM was 0.95mg/L. Conclusions Serum CysC is significantly and independently associated with insulin resistance and GDM. It may be a helpful biomarker to identify the risk of GDM in Chinese pregnant women.
Collapse
Affiliation(s)
- Weijing Zhao
- Shanghai Key Laboratory of Diabetes, Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, China
| | - Jiemin Pan
- Shanghai Key Laboratory of Diabetes, Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, China
| | - Huaping Li
- Department of Obstetrics and Gynecology, Shanghai Jiao-Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yajuan Huang
- Department of Obstetrics and Gynecology, Shanghai Jiao-Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- * E-mail: (FL); (YH)
| | - Fang Liu
- Shanghai Key Laboratory of Diabetes, Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, China
- * E-mail: (FL); (YH)
| | - Minfang Tao
- Department of Obstetrics and Gynecology, Shanghai Jiao-Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes, Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, China
| |
Collapse
|
37
|
Dave JM, Abbey CA, Duran CL, Seo H, Johnson GA, Bayless KJ. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci 2016; 129:743-56. [PMID: 26769900 DOI: 10.1242/jcs.170571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022] Open
Abstract
During angiogenesis, endothelial cells must coordinate matrix proteolysis with migration. Here, we tested whether the focal adhesion scaffold protein Hic-5 (also known as TGFB1I1) regulated endothelial sprouting in three dimensions. Hic-5 silencing reduced endothelial sprouting and lumen formation, and sprouting defects were rescued by the return of Hic-5 expression. Pro-angiogenic factors enhanced colocalization and complex formation between membrane type-1 matrix metalloproteinase (MT1-MMP, also known as MMP14) and Hic-5, but not between paxillin and MT1-MMP. The LIM2 and LIM3 domains of Hic-5 were necessary and sufficient for Hic-5 to form a complex with MT1-MMP. The degree of interaction between MT1-MMP and Hic-5 and the localization of the complex within detergent-resistant membrane fractions were enhanced during endothelial sprouting, and Hic-5 depletion lowered the surface levels of MT1-MMP. In addition, we observed that loss of Hic-5 partially reduced complex formation between MT1-MMP and focal adhesion kinase (FAK, also known as PTK2), suggesting that Hic-5 bridges MT1-MMP and FAK. Finally, Hic-5 LIM2-LIM3 deletion mutants reduced sprout initiation. Hic-5, MT1-MMP and FAK colocalized in angiogenic vessels during porcine pregnancy, supporting that this complex assembles during angiogenesis in vivo. Collectively, Hic-5 appears to enhance complex formation between MT1-MMP and FAK in activated endothelial cells, which likely coordinates matrix proteolysis and cell motility.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Heewon Seo
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
38
|
Kim M, Seo H, Choi Y, Yoo I, Seo M, Lee CK, Kim H, Ka H. Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium during Pregnancy in Pigs. PLoS One 2015; 10:e0143436. [PMID: 26580069 PMCID: PMC4651506 DOI: 10.1371/journal.pone.0143436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/04/2015] [Indexed: 11/18/2022] Open
Abstract
The uterine endometrium plays a critical role in regulating the estrous cycle and the establishment and maintenance of pregnancy in mammalian species. Many studies have investigated the expression and function of genes in the uterine endometrium, but the global expression pattern of genes and relationships among genes differentially expressed in the uterine endometrium during gestation in pigs remain unclear. Thus, this study investigated global gene expression profiles using microarray in pigs. Diverse transcriptome analyses including clustering, network, and differentially expressed gene (DEG) analyses were performed to detect endometrial gene expression changes during the different gestation stages. In total, 6,991 genes were found to be differentially expressed by comparing genes expressed on day (D) 12 of pregnancy with those on D15, D30, D60, D90 and D114 of pregnancy, and clustering analysis of detected DEGs distinguished 8 clusters. Furthermore, several pregnancy-related hub genes such as ALPPL2, RANBP17, NF1B, SPP1, and CST6 were discovered through network analysis. Finally, detected hub genes were technically validated by quantitative RT-PCR. These results suggest the complex network characteristics involved in uterine endometrial gene expression during pregnancy and indicate that diverse patterns of stage-specific gene expression and network connections may play a critical role in endometrial remodeling and in placental and fetal development to establish and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Mingoo Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Heewon Seo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Yohan Choi
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Minseok Seo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- C&K Genomics, SNU Research Park, Seoul, Republic of Korea
| | - Chang-Kyu Lee
- Department of Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Department of Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- C&K Genomics, SNU Research Park, Seoul, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
- * E-mail:
| |
Collapse
|
39
|
Zhou J, Zhang YY, Li QY, Cai ZH. Evolutionary History of Cathepsin L (L-like) Family Genes in Vertebrates. Int J Biol Sci 2015. [PMID: 26221069 PMCID: PMC4515813 DOI: 10.7150/ijbs.11751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cathepsin L family, an important cysteine protease found in lysosomes, is categorized into cathepsins B, F, H, K, L, S, and W in vertebrates. This categorization is based on their sequence alignment and traditional functional classification, but the evolutionary relationship of family members is unclear. This study determined the evolutionary relationship of cathepsin L family genes in vertebrates through phylogenetic construction. Results showed that cathepsins F, H, S and K, and L and V were chronologically diverged. Tandem-repeat duplication was found to occur in the evolutionary history of cathepsin L family. Cathepsin L in zebrafish, cathepsins S and K in xenopus, and cathepsin L in mice and rats underwent evident tandem-repeat events. Positive selection was detected in cathepsin L-like members in mice and rats, and amino acid sites under positive selection pressure were calculated. Most of these sites appeared at the connection of secondary structures, suggesting that the sites may slightly change spatial structure. Severe positive selection was also observed in cathepsin V (L2) of primates, indicating that this enzyme had some special functions. Our work provided a brief evolutionary history of cathepsin L family and differentiated cathepsins S and K from cathepsin L based on vertebrate appearance. Positive selection was the specific cause of differentiation of cathepsin L family genes, confirming that gene function variation after expansion events was related to interactions with the environment and adaptability.
Collapse
Affiliation(s)
- Jin Zhou
- 1. The Division of Ocean Science & Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China ; 2. Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China ; 3. Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yao-Yang Zhang
- 4. School of Life Science, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing-Yun Li
- 4. School of Life Science, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhong-Hua Cai
- 1. The Division of Ocean Science & Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China ; 2. Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China ; 3. Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
40
|
Xia J, Zhang Y, Xin L, Kong S, Chen Y, Yang S, Li K. Global Transcriptomic Profiling of Cardiac Hypertrophy and Fatty Heart Induced by Long-Term High-Energy Diet in Bama Miniature Pigs. PLoS One 2015; 10:e0132420. [PMID: 26161779 PMCID: PMC4498776 DOI: 10.1371/journal.pone.0132420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
A long-term high-energy diet affects human health and leads to obesity and metabolic syndrome in addition to cardiac steatosis and hypertrophy. Ectopic fat accumulation in the heart has been demonstrated to be a risk factor for heart disorders, but the molecular mechanism of heart disease remains largely unknown. Bama miniature pigs were fed a high-fat, high-sucrose diet (HFHSD) for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased body weight (2.73-fold, P<0.01), insulin level (4.60-fold, P<0.01), heart weight (1.82-fold, P<0.05) and heart volume (1.60-fold, P<0.05) compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. Microarray analyses revealed that 1,022 genes were significantly differentially expressed (P<0.05, ≥1.5-fold change), including 591 up-regulated and 431 down-regulated genes in the HFHSD group relative to the control group. KEGG analysis indicated that the observed heart disorder involved the signal transduction-related MAPK, cytokine, and PPAR signaling pathways, energy metabolism-related fatty acid and oxidative phosphorylation signaling pathways, heart function signaling-related focal adhesion, axon guidance, hypertrophic cardiomyopathy and actin cytoskeleton signaling pathways, inflammation and apoptosis pathways, and others. Quantitative RT-PCR assays identified several important differentially expressed heart-related genes, including STAT3, ACSL4, ATF4, FADD, PPP3CA, CD74, SLA-8, VCL, ACTN2 and FGFR1, which may be targets of further research. This study shows that a long-term, high-energy diet induces obesity, cardiac steatosis, and hypertrophy and provides insights into the molecular mechanisms of hypertrophy and fatty heart to facilitate further research.
Collapse
Affiliation(s)
- Jihan Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Siyuan Kong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail:
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Agricultural Genomes Institute at Shenzhen, CAAS, Shenzhen, 518120, P.R. China
| |
Collapse
|
41
|
A genome-wide association study in large white and landrace pig populations for number piglets born alive. PLoS One 2015; 10:e0117468. [PMID: 25781935 PMCID: PMC4363374 DOI: 10.1371/journal.pone.0117468] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/25/2014] [Indexed: 11/22/2022] Open
Abstract
The number of piglets born alive (NBA) per litter is one of the most important traits in pig breeding due to its influence on production efficiency. It is difficult to improve NBA because the heritability of the trait is low and it is governed by a high number of loci with low to moderate effects. To clarify the biological and genetic background of NBA, genome-wide association studies (GWAS) were performed using 4,012 Large White and Landrace pigs from herdbook and commercial breeding companies in Germany (3), Austria (1) and Switzerland (1). The animals were genotyped with the Illumina PorcineSNP60 BeadChip. Because of population stratifications within and between breeds, clusters were formed using the genetic distances between the populations. Five clusters for each breed were formed and analysed by GWAS approaches. In total, 17 different significant markers affecting NBA were found in regions with known effects on female reproduction. No overlapping significant chromosome areas or QTL between Large White and Landrace breed were detected.
Collapse
|
42
|
Bauersachs S, Wolf E. Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu Rev Anim Biosci 2014; 3:489-511. [PMID: 25387113 DOI: 10.1146/annurev-animal-022114-110639] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endometrium is a tissue newly evolved with the development of mammalian species. Its main function is the support of embryonic growth and development and the nutrition of the fetus. The species-specific differences in establishment and maintenance of pregnancy make the study of this tissue in various mammalian organisms particularly interesting. With the application of omics technologies to various mammalian species, many systematic studies of endometrial gene expression changes during the phase of establishment of pregnancy have been performed to obtain a global view of regulatory events associated with this biological process. This review summarizes the results of trancriptome studies of bovine, porcine, and equine endometrium. Furthermore, the results are compared between these species and to humans. Because an increasing number of studies suggest an important role of small regulatory RNAs (i.e., microRNAs), recent findings related to the regulation of endometrial functions and the development of the conceptus are presented.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland;
| | | |
Collapse
|
43
|
Filler G, Kusserow C, Lopes L, Kobrzyński M. Beta-trace protein as a marker of GFR--history, indications, and future research. Clin Biochem 2014; 47:1188-94. [PMID: 24833359 DOI: 10.1016/j.clinbiochem.2014.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Recent findings suggest that beta-trace protein (BTP), a small molecular weight protein, is at least equal if not superior to serum creatinine as a marker of glomerular filtration rate (GFR), particularly since it is independent from height, gender, age, and muscle mass. The authors sought to summarize knowledge on BTP and its use as a marker of GFR using the most recent literature available. DESIGN AND METHODS The authors compiled key articles and all relevant recent literature on this topic. Physical and chemical features of the molecule are described, as well as factors that may affect its expression. The use of BTP in estimating GFR as a whole and in specific patient groups, including pregnant women, neonates and infants, children and adolescents, and patients who have undergone renal transplantation is discussed. The use of BTP as a marker for cardiovascular risk factors is also briefly addressed. RESULTS Although its performance in the general population is marginally inferior to cystatin C, studies have suggested that it may be superior in accurately estimating GFR in select patient groups such as pregnant women and neonates. CONCLUSIONS This novel marker shows promise, but further research is required to clarify findings from available data.
Collapse
Affiliation(s)
- Guido Filler
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada; Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada.
| | - Carola Kusserow
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Laudelino Lopes
- Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Marta Kobrzyński
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| |
Collapse
|
44
|
Forde N, McGettigan PA, Mehta JP, O'Hara L, Mamo S, Bazer FW, Spencer TE, Lonergan P. Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle. Reproduction 2014; 147:575-87. [PMID: 24478148 DOI: 10.1530/rep-13-0010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aims of this study were (i) to characterize the global changes in the composition of the uterine luminal fluid (ULF) from pregnant heifers during pregnancy recognition (day 16) using nano-LC MS/MS; (ii) to describe quantitative changes in selected proteins in the ULF from days 10, 13, 16 and 19 by Isobaric tags for Relative and Absolute Quantification (iTRAQ) analysis; and (iii) to determine whether these proteins are of endometrial or conceptus origin, by examining the expression profiles of the associated transcripts by RNA sequencing. On day 16, 1652 peptides were identified in the ULF by nano-LC MS/MS. Of the most abundant proteins present, iTRAQ analysis revealed that RPB4, TIMP2 and GC had the same expression pattern as IFNT, while the abundance of IDH1, CST6 and GDI2 decreased on either day 16 or 19. ALDOA, CO3, GSN, HSP90A1, SERPINA31 and VCN proteins decreased on day 13 compared with day 10 but subsequently increased on day 16 (P<0.05). Purine nucleoside phosphorylase (PNP) and HSPA8 decreased on day 13, increased on day 16 and decreased and increased on day 19 (P<0.05). The abundance of CATD, CO3, CST6, GDA, GELS, IDHC, PNPH and TIMP2 mRNAs was greater (P<0.001) in the endometrium than in the conceptus. By contrast, the abundance of ACTB, ALDOA, ALDR, CAP1, CATB, CATG, GD1B, HSP7C, HSP90A, RET4 and TERA was greater (P<0.05) in the conceptus than in the endometrium. In conclusion, significant changes in the protein content of the ULF occur during the pre-implantation period of pregnancy reflecting the morphological changes that occur in the conceptus.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hong L, Hou C, Li X, Li C, Zhao S, Yu M. Expression of heparanase is associated with breed-specific morphological characters of placental folded bilayer between Yorkshire and Meishan pigs. Biol Reprod 2014; 90:56. [PMID: 24429218 DOI: 10.1095/biolreprod.113.114181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pig has a noninvasive epitheliochorial placenta, and trophoblast-endometrial epithelial bilayer development could impact on placental function. This work compared the morphological structures, the cell proliferation status as assessed by Ki67 staining, as well as the location and gene and protein expression of heparanase (HPSE) at the maternal-fetal interface between Yorkshire and Meishan pigs on Days 26, 50, and 95 of gestation. Histomorphometry showed that the widths of placental folds, endometrial stroma, and placental stroma in Meishan pigs were smaller than those in Yorkshire pigs during late gestation, while the complexity and the cell proliferation ability of the folded bilayer were greater in Meishan pigs in this period. The location and expression levels of HPSE mRNA and protein at the maternal-fetal interface were similar between the two breeds during early and midgestation. However, during late gestation, the mRNA and protein levels were higher in Meishan placentae. In addition, the HPSE mRNA was expressed by all the trophoblast cells, and the protein was located both at trophoblast and luminal epithelium cells in Meishan pigs during late gestation, while in Yorkshire pigs, the HPSE mRNA and protein were only identified in trophoblast cells located at the bottom and side of folds. The findings suggest that Meishan pigs may rely more upon the increase in the complexity of the folded bilayer within a reduced placenta to expand the exchange surface area and the HPSE may contribute to the development of the folded bilayer in pigs.
Collapse
Affiliation(s)
- Linjun Hong
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong (Central China) Agricultural University, Wuhan, Hubei, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Van Dyke JU, Brandley MC, Thompson MB. The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes. Reproduction 2014; 147:R15-26. [DOI: 10.1530/rep-13-0309] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Squamate reptiles (lizards and snakes) are an ideal model system for testing hypotheses regarding the evolution of viviparity (live birth) in amniote vertebrates. Viviparity has evolved over 100 times in squamates, resulting in major changes in reproductive physiology. At a minimum, all viviparous squamates exhibit placentae formed by the appositions of maternal and embryonic tissues, which are homologous in origin with the tissues that form the placenta in therian mammals. These placentae facilitate adhesion of the conceptus to the uterus as well as exchange of oxygen, carbon dioxide, water, sodium, and calcium. However, most viviparous squamates continue to rely on yolk for nearly all of their organic nutrition. In contrast, some species, which rely on the placenta for at least a portion of organic nutrition, exhibit complex placental specializations associated with the transport of amino acids and fatty acids. Some viviparous squamates also exhibit reduced immunocompetence during pregnancy, which could be the result of immunosuppression to protect developing embryos. Recent molecular studies using both candidate-gene and next-generation sequencing approaches have suggested that at least some of the genes and gene families underlying these phenomena play similar roles in the uterus and placenta of viviparous mammals and squamates. Therefore, studies of the evolution of viviparity in squamates should inform hypotheses of the evolution of viviparity in all amniotes, including mammals.
Collapse
|
47
|
Awad M, Kizaki K, Takahashi T, Hashizume K. Dynamic expression of SOLD1 in bovine uteroplacental tissues during gestation. Placenta 2013; 34:635-41. [DOI: 10.1016/j.placenta.2013.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/08/2013] [Accepted: 05/11/2013] [Indexed: 01/22/2023]
|
48
|
The Akt/mTor signaling cascade is modified during placentation in the porcine uterine tissue. Reprod Biol 2013; 13:184-94. [PMID: 24011189 DOI: 10.1016/j.repbio.2013.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/14/2022]
Abstract
Recently we showed that essential components for the initiation of protein synthesis, namely the eukaryotic initiation factor 4E (eIF4E, mRNA-cap-binding protein) and its repressors 4E-BP1 as well as 4E-BP2, are proteolytically processed in the porcine endometrium during implantation. Here, the situation during placentation was compared with ovariectomized (OVX) animals and animals on pregnancy day 1 (PD1). Furthermore, the research was extended to factors which phosphorylate eIF4E and 4E-BPs and regulate their activities. These are the protein kinase B/mammalian target of rapamycin kinase (Akt/mTor) with the regulators Raptor and Rictor as well as the mitogen activated protein kinases (MAPKs): extra cellular-signal regulated kinase 1 and 2 (ERK1 and ERK2). Striking differences in the placentation site (PS) and the areas aside from PS (peri-PS) were observed. EIF4E and 4E-BP2 truncation as well as 4E-BP1 degradation took place in the endometrium of the peri-PS on PD24. Accompanied by a fragmentation of Akt/mTor, no expression of Rictor was observed, whereas the abundance of Raptor was not altered. On the contrary, MAPKs expression and phosphorylation remained almost stable in the peri-PS. In conclusion, the results indicated that on PD24 the translational regulation was shifted to 4E-BP2 control. Furthermore, the Akt/mTor signaling cascade seemed to be down regulated which suggest reduced phosphorylation of 4E-BP2. Whereas Akt was proteolyzed, the observed mTor fragments represented most likely splicing variants. The results indicate that translational control of gene expression is an important feature in the porcine endometrium during early pregnancy.
Collapse
|
49
|
Shim J, Seo H, Choi Y, Yoo I, Lee CK, Hyun SH, Lee E, Ka H. Analysis of legumain and cystatin 6 expression at the maternal-fetal interface in pigs. Mol Reprod Dev 2013; 80:570-80. [PMID: 23686917 DOI: 10.1002/mrd.22192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/08/2013] [Indexed: 11/06/2022]
Abstract
Cathepsins (CTSs), a family of lysosomal cysteine proteases, and their inhibitors, cystatins (CSTs), play a critical role in endometrial and placental tissue remodeling during the establishment and maintenance of pregnancy in many species including rodents, sheep, cow, and pigs. In this study, we determined expression of legumain (LGMN), a cathepsinmember, and its inhibitor, CST6, at the maternal-fetal interface in pigs. Expression of both LGMN and CST6 mRNAs increased during mid- to late pregnancy in the uterine endometrium. LGMN and CST6 mRNAs localized to luminal epithelial cells (LE) and glandular epithelial cells (GE) and to the chorionic membrane (CM), with a strong intensity in GE and the CM for LGMN and in the CM for CST6 during pregnancy. LGMN protein was detected at molecular weights (MW) of approximately 50,000 and 37,000, and the abundance of the37,000-MW LGMN protein increased during mid- to latepregnancy. CST6 protein was also highly expressed in the uterine endometrium in mid- to latepregnancy. LGMN protein localized to LE, GE, and the CM during pregnancy. LGMN and CST6 were aberrantly expressed in the uterine endometrium from gilts with somatic cell nuclear transfer-derived conceptuses at term compared to those of gilts carrying conceptuses derived from natural mating. These results demonstrated that LGMN and CST6 were expressed in the uterine endometrium in a cell-type and stage-specific manner, suggesting that the LGMN and CST6 system at the maternal-fetal interface may play an important role in the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Jangsoo Shim
- Division of Biological Science and Technology, IPAID and Institute of Biomaterials, Yonsei University, Wonju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Seo H, Choi Y, Shim J, Kim M, Ka H. Analysis of the Lysophosphatidic Acid-Generating Enzyme ENPP2 in the Uterus During Pregnancy in Pigs1. Biol Reprod 2012; 87:77. [DOI: 10.1095/biolreprod.112.099564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|