1
|
VanBenschoten H, Yao S, Jensen JT, Woodrow KA. Drug Eluting Embolization Particles for Permanent Contraception. ACS Biomater Sci Eng 2022; 8:2995-3009. [PMID: 35749682 PMCID: PMC9277594 DOI: 10.1021/acsbiomaterials.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Medical technology
that blocks the fallopian tubes nonsurgically
could increase access to permanent contraception and address current
unmet needs in family planning. To achieve total occlusion of the
fallopian tube via scar tissue formation, acute trauma to the tubal
epithelium must first occur followed by a sustained and ultimately
fibrotic inflammatory response. Here, we developed drug-eluting fiber-based
microparticles that provide tunable dose and release of potent sclerosing
agents. This fabrication strategy demonstrates high encapsulation
of physicochemically diverse agents and the potential for scalable
manufacturing by utilizing free-surface electrospinning to generate
material for fiber micronization. Manipulation of nanofiber formulation
such as drug loading, drug hydrophobicity, polymer hydrophobicity,
and crystallinity allowed for modulation of the sustained release
properties of our fiber microparticles. We assessed various fibrous
microparticle formulations in vivo using a newly
developed and validated guinea pig model for contraception. We found
that fiber microparticles with bolus release doxycycline effectively
elicited acute trauma and those formulated with highly loaded phenyl
benzoate caused sustained inflammation in the target organs. The demonstrated
potency of these electrospun microparticles, as well as their embolic
size and shape, suggests potential for proximal agglomeration and
inflammatory activity in the fallopian tubes following transcervical
delivery.
Collapse
Affiliation(s)
- Hannah VanBenschoten
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98105, United States
| | - Shan Yao
- Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, United States
| | - Jeffrey T Jensen
- Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98105, United States
| |
Collapse
|
2
|
Miskiewicz EI, MacPhee DJ. Lysis Buffer Choices Are Key Considerations to Ensure Effective Sample Solubilization for Protein Electrophoresis. Methods Mol Biol 2019; 1855:61-72. [PMID: 30426406 DOI: 10.1007/978-1-4939-8793-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The efficient extraction of proteins of interest from cells and tissues can be challenging. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 and the transcriptional repressor Snail from choriocarcinoma cells using NP-40 and RIPA lysis buffer. We also show the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness with the often utilized RIPA lysis buffer for solubilization of heat shock proteins (HSP) B1 and B5 and the cytoplasmic adapter protein integrin-linked kinase (ILK) from smooth muscle. Overall, the results demonstrate the importance of optimizing lysis buffers for specific protein solubilization prior to finalizing the experimental workflow.
Collapse
Affiliation(s)
- Ewa I Miskiewicz
- One Reproductive Health Research Group, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J MacPhee
- One Reproductive Health Research Group, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Brennan GP, Vitsios DM, Casey S, Looney AM, Hallberg B, Henshall DC, Boylan GB, Murray DM, Mooney C. RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns. PLoS One 2018; 13:e0207952. [PMID: 30507953 PMCID: PMC6277075 DOI: 10.1371/journal.pone.0207952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease has led to ongoing interest in their diagnostic and prognostic potential. Circulating microRNAs may be valuable predictors of early-life complications such as birth asphyxia or neonatal seizures but there are relatively few data on microRNA content in plasma from healthy babies. Here we performed small RNA-sequencing analysis of plasma processed from umbilical cord blood in a set of healthy newborns. MicroRNA levels in umbilical cord plasma of four male and four female healthy babies, from two different centres were profiled. A total of 1,004 individual microRNAs were identified, which ranged from 426 to 659 per sample, of which 269 microRNAs were common to all eight samples. Many of these microRNAs are highly expressed and consistent with previous studies using other high throughput platforms. While overall microRNA expression did not differ between male and female cord blood plasma, we did detect differentially edited microRNAs in female plasma compared to male. Of note, and consistent with other studies of this type, adenylation and uridylation were the two most prominent forms of editing. Six microRNAs, miR-128-3p, miR-29a-3p, miR-9-5p, miR-218-5p, 204-5p and miR-132-3p were consistently both uridylated and adenylated in female cord blood plasma. These results provide a benchmark for microRNA profiling and biomarker discovery using umbilical cord plasma and can be used as comparative data for future biomarker profiles from complicated births or those with early-life developmental disorders.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dimitrios M. Vitsios
- European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | | | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - David C. Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M. Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Catherine Mooney
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
4
|
Vink J, Mourad M. The pathophysiology of human premature cervical remodeling resulting in spontaneous preterm birth: Where are we now? Semin Perinatol 2017; 41:427-437. [PMID: 28826790 PMCID: PMC6007872 DOI: 10.1053/j.semperi.2017.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Approximately one in ten (approximately 500,000) pregnancies results in preterm birth (PTB) annually in the United States. Although we have seen a slight decrease in the U.S. PTB rate between 2007 and 2014, data from 2014 to 2015 shows the preterm birth rate has slightly increased. It is even more intriguing to note that the rate of PTB has not significantly decreased since the 1980s. In order to decrease the rate of spontaneous preterm birth (sPTB), it is imperative that we improve our understanding of normal and abnormal reproductive tissue structure and function and how these tissues interact with each other at a cellular and biochemical level. Since other chapters in this issue will be focusing on the myometrium and fetal membranes, the goal of this chapter is to focus on the compartment of the cervix. We will review the current literature on normal and abnormal human cervical tissue remodeling and identify gaps in knowledge. Our goal is also to introduce a revised paradigm of normal cervical tissue structure and function which will provide novel research opportunities that may ultimately lead to developing safe and effective interventions to significantly decrease the rate and complications of prematurity.
Collapse
Affiliation(s)
- Joy Vink
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St, PH16-66, New York, NY 10025.
| | - Mirella Mourad
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St, PH16-66, New York, NY 10025
| |
Collapse
|
5
|
Katz TA, Yang Q, Treviño LS, Walker CL, Al-Hendy A. Endocrine-disrupting chemicals and uterine fibroids. Fertil Steril 2016; 106:967-77. [PMID: 27553264 PMCID: PMC5051569 DOI: 10.1016/j.fertnstert.2016.08.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Uterine fibroids are the most frequent gynecologic tumor, affecting 70% to 80% of women over their lifetime. Although these tumors are benign, they can cause significant morbidity and may require invasive treatments such as myomectomy and hysterectomy. Many risk factors for these tumors have been identified, including environmental exposures to endocrine-disrupting chemicals (EDCs) such as genistein and diethylstilbestrol. Uterine development may be a particularly sensitive window to environmental exposures, as some perinatal EDC exposures have been shown to increase tumorigenesis in both rodent models and human epidemiologic studies. The mechanisms by which EDC exposures may increase tumorigenesis are still being elucidated, but epigenetic reprogramming of the developing uterus is an emerging hypothesis. Given the remarkably high incidence of uterine fibroids and their significant impact on women's health, understanding more about how prenatal exposures to EDCs (and other environmental agents) may increase fibroid risk could be key to developing prevention and treatment strategies in the future.
Collapse
Affiliation(s)
- Tiffany A Katz
- Health Science Center, Institute of Biotechnology, Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lindsey S Treviño
- Health Science Center, Institute of Biotechnology, Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Cheryl Lyn Walker
- Health Science Center, Institute of Biotechnology, Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
6
|
Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update 2016; 22:535-60. [PMID: 27363410 DOI: 10.1093/humupd/dmw022] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
The signals and mechanisms that synchronize the timing of human parturition remain a mystery and a better understanding of these processes is essential to avert adverse pregnancy outcomes. Although our insights into human labor initiation have been informed by studies in animal models, the timing of parturition relative to fetal maturation varies among viviparous species, indicative of phylogenetically different clocks and alarms; but what is clear is that important common pathways must converge to control the birth process. For example, in all species, parturition involves the transition of the myometrium from a relaxed to a highly excitable state, where the muscle rhythmically and forcefully contracts, softening the cervical extracellular matrix to allow distensibility and dilatation and thus a shearing of the fetal membranes to facilitate their rupture. We review a number of theories promulgated to explain how a variety of different timing mechanisms, including fetal membrane cell senescence, circadian endocrine clocks, and inflammatory and mechanical factors, are coordinated as initiators and effectors of parturition. Many of these factors have been independently described with a focus on specific tissue compartments.In this review, we put forth the core hypothesis that fetal membrane (amnion and chorion) senescence is the initiator of a coordinated, redundant signal cascade leading to parturition. Whether modified by oxidative stress or other factors, this process constitutes a counting device, i.e. a clock, that measures maturation of the fetal organ systems and the production of hormones and other soluble mediators (including alarmins) and that promotes inflammation and orchestrates an immune cascade to propagate signals across different uterine compartments. This mechanism in turn sensitizes decidual responsiveness and eventually promotes functional progesterone withdrawal in the myometrium, leading to increased myometrial cell contraction and the triggering of parturition. Linkage of these processes allows convergence and integration of the gestational clocks and alarms, prompting a timely and safe birth. In summary, we provide a comprehensive synthesis of the mediators that contribute to the timing of human labor. Integrating these concepts will provide a better understanding of human parturition and ultimately improve pregnancy outcomes.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., MRB, Room 11.138, Galveston, TX 77555-1062, USA
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, 792 College Parkway, Fanny Allen Campus, Suite 101, Colchester, Burlington, VT 05446, USA
| | - Jennifer Condon
- Department of Obstetrics and Gynecology, Wayne State University, Perinatal Research Branch, NICHD, Detroit, MI 48201, USA
| | - Sam Mesiano
- Department of Reproductive Biology and Obstetrics and Gynecology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Nguyen TTTN, Shynlova O, Lye SJ. Matrix Metalloproteinase Expression in the Rat Myometrium During Pregnancy, Term Labor, and Postpartum. Biol Reprod 2016; 95:24. [PMID: 27251092 PMCID: PMC5029434 DOI: 10.1095/biolreprod.115.138248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/16/2016] [Indexed: 01/08/2023] Open
Abstract
Pregnancy, spontaneous term labor (TL), and postpartum (PP) involution are associated with changes in the cellular and extracellular matrix composition of the uterus. Both the uterine smooth muscle (myometrium) and the infiltrating peripheral blood leukocytes involved in the activation of labor secrete extracellular matrix-degrading enzymes (matrix metalloproteinases, MMPs) that can modulate cellular behavior and barrier function. MMP expression is induced by mechanical stretch in several tissues. We hypothesized that the expression and activity of myometrial MMPs and their tissue inhibitors (TIMPs) are modulated in preparation for TL and PP involution and are regulated by mechanical stretch of uterine walls imposed by the growing fetus. Myometrial tissues were collected from bilaterally and unilaterally pregnant rats across gestation, TL, and PP. Total RNA and proteins were subjected to real-time PCR and immunoblotting, respectively, and tissue localization and activity was examined by immunohistochemistry and in situ zymography. We found that Mmp7, Mmp11, and Mmp12 mRNA levels were upregulated during TL and PP, while Mmp2, Mmp3, Mmp8, Mmp9, Mmp10, and Mmp13 mRNAs were only upregulated during PP. Timp1–Timp4 were stably expressed throughout gestation with some fluctuations PP. Active MMP2 was induced in the empty uterine horn during gestation and in the gravid PP uterus, suggesting negative regulation by biological mechanical stretch. We conclude that specific subsets of uterine MMPs are differentially regulated in the rat myometrium in preparation for two major events: TL and PP uterine involution.
Collapse
Affiliation(s)
- Tina Tu-Thu Ngoc Nguyen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada Department of Physiology, University of Toronto, Canada
| | - Oksana Shynlova
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada Department of Obstetrics and Gynecology, University of Toronto, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada Department of Physiology, University of Toronto, Canada Department of Obstetrics and Gynecology, University of Toronto, Canada
| |
Collapse
|
8
|
Abstract
Reproductive biologists are well-versed in many types of biochemical signaling, and indeed, there are almost innumerable examples in reproduction, including steroid and peptide hormone signaling, receptor-ligand and secondary messenger-mediated signaling, signaling regulated by membrane channels, and many others. Among reproductive scientists, a perhaps lesser-known but comparably important mode of signaling is mechanotransduction: the concept that cells can sense and respond to externally applied or internally generated mechanical forces. Given the cell shape changes and tissue morphogenesis events that are components of many phenomena in reproductive function, it should be no surprise that mechanotransduction has major impacts in reproductive health and pathophysiology. The conference on "Mechanotransduction in the Reproductive Tract" was a valuable launch pad to bring this hot issue in development, cell biology, biophysics, and tissue regeneration to the realm of reproductive biology. The goal of the meeting was to stimulate interest and increased mechanotransduction research in the reproductive field by presenting a broad spectrum of responses impacted by this process. The meeting highlighted the importance of convening expert investigators, students, fellows, and young investigators from a number of research areas resulting in cross-fertilization of ideas and suggested new avenues for study. The conference included talks on tissue engineering, stem cells, and several areas of reproductive biology, from uterus and cervix to the gametes. Specific reproductive health-relevant areas, including uterine fibroids, gestation and parturition, and breast tissue morphogenesis, received particular attention.
Collapse
Affiliation(s)
- Janice P Evans
- a Department of Biochemistry and Molecular Biology , Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA
| | - Phyllis C Leppert
- b Department of Obstetrics and Gynecology , Duke University School of Medicine , Durham , NC , USA.,c The Campion Fund , Durham , NC , USA
| |
Collapse
|
9
|
Romero R, Grivel JC, Tarca AL, Chaemsaithong P, Xu Z, Fitzgerald W, Hassan SS, Chaiworapongsa T, Margolis L. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol 2015; 213:836.e1-836.e18. [PMID: 26232508 DOI: 10.1016/j.ajog.2015.07.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Intraamniotic inflammation/infection is the only mechanism of disease with persuasive evidence of causality for spontaneous preterm labor/delivery. Previous studies about the behavior of cytokines in preterm labor have been largely based on the analysis of the behavior of each protein independently. Emerging evidence indicates that the study of biologic networks can provide insight into the pathobiology of disease and improve biomarker discovery. The goal of this study was to characterize the inflammatory-related protein network in the amniotic fluid of patients with preterm labor. STUDY DESIGN A retrospective cohort study was conducted that included women with singleton pregnancies who had spontaneous preterm labor and intact membranes (n = 135). These patients were classified according to the results of amniotic fluid culture, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry, and amniotic fluid concentration of interleukin (IL)-6 into the following groups: (1) those without intraamniotic inflammation (n = 85), (2) those with microbial-associated intraamniotic inflammation (n = 15), and (3) those with intraamniotic inflammation without detectable bacteria (n = 35). Amniotic fluid concentrations of 33 inflammatory-related proteins were determined with the use of a multiplex bead array assay. RESULTS Patients with preterm labor and intact membranes who had microbial-associated intraamniotic inflammation had a higher amniotic fluid inflammatory-related protein concentration correlation than those without intraamniotic inflammation (113 perturbed correlations). IL-1β, IL-6, macrophage inflammatory protein (MIP)-1α, and IL-1α were the most connected nodes (highest degree) in this differential correlation network (degrees of 20, 16, 12, and 12, respectively). Patients with sterile intraamniotic inflammation had correlation patterns of inflammatory-related proteins, both increased and decreased, when compared to those without intraamniotic inflammation (50 perturbed correlations). IL-1α, MIP-1α, and IL-1β were the most connected nodes in this differential correlation network (degrees of 12, 10, and 7, respectively). There were more coordinated inflammatory-related protein concentrations in the amniotic fluid of women with microbial-associated intraamniotic inflammation than in those with sterile intraamniotic inflammation (60 perturbed correlations), with IL-4 and IL-33 having the largest number of perturbed correlations (degrees of 15 and 13, respectively). CONCLUSIONS We report for the first time an analysis of the inflammatory-related protein network in spontaneous preterm labor. Patients with preterm labor and microbial-associated intraamniotic inflammation had more coordinated amniotic fluid inflammatory-related proteins than either those with sterile intraamniotic inflammation or those without intraamniotic inflammation. The correlations were also stronger in patients with sterile intraamniotic inflammation than in those without intraamniotic inflammation. The findings herein could be of value in the development of biomarkers of preterm labor.
Collapse
|
10
|
Peach M, Marsh N, Miskiewicz EI, MacPhee DJ. Solubilization of proteins: the importance of lysis buffer choice. Methods Mol Biol 2015; 1312:49-60. [PMID: 26043989 DOI: 10.1007/978-1-4939-2694-7_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.
Collapse
Affiliation(s)
- Mandy Peach
- Division of BioMedical Sciences, Health Sciences Centre, Rm 5335, 300 Prince Philip Drive, St. John's, NL, Canada, A1B 3V6
| | | | | | | |
Collapse
|
11
|
Ono M, Bulun SE, Maruyama T. Tissue-specific stem cells in the myometrium and tumor-initiating cells in leiomyoma. Biol Reprod 2014; 91:149. [PMID: 25376230 DOI: 10.1095/biolreprod.114.123794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue-specific (or somatic) stem cells constitute a subset of cells residing in normal adult tissues. By undergoing asymmetric division, they retain their ability to self-renew while producing daughter cells that go on to differentiate and play a role in tissue regeneration and repair. The human uterus consists primarily of endometrium and myometrium (the smooth muscle layer) that rapidly enlarges through its tremendous regenerative and remodeling capacity to accommodate the developing fetus. Such uterine enlargement and remodeling can take place repeatedly and cyclically over the course of a woman's reproductive life. These unique properties of the uterus suggest the existence of endometrial and myometrial stem cell systems. In addition, like somatic cells, tumor stem cells or tumor-initiating cells, a subset of cells within a tumor, retain the ability to reconstitute tumors. Uterine smooth muscle cells are thought to be the origin of leiomyomas that are the most common type of gynecologic tumor. Recent work has identified, isolated, and characterized putative stem/progenitor cells in the myometrium and in leiomyomas. Here, we review current studies of myometrial and leiomyoma stem/progenitor cells and provide a new paradigm for understanding myometrial physiology and pathology and how these cells might contribute to uterine remodeling during pregnancy and the formation of leiomyomas. The role of the WNT/CTNNB1 pathway in the pathogenesis of leiomyoma is also discussed.
Collapse
Affiliation(s)
- Masanori Ono
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Tal R, Segars JH. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy. Hum Reprod Update 2013; 20:194-216. [PMID: 24077979 DOI: 10.1093/humupd/dmt042] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND It is well established that tumors are dependent on angiogenesis for their growth and survival. Although uterine fibroids are known to be benign tumors with reduced vascularization, recent work demonstrates that the vasculature of fibroids is grossly and microscopically abnormal. Accumulating evidence suggests that angiogenic growth factor dysregulation may be implicated in these vascular and other features of fibroid pathophysiology. METHODS Literature searches were performed in PubMed and Google Scholar for articles with content related to angiogenic growth factors and myometrium/leiomyoma. The findings are hereby reviewed and discussed. RESULTS Multiple growth factors involved in angiogenesis are differentially expressed in leiomyoma compared with myometrium. These include epidermal growth factor (EGF), heparin-binding-EGF, vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, transforming growth factor-β and adrenomedullin. An important paradox is that although leiomyoma tissues are hypoxic, leiomyoma feature down-regulation of key molecular regulators of the hypoxia response. Furthermore, the hypoxic milieu of leiomyoma may contribute to fibroid development and growth. Notably, common treatments for fibroids such as GnRH agonists and uterine artery embolization (UAE) are shown to work at least partly via anti-angiogenic mechanisms. CONCLUSIONS Angiogenic growth factors play an important role in mechanisms of fibroid pathophysiology, including abnormal vasculature and fibroid growth and survival. Moreover, the fibroid's abnormal vasculature together with its aberrant hypoxic and angiogenic response may make it especially vulnerable to disruption of its vascular supply, a feature which could be exploited for treatment. Further experimental studies are required in order to gain a better understanding of the growth factors that are involved in normal and pathological myometrial angiogenesis, and to assess the potential of anti-angiogenic treatment strategies for uterine fibroids.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | | |
Collapse
|
13
|
Review: Human uterine stem/progenitor cells: Implications for uterine physiology and pathology. Placenta 2013; 34 Suppl:S68-72. [PMID: 23332213 DOI: 10.1016/j.placenta.2012.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 01/17/2023]
Abstract
The human uterus is composed of the endometrial lining and the myometrium. The endometrium, in particular the functionalis layer, regenerates and regresses with each menstrual cycle under hormonal control. A mouse xenograft model has been developed in which the functional changes of the endometrium are reproduced. The myometrium possesses similar plasticity, critical to permit the changes connected with uterine expansion and involution associated with pregnancy. Regeneration and remodeling in the uterus are likely achieved through endometrial and myometrial stem cell systems. Putative stem/progenitor cells in humans and rodents recently have been identified, isolated and characterized. Their roles in endometrial physiology and pathophysiology are presently under study. These stem/progenitor cells ultimately may provide a novel means by which to produce tissues and organs in vitro and in vivo.
Collapse
|
14
|
Abstract
The efficient extraction of proteins of interest from cells and tissues is not always straightforward. In this process, the use of the optimal lysis buffer for protein solubilization should be considered. Here we demonstrate the use of a urea/thiourea lysis buffer, based on O'Farrell's buffer, and compare its effectiveness for solubilization of proteins from smooth muscle with the often utilized RIPA lysis buffer.
Collapse
Affiliation(s)
- Mandy Peach
- Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | |
Collapse
|