1
|
Qi XY, Yuan JD, Liu ZY, Jiang XQ, Zhang Q, Zhang SL, Zhao L, Ke LY, Zhang CY, Li Y, Zhang LY, Xu QQ, Liu ZH, Sun JT, Jin JX. Sirtuin 3-mediated deacetylation of superoxide dismutase 2 ameliorates sodium fluoride-induced mitochondrial dysfunction in porcine oocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168306. [PMID: 37944611 DOI: 10.1016/j.scitotenv.2023.168306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Fluoride exerts detrimental effects on germ cells and increases the infertility rate in women. Nevertheless, the precise mechanisms behind the developmental abnormalities caused by fluoride in oocytes remain poorly comprehended. The current study, we established mitochondrial damage model in oocytes via 50 μg/mL sodium fluoride (NaF) supplementation. We then examined the effects of honokiol in preventing mitochondrial deficits caused by NaF and investigated the mechanisms through which honokiol protects oocytes. The findings investigated that NaF increased levels of mitochondrial reactive oxygen species (mtROS) and hindered mitochondrial function, as evidenced by the dissipation of mitochondrial membrane potential, abnormal expression of mitochondrial DNA copy numbers, and mtDNA harm in oocytes. mtROS scavenging using Mito-TEMPO alleviated oxidative damage in mitochondria and restored the oocyte developmental competence. Superoxide dismutase 2 (SOD2) acetylation was significantly increased, whereas sirtuin 3 (SIRT3) expression was decreased in NaF-treated oocytes. The addition of honokiol helped in the deacetylation of SOD2 at K122 through SIRT3, resulting in the removal of excessive mtROS and the recovery of mitochondrial function. Therefore, SIRT3/SOD2 pathway aids honokiol in mitigating fluoride-induced mitochondrial dysfunction. Overall, honokiol improved the mitochondrial harm caused by NaF by controlling mtROS and mitochondrial function, with the SIRT3/SOD2 pathway having an important function. These findings suggest honokiol as a potential therapeutic strategy for NaF-induced oocyte development and mitochondrial deficits.
Collapse
Affiliation(s)
- Xin-Yue Qi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jin-Dong Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zi-Yu Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xi-Qing Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Qi Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shan-Long Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lu Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ling-Yan Ke
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chen-Yuan Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Qian-Qian Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Lee J, Cai L, Kim M, Choi H, Oh D, Jawad A, Lee E, Hyun SH. Tetraploid embryo aggregation produces high-quality blastocysts with an increased trophectoderm in pigs. Front Cell Dev Biol 2023; 11:1239448. [PMID: 38033873 PMCID: PMC10687364 DOI: 10.3389/fcell.2023.1239448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Tetraploid complementation is an ideal method for demonstrating the differentiation potential of pluripotent stem cells. In this study, we selected the most efficient tetraploid production method for porcine embryos and investigated whether tetraploid blastomere aggregation could enhance the quality of tetraploid embryos. Three methods were investigated to produce tetraploid embryos: First, tetraploid embryos were produced using electro-fusion of two-cell stage parthenogenetic blastomere (FUTP). Second, somatic cell was injected into the mature oocyte and fused to produce tetraploid embryos. Third, oocytes were matured with Cytochalasin B (CB) for the late 22 h of in vitro maturation to inhibit the first polar body (PB1). Following that, non-PB1 oocytes were treated with CB for 4 h after parthenogenetic activation. There was no significant difference in the blastocyst development rate and tetraploid production rate of the embryos produced through the three methods. However, FUTP-derived blastocysts had a significantly lower percentage of apoptotic cells compared to other methods. The developmental competence of embryos, expression of trophectoderm cell marker genes, and distribution of YAP1 protein were investigated in tetraploid embryos produced using the FUTP method. The FUTP method most effectively prevented apoptosis during porcine tetraploid embryo formation. Tetraploid aggregation-derived blastocysts have a high proportion of trophectoderm with increased expression of the CDX2 mRNA and high YAP1 intensity. High-quality blastocysts derived from a tetraploid embryo aggregation can serve as suitable source material for testing the differentiation potential of pluripotent stem cells for blastocyst complementation in pigs.
Collapse
Affiliation(s)
- Joohyeong Lee
- Department of Companion Animal Industry, College of Healthcare and Biotechnology, Semyung University, Jecheon, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Ghorayshian A, Danesh M, Mostashari-Rad T, fassihi A. Discovery of novel RARα agonists using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulation studies. PLoS One 2023; 18:e0289046. [PMID: 37616260 PMCID: PMC10449137 DOI: 10.1371/journal.pone.0289046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nuclear retinoic acid receptors (RARs) are ligand-dependent transcription factors involved in various biological processes, such as embryogenesis, cell proliferation, differentiation, reproduction, and apoptosis. These receptors are regulated by retinoids, i.e., retinoic acid (RA) and its analogs, as receptor agonists. RAR agonists are promising therapeutic agents for the treatment of serious dermatological disorders, including some malignant conditions. By inducing apoptosis, they are able to inhibit the proliferation of diverse cancer cell lines. Also, RAR agonists have recently been identified as therapeutic options for some neurodegenerative diseases. These features make retinoids very attractive molecules for medical purposes. Synthetic selective RAR agonists have several advantages over endogenous ones, but they suffer poor pharmacokinetic properties. These compounds are normally lipophilic acids with unfavorable drug-like features such as poor oral bioavailability. Recently, highly selective, potent, and less toxic RAR agonists with proper lipophilicity, thus, good oral bioavailability have been developed for some therapeutic applications. In the present study, ligand and structure-based virtual screening technique was exploited to introduce some novel RARα agonists. Pharmacokinetic assessment was also performed in silico to suggest those compounds which have optimized drug-like features. Finally, two compounds with the best in silico pharmacological features are proposed as lead molecules for future development of RARα agonists.
Collapse
Affiliation(s)
- Atefeh Ghorayshian
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahshid Danesh
- Functional Genomics & System Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany
| | - Tahereh Mostashari-Rad
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Afshin fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Jeong JY, Cai L, Kim M, Choi H, Oh D, Jawad A, Kim S, Zheng H, Lee E, Lee J, Hyun SH. Antioxidant effect of ergothioneine on in vitro maturation of porcine oocytes. J Vet Sci 2023; 24:e24. [PMID: 37012032 PMCID: PMC10071278 DOI: 10.4142/jvs.22204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine. OBJECTIVES This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF). METHODS Each EGT concentration (0, 10, 50, and 100 µM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF. RESULTS After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 µM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 µM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 µM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group. CONCLUSIONS Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.
Collapse
Affiliation(s)
- Ji-Young Jeong
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Korea
| | - Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Sohee Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Haomiao Zheng
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju 28644, Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
5
|
Dinh DT, Russell DL. Nuclear Receptors in Ovarian Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:41-58. [DOI: 10.1007/978-3-031-11836-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Tannin Supplementation Improves Oocyte Cytoplasmic Maturation and Subsequent Embryo Development in Pigs. Antioxidants (Basel) 2021; 10:antiox10101594. [PMID: 34679729 PMCID: PMC8533281 DOI: 10.3390/antiox10101594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 01/18/2023] Open
Abstract
To investigate the effects of tannins (TA) on porcine oocyte in vitro maturation (IVM), different concentrations of TA (0, 1, 10 and 100 μg/mL) were supplemented with a maturation medium and the COCs and subsequent embryonic development were examined. The results showed that 10 µg/mL TA significantly improved the cumulus expansion index (CEI), cumulus-expansion-related genes (PTGS1, PTGS2, PTX-3, TNFAIP6 and HAS2) expression and blastocyst formation rates after parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) compared to the control groups, but not oocyte nuclear maturation. Nevertheless, 10 µg/mL TA dramatically enhanced the mRNA expression of oocyte-development-related genes (BMP15, GDF9, CDC2 and CYCLIN B1), GSH, ATP, SOD1, PGC1α, BMP15, GDF9 and CDC2 levels and reduced intracellular ROS level in porcine oocytes. These results indicated that porcine oocyte cytoplasmic maturation was improved by 10 µg/mL TA treatment during IVM. In contrast, a high concentration of TA (100 μg/mL) significantly decreased the CEI and PTGS1, PTGS2, PTX-3 and HAS2 mRNA expressions in cumulus cells, and reduced oocyte nuclear maturation and the total cell numbers/blastocyst. In general, these data showed that 10 μg/mL TA supplementation has beneficial effects on oocyte cytoplasmic maturation and subsequent embryonic development in pigs.
Collapse
|
7
|
Enhancing in vitro oocyte maturation competence and embryo development in farm animals: roles of vitamin-based antioxidants – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Oocyte/embryo in vitro culture is one of the most important assisted reproductive technologies used as a tool for maintaining genetic resources biodiversity and the inheritance of valuable genetic resources through generations. The success of such processes affects the final goal of the in vitro culture, getting viable and healthy offspring. In common in vitro oocyte maturation and/or embryo development techniques, the development of oocytes/embryos is carried out at 5% carbon dioxide and roughly 20% atmosphere-borne oxygen ratios in cell culture incubators due to their reduced cost in comparison with low atmospheric oxygen-tension incubators. These conditions are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles, as well as genetic material. The present review mainly focuses on the antioxidant roles of different vitamins on in vitro oocyte maturation competence and embryo development in farm animals. Because, the conditions of in vitro embryo production (IVEP) are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles as well as genetic material. The use of antioxidant agents may prevent the extreme augmentation of ROS generation and enhance in vitro matured oocyte competence and embryo development. Therefore, this review aimed to provide an updated outline of the impact of antioxidant vitamin (Vit) supplementations during in vitro maturation (IVM) and in vitro fertilization (IVF) on oocyte maturation and consequent embryo development, in various domestic animal species. Thus, the enrichment of the culture media with antioxidant agents may prevent and neutralize the extreme augmentation of ROS generation and enhance the in vitro embryo production (IVEP) outcomes.
Collapse
|
8
|
Gupta P, Johnson P, Kaushik K, Krishna K, Nandi S, Mondal S, Nikhil Kumar Tej J, Somoskoi B, Cseh S. Effect of retinol as antioxidant on the post-thaw viability and the expression of apoptosis and developmental competence-related genes of vitrified preantral follicles in buffalo (Bubalus bubalis). Reprod Domest Anim 2021; 56:1446-1455. [PMID: 34449946 DOI: 10.1111/rda.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
The present study evaluated the effect of supplementation of retinol in the vitrification solution on the viability, apoptosis and development-related gene expression in vitrified buffalo preantral follicles. Preantral follicles isolated from cortical slices of ovaries were randomly assigned into three groups: Group1-Control fresh preantral follicles; Group 2-Vitrification treatment (Vitrification solution 1 (VS1) -TCM-199 + 25 mM HEPES + Foetal bovine serum (FBS) 10%, Ethylene glycol (EG): 10%, Dimethyl sulphoxide (DMSO): 10%, Sucrose-0.3 M for 4 min; VS2- TCM-199 + 25 mM HEPES + FBS10%, EG:25%, DMSO: 25%, Sucrose:0.3 M for 45 s); Group3-vitrification treatment +5 μM of Retinol. Preantral follicles were placed in corresponding vitrification medium and plunged into liquid nitrogen (-196°C). After a week, the follicles were thawed and analysed for follicular viability and gene expression. There was no significant difference in the viability rates among the Group 1(Fresh preantral follicles) (91.46 ± 2.39%), Group 2 (89.59 ± 2.46%) and Group 3 (87.19 ± 4.05%). There was a significantly (p < .05) higher mRNA expression of BCL2L1, GDF-9 and BMP-15 in the vitrification + retinol group compared with the control group. There was a significantly (p < .05) higher expression of Caspase-3 and Annexin-5 in the vitrification group and Vitrification + retinol group compared with control group of follicles. It is concluded that the supplementation of 5 μM of Retinol in Vitrification solution was an efficient vitrification procedure for the vitrification of buffalo preantral follicles.
Collapse
Affiliation(s)
- Psp Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - P Johnson
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - K Kaushik
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - K Krishna
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - J Nikhil Kumar Tej
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - B Somoskoi
- Department and Clinic of Obstetrics & Reproduction, University of Veterinary Medicine, Budapest, Hungary
| | - S Cseh
- Department and Clinic of Obstetrics & Reproduction, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
9
|
Yang S, Wang Z, Guo M, Du M, Wen X, Geng L, Yu F, Liu L, Li Y, Feng L, Zhou T. UPLC-MS-Based Serum Metabolomics Reveals Potential Biomarkers of Ang II-Induced Hypertension in Mice. Front Cardiovasc Med 2021; 8:683859. [PMID: 34026879 PMCID: PMC8131677 DOI: 10.3389/fcvm.2021.683859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 12/04/2022] Open
Abstract
Hypertension is caused by polygenic inheritance and the interaction of various environmental factors. Abnormal function of the renin-angiotensin-aldosterone system (RAAS) is closely associated with changes in blood pressure. As an essential factor in the RAAS, angiotensin II (Ang II) contributes to vasoconstriction and inflammatory responses. However, the effects of overproduction of Ang II on the whole body-metabolism have been unclear. In this study, we established a hypertensive mouse model by micro-osmotic pump perfusion of Ang II, and the maximum systolic blood pressure reached 140 mmHg after 2 weeks. By ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, the metabolites in the serum of hypertensive model and control mice were analyzed. Partial least squares discriminant analysis (PLS-DA) in both positive and negative ionization modes showed clear separation of the two groups. Perfusion of Ang II induced perturbations of multiple metabolic pathways in mice, such as steroid hormone biosynthesis and galactose metabolism. Tandem mass spectrometry revealed 40 metabolite markers with potential diagnostic value for hypertension. Our data indicate that non-targeted metabolomics can reveal biochemical pathways associated with Ang II-induced hypertension. Although researches about the clinical use of these metabolites as potential biomarkers in hypertension is still needed, the current study improves the understanding of systemic metabolic response to sustained release of Ang II in hypertensive mice, providing a new panel of biomarkers that may be used to predict blood pressure fluctuations in the early stages of hypertension.
Collapse
Affiliation(s)
- Shaying Yang
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiwei Wang
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Mengting Guo
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Mengfan Du
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Wen
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Li Geng
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Yu
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Liangliang Liu
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Yanting Li
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- Laboratory of Cardiovascular Research, School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci 2020; 132:342-350. [PMID: 32738731 DOI: 10.1016/j.rvsc.2020.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Producing high-competent oocytes during the in vitro maturation (IVM) is considered a key step for the success of the in vitro production (IVP) of embryos. One of the known disruptors of oocyte developmental competence on IVP is oxidative stress (OS), which appears due to the imbalance between the production and neutralization of reactive oxygen species (ROS). The in vitro conditions induce supraphysiological ROS levels due to the exposure to an oxidative environment and the isolation of the oocyte from the follicle protective antioxidant milieu. In juvenile in vitro embryo transfer (JIVET), which aims to produce embryos from prepubertal females, the oocytes are more sensitive to OS as they have inherent lower quality. Therefore, the IVM strategies that aim to prevent OS have great interest for both IVP and JIVET programs. The focus of this review is on the effects of ROS on oocyte IVM and the main antioxidants that have been tested for protecting the oocyte from OS. Considering the importance that OS has on oocyte competence, it is crucial to create standardized antioxidant IVM systems for improving the overall IVP success.
Collapse
|
11
|
Kim EH, Kim GA, Taweechaipaisankul A, Ridlo MR, Lee SH, Ra K, Ahn C, Lee BC. Phytanic acid-derived peroxisomal lipid metabolism in porcine oocytes. Theriogenology 2020; 157:276-285. [PMID: 32823023 DOI: 10.1016/j.theriogenology.2020.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Lipid metabolism plays an important role in oocyte maturation. The peroxisome is the fundamental mediator for this mechanism. In this study, we investigated the peroxisomal lipid metabolism in porcine oocytes. Phytanic acid (PA) was chosen as an activator of alpha-oxidation in peroxisomes. Oocyte maturation, embryo development, immunocytochemistry of peroxisomal lipid activities, and staining of mitochondrial potentials were assessed. We found that 40 μM PA not only increased porcine oocyte maturation and embryonic development, but also upregulated the expression of genes and proteins related to activities of the peroxisomal lipid metabolism (PHYH, PEX19, and PEX subfamilies) and mitochondrial potentials (NRF1 and PGC1α). Moreover, PA upregulated the lipid droplet and fatty acid content in the oocytes. Moreover, mitochondria were activated and the mitochondrial membrane potential was increased after PA treatment, resulting in the production of more ATPs in the oocytes. Our findings suggest that the degradation of PA via alpha-oxidation in the peroxisome may potentiate oocyte maturation processes, peroxisomal lipid oxidation, and mitochondria activities.
Collapse
Affiliation(s)
- Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Rosyid Ridlo
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Department of Bioresource Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Curie Ahn
- Division of Nephrology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Abdelnour SA, Abd El-Hack ME, Swelum AAA, Saadeldin IM, Noreldin AE, Khafaga AF, Al-Mutary MG, Arif M, Hussein ESOS. The Usefulness of Retinoic Acid Supplementation during In Vitro Oocyte Maturation for the In Vitro Embryo Production of Livestock: A Review. Animals (Basel) 2019; 9:ani9080561. [PMID: 31443306 PMCID: PMC6720576 DOI: 10.3390/ani9080561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/31/2023] Open
Abstract
Simple Summary In this review, we provide the previous studies, state-of-the-art practices, and potential implications of retinoic acid for improving in vitro livestock embryo production. Abstract Retinoic acid (RA) is an indigenous metabolite and descriptive physiologically functioning constituent of vitamin A. Retinoids were documented as vital regulators for cell development and distinction, embryonic growth, and reproductive function in both male and female livestock. Previously, RA has been shown to have several positive impacts in vivo and in vitro and critically control many reproductive events, such as oocyte development, follicular growth, and early embryonic growth. In addition, RA manages apoptotic signaling and oxidative damages in cells. Recently, RA has been used widely in assisted reproductive technology fields, especially during in vitro embryo development in various mammalian species, including buffaloes, bovine, goats, sheep, pigs, and rabbits. However, the optimum concentration of RA greatly differs based on the condition of maturation media and species. Based on the obtained findings, it was generally accepted that RA enhances nuclear oocyte maturation, cleavage and maturation rates, blastocyst formation, and embryo development. As such, it possesses antioxidant properties against reactive oxygen species (ROS) and an anti-apoptotic effect through enhancing the transcription of some related genes such as superoxide dismutase, prostaglandin synthase, glutathione peroxidase, peroxiredoxins, and heme oxygenase. Therefore, the current review concludes that an addition of RA (up to 50 nM) has the potential to improve the oocyte maturation media of various species of livestock due to its antioxidant activity.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mohsen G Al-Mutary
- Basic Sciences Department, College of Education, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - El-Sayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
13
|
Jia BY, Xiang DC, Zhang B, Quan GB, Shao QY, Hong QH, Wu GQ. Quality of vitrified porcine immature oocytes is improved by coculture with fresh oocytes during in vitro maturation. Mol Reprod Dev 2019; 86:1615-1627. [PMID: 31368632 DOI: 10.1002/mrd.23249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
Abstract
It is essential to enhance the in vitro maturation (IVM) condition for immature oocytes after cryopreservation, particularly if limited numbers of oocytes collected from specific donors. The objective of this study was to determine if quality of vitrified porcine immature oocytes was enhanced by coculturing with fresh oocytes during IVM. To distinguish fresh versus vitrified oocytes, we used two types of coculture systems: (a) transwell two-chamber coculture; (b) labeling and tracing fresh oocytes with CellTracker™ Green CMFDA during conventional culture. Coculture systems significantly accelerated meiotic progression of vitrified oocytes and significantly increased blastocyst formation rates following parthenogenetic activation and somatic cell nuclear transfer. Reactive oxygen species generation in vitrified oocytes was ameliorated by the coculture conditions, with no significant difference between fresh and vitrified oocytes for intracellular glutathione level. Both coculture systems significantly increased rate of normal mitochondrial distribution in vitrified oocytes, but did not affect fluorescence intensity of mitochondria. The percentage of oocytes with normal endoplasmic reticulum (ER) distribution and ER fluorescence intensity were significantly higher in vitrified oocytes cocultured with fresh oocytes. After 20 hr of IVM, mRNA expression of COX2, HAS2, PTX3, and TNFAIP6 remained significantly higher in cumulus cells derived from vitrified oocytes and coculture systems significantly decreased the expression of these genes. Additionally, coculture methods prevented the reduction of mRNA expression for BMP15, ZAR1, POU5F1, and DNMT3A in vitrified oocytes. In conclusion, oocyte quality and subsequent embryo development of vitrified porcine immature oocytes were significantly improved by fresh oocyte coculture during IVM.
Collapse
Affiliation(s)
- Bao-Yu Jia
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China
| | - De-Cai Xiang
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, People's Republic of China
| | - Bin Zhang
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, People's Republic of China
| | - Guo-Bo Quan
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, People's Republic of China
| | - Qing-Yong Shao
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, People's Republic of China
| | - Qiong-Hua Hong
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, People's Republic of China
| | - Guo-Quan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
14
|
Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Yaqoob SH, Alfayez M, Alowaimer AN. Effects of all-trans retinoic acid on the in vitro maturation of camel (Camelus dromedarius) cumulus-oocyte complexes. J Reprod Dev 2019; 65:215-221. [PMID: 30760649 PMCID: PMC6584179 DOI: 10.1262/jrd.2018-073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans retinoic acid (RA) is a metabolite of vitamin A and has pleiotropic actions on many different biological processes, including cell growth and differentiation, and is involved in different aspects of fertility and developmental biology. In the current study, we investigated the effects of RA on camel (Camelus dromedarius) cumulus-oocyte complex in vitro maturation (IVM). IVM medium was supplemented with 0, 10, 20, and 40 µM RA. Application of 20 µM RA significantly reduced the proportion of degenerated oocytes and significantly improved oocyte meiosis and first polar body extrusion compared to the control and other experimental groups. Retinoic acid significantly reduced the mRNA transcript levels of apoptosis-related genes, including BAX and P53, and reduced the BAX/BCL2 ratio. In addition, RA significantly reduced the expression of the Transforming growth factor beta (TGFβ) pathway-related transcripts associated with the actin cytoskeleton, ACTA2 and TAGLN; however, RA increased TGFβ expression in cumulus cells. The small molecule SB-431542 inhibits the TGFβ pathway by inhibiting the activity of activin receptor-like kinases (ALK-4, ALK-5, and ALK-7); however, combined supplementation with RA during IVM compensated for the inhibitory effect of SB-431542 on cumulus expansion, oocyte meiosis I, and first polar body extrusion in activated oocytes. The current study shows the beneficial effects of RA on camel oocyte IVM and provides a model to study the multifunctional mechanisms involved in cumulus expansion and oocyte meiosis, particularly those involved in the TGFβ pathway.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Syed Hilal Yaqoob
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Saudi Society for Camel Studies, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Gad A, Abu Hamed S, Khalifa M, Amin A, El-Sayed A, Swiefy SA, El-Assal S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo ( Bubalus bubalis) oocytes. Int J Vet Sci Med 2018; 6:279-285. [PMID: 30564610 PMCID: PMC6286416 DOI: 10.1016/j.ijvsm.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023] Open
Abstract
Retinoic acid, vitamin A metabolite, plays a role in oocyte development and maturation in different ways including gene expression alteration and/or prohibiting oxidative stress. The objective of this study was to examine the effect of 9-cis-retinoic acid (9-cisRA) on the quality and maturation rate of buffalo oocytes. Cumulus-oocyte complexes (COCs, n = 460) were collected from ovaries of slaughtered buffalos. Varying concentrations of 9-cisRA (0, 5, 50, and 200 nM) were added to the maturation medium, and the following parameters were analyzed: (i) maturation and cleavage rates, (ii) mitochondrial activity and reactive oxygen species (ROS) levels, (iii) expression level of antioxidant-related genes (PRDX1, SOD1, CAT, HOMX1, and GPX4) using RT-qPCR. Maturation rate was significantly improved in 5 nM 9-cisRA oocyte group (95.8%, P < .05) compared to control and other treatment groups (86.7% in control group). The same oocyte group exhibited significantly higher mitochondrial membrane potential activity and lower ROS accumulation level compared to other treatment groups. Antioxidant-related genes were up-regulated in oocytes matured with 5 or 50 nM 9-cisRA compared to control and 200 nM 9-cisRA groups. In contrast, 200 nM of 9-cisRA showed a clear down-regulation for antioxidant-related genes except for PRDX1. In conclusion, supplementation of 9-cisRA with a lower concentration (5 nM) to the buffalo oocytes maturation media promotes maturation rate through a protection mechanism that maintains adequate levels of antioxidant-related transcripts and improves mitochondrial activity. However, 9-cisRA has no significant effect on the cleavage rate of the treated oocytes.
Collapse
Affiliation(s)
- Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Said Abu Hamed
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Khalifa
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Swiefy A. Swiefy
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Salah El-Assal
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Lee SH, Oh HJ, Kim MJ, Setyawan EMN, Lee BC. Interaction of the EGFR signaling pathway with porcine cumulus oocyte complexes and oviduct cells in a coculture system. J Cell Physiol 2018; 234:4030-4043. [PMID: 30252133 DOI: 10.1002/jcp.27170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/16/2018] [Indexed: 11/11/2022]
Abstract
It has become increasingly recognized that coculture has a beneficial effect on the in vitro maturation (IVM) of oocytes and embryo development in many species. However, these effects of coculture on IVM have been documented only for their positive conditioning roles without any evidence on the precise mechanisms underlying the action of coculture systems on the development of cumulus oocyte complexes (COCs). It has been suggested that the epidermal growth factor receptor (EGFR) signaling pathway is important for development of COCs, mediated by several epidermal growth factor (EGF)-like proteins with downstream mitogen-activated protein kinase 1/3 signaling. Therefore, we hypothesized that canine oviduct cells (OCs) in a coculture system, which shows improvement of oocyte quality in several species, are associated with EGFR signaling by exposure to progesterone (P4; imitating its production before ovulation and its continuous increase while oocytes reside in the oviduct to complete maturation in dogs). We designed three experimental groups: control, OCs coculture exposed to P4, and OCs coculture without exposure to P4. The result showed that the OCs coculture exposed to P4 strongly expressed EGF-like proteins and significantly improved COCs and subsequent embryo development. Furthermore, the expression of EGFR-related genes in cumulus cells and GDF9 and BMP15 in oocytes was upregulated in the P4-treated group. This study provides the first evidence that OCs exposed to P4 can induce strong expression of EGF-like proteins, and OCs effectively mediate improved porcine COCs development and subsequent embryo development by altering EGFR signaling related mRNA expression.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Lee SH, Oh HJ, Kim MJ, Setyawan EMN, Choi YB, Lee BC. Effect of co-culture human endothelial progenitor cells with porcine oocytes during maturation and subsequent embryo development of parthenotes in vitro. Mol Reprod Dev 2018; 85:336-347. [PMID: 29442425 DOI: 10.1002/mrd.22969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
Human endothelial progenitor cells (EPCs) have been applied to regenerative medicine for their roles in angiogenesis as well as neovascularization, and these angiogenetic functions have beneficial effects on maturation of ovarian follicles. However, little information is available on whether EPCs on culture systems affect oocyte maturation and subsequent embryo development. Therefore, the objective of this study was to investigate the effect of EPC co-culture on porcine oocytes during in vitro maturation (IVM) and subsequent embryo development, and to examine gene expression in cumulus cells, oocytes and blastocysts. The effect of co-culture using EPC on porcine oocyte IVM was investigated. Oocytes were activated using electrical stimulation and embryo developmental competence was estimated. The expression of the genes related to cumulus expansion, oocyte maturation, embryo development, and apoptosis were analyzed. In result, there was a significantly increased maturation rate in EPC group compared with control (p < 0.05). Also, oocytes co-cultured with EPCs exhibited significantly improved blastocyst formation rates (p < 0.05). The expression of mRNAs associated with cumulus expansion and apoptosis in cumulus cells was significantly up-regulated in EPC group. Also, markedly increased levels of GDF9, BMP15, and BCL2 were observed in oocytes from the EPC group. Blastocysts in the co-culture group showed significantly higher SOX2, OCT4, and NANOG levels. In conclusion, co-culturing porcine oocytes with EPCs improves their maturation by regulating genes involved in cumulus cell expansion, oocyte maturation, and apoptosis. Moreover, EPC co-culture during IVM enhanced embryo development as shown by increased blastocyst formation rate and pluripotency-related gene expression.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Erif M N Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoo Bin Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Ahn C, Lee BC. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes. J Pineal Res 2017; 63. [PMID: 28512846 DOI: 10.1111/jpi.12424] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022]
Abstract
Melatonin, which is synthesized in the pineal gland and peripheral reproductive organs, has antioxidant properties and regulates physiological processes. It is well known that melatonin affects in vitro maturation (IVM) of oocytes and embryonic development in many species. However, beneficial effects of melatonin on IVM have been explained mainly by indirect antioxidant effects and little information is available on the underlying mechanism by which melatonin directly acts on porcine cumulus oocyte complexes (COCs). Sonic hedgehog (Shh) signaling is important for follicle development, oocyte maturation, and embryo development, and there may be a relationship between melatonin and Shh signaling. To examine this, we designed three groups: (i) control, (ii) melatonin (10-9 mol/L), and (iii) melatonin with cyclopamine (2 μmol/L; Shh signaling inhibitor). The aim of this study was to investigate the effects of these agents on cumulus expansion, oocyte maturation, embryo development after parthenogenetic activation (PA), gene expression in cumulus cells, oocytes and blastocysts, and protein expression in COCs. Melatonin significantly increased the proportion of COCs exhibiting complete cumulus expansion (degree 4), PA blastocyst formation rates, and total cell numbers, which were inhibited by addition of cyclopamine. Simultaneously, the expression of cumulus expansion-related genes (Ptgs1, Ptgs2, and Has2) and Shh signaling-related genes (Shh, Pthc1, Smo, and Gli1) and proteins (Ptch1, Smo, and Gli1) in cumulus cells was upregulated in the melatonin-treated group, and these effects were also inhibited by cyclopamine. In conclusion, our results suggest that Shh signaling mediates effects of melatonin to improve porcine cumulus expansion and subsequent embryo development.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Chen Z, Zuo X, Li H, Hong R, Ding B, Liu C, Gao D, Shang H, Cao Z, Huang W, Zhang X, Zhang Y. Effects of melatonin on maturation, histone acetylation, autophagy of porcine oocytes and subsequent embryonic development. Anim Sci J 2017; 88:1298-1310. [PMID: 28349625 DOI: 10.1111/asj.12779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Melatonin (MLT) is an endogenous hormone with roles in animal germ cell development. However, the effect of MLT on porcine oocyte maturation and its underlying mechanisms remain largely unknown. Here, we investigated the effects of exogenous MLT on oocyte maturation, histone acetylation, autophagy and subsequent embryonic development. We found that 1 nmol/L MLT supplemented in maturation medium was the optimal concentration to promote porcine oocyte maturation and subsequent developmental competence and quality of parthenogenetic embryos. Interestingly, the beneficial effects of 1 nmol/L MLT treatment on porcine oocyte maturation and embryo development were mainly attributed to the first half period of in vitro maturation. Simultaneously, MLT treatment could also improve maturation of small follicle-derived oocytes, morphologically poor (cumulus cell layer ≤1) and even artificially denuded oocytes and their subsequent embryo development. Furthermore, MLT treatment not only could decrease the levels of H3K27ac and H4K16ac in metaphase II (MII) oocytes, but also could increase the expression abundances of genes associated with cumulus cell expansion, meiotic maturation, histone acetylation and autophagy in cumulus cells or MII oocytes. These results indicate that MLT treatment can facilitate porcine oocyte maturation and subsequent embryonic development probably, through improvements in histone acetylation and autophagy in oocytes.
Collapse
Affiliation(s)
- Zhen Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Hui Li
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Renyun Hong
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Biao Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Chengxue Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Di Gao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Hui Shang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Xiaorong Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| |
Collapse
|
20
|
Chen F, Jiang Z, Jiang S, Li L, Lin X, Gou Z, Fan Q. Dietary vitamin A supplementation improved reproductive performance by regulating ovarian expression of hormone receptors, caspase-3 and Fas in broiler breeders. Poult Sci 2016; 95:30-40. [DOI: 10.3382/ps/pev305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2015] [Indexed: 12/20/2022] Open
|
21
|
Pu Y, Wang Z, Bian Y, Zhang F, Yang P, Li Y, Zhang Y, Liu Y, Fang F, Cao H, Zhang X. All-transretinoic acid improves goat oocyte nuclear maturation and reduces apoptotic cumulus cells duringin vitromaturation. Anim Sci J 2014; 85:833-9. [DOI: 10.1111/asj.12216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Yong Pu
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
- Engineering Research Center of Reproduction and Breeding in Sheep of Anhui Province; Hefei China
| | - Zhangfan Wang
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
| | - Yani Bian
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
| | - Fei Zhang
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
| | - Pan Yang
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
| | - Yunsheng Li
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
- Engineering Research Center of Reproduction and Breeding in Sheep of Anhui Province; Hefei China
| | - Yunhai Zhang
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
- Engineering Research Center of Reproduction and Breeding in Sheep of Anhui Province; Hefei China
| | - Ya Liu
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
- Engineering Research Center of Reproduction and Breeding in Sheep of Anhui Province; Hefei China
| | - Fugui Fang
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
- Engineering Research Center of Reproduction and Breeding in Sheep of Anhui Province; Hefei China
| | - Hongguo Cao
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
- Engineering Research Center of Reproduction and Breeding in Sheep of Anhui Province; Hefei China
| | - Xiaorong Zhang
- College of Animal Science and Technology; Anhui Agricultural University; Hefei China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding; Anhui Agricultural University; Hefei China
- Engineering Research Center of Reproduction and Breeding in Sheep of Anhui Province; Hefei China
| |
Collapse
|
22
|
Jia B, Wu G, Fu X, Mo X, Du M, Hou Y, Zhu S. trans
-10, cis
-12 conjugated linoleic acid enhances in vitro maturation of porcine oocytes. Mol Reprod Dev 2013; 81:20-30. [DOI: 10.1002/mrd.22273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Baoyu Jia
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology; China Agricultural University; Beijing People's Republic of China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute; Kunming Yunnan People's Republic of China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology; China Agricultural University; Beijing People's Republic of China
| | - Xianhong Mo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences; China Agricultural University; Beijing People's Republic of China
| | - Ming Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology; China Agricultural University; Beijing People's Republic of China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences; China Agricultural University; Beijing People's Republic of China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology; China Agricultural University; Beijing People's Republic of China
| |
Collapse
|
23
|
Piprek RP, Pecio A, Laskowska-Kaszub K, Kloc M, Kubiak JZ, Szymura JM. Retinoic acid homeostasis regulates meiotic entry in developing anuran gonads and in Bidder's organ through Raldh2 and Cyp26b1 proteins. Mech Dev 2013; 130:613-27. [PMID: 24056063 DOI: 10.1016/j.mod.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
The vitamin A (retinol) and its metabolites such as retinoic acid (RA) affect vertebrate gametogenesis. The level of RA in cells relies on the balance between its synthesis and degradation. The sex-dependent equilibrium is reached in different ways in various species. It is known that RA induces meiosis in developing gonads in mouse, chicken and urodel amphibians, but its role in anuran amphibians has not been studied. Here we show in six anuran species (Xenopus laevis, Bombina bombina, Hyla arborea, Bufo viridis, Rana arvalis and Rana temporaria) that cultured undifferentiated gonads were insensitive to RA treatment, but the RA induced ectopic meiosis in cultured larval testes. In larval testes of all studied species, the exogenous RA induced leptotene phase of I meiotic prophase in gonia, but only in H. arborea and B. viridis gonia progressed to zygotene phase. In the cultured developing ovaries, exogenous RA led to increase in the number of oocytes as compared to the control. Inhibition of either RA synthesis or RA-receptors prevented meiotic entry in larval gonads of all species. Exogenous RA rescued this inhibitory effect demonstrating that the balance in RA homeostasis plays a key role in meiotic entry in anuran gonads. The localization of two enzymes, Raldh2 and Cyp26b1, which antagonistically control RA levels and whose abundance suggests the sites of RA synthesis and degradation respectively, showed two distinct expression patterns specific for (i) X. laevis, H. arborea, R. arvalis, R. temporaria and (ii) B. bombina, B. viridis. Thus, RA, in correlation with specific expression patterns of Raldh2 and Cyp26b, induces meiosis during gonad development in anurans. In addition, in B. viridis, RA signalling seems important for development of the Bidder's organ containing oocytes both in males and females.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
24
|
Maya-Soriano M, Taberner E, Sabés-Alsina M, López-Béjar M. Retinol might stabilize sperm acrosomal membrane in situations of oxidative stress because of high temperatures. Theriogenology 2013; 79:367-73. [DOI: 10.1016/j.theriogenology.2012.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/11/2012] [Accepted: 10/14/2012] [Indexed: 01/27/2023]
|
25
|
Gad A, Hoelker M, Besenfelder U, Havlicek V, Cinar U, Rings F, Held E, Dufort I, Sirard MA, Schellander K, Tesfaye D. Molecular Mechanisms and Pathways Involved in Bovine Embryonic Genome Activation and Their Regulation by Alternative In Vivo and In Vitro Culture Conditions1. Biol Reprod 2012; 87:100. [DOI: 10.1095/biolreprod.112.099697] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
26
|
Wang W, Tang Y, Ni L, Jongwutiwes T, Liu HC, Rosenwaks Z. A modified protocol for <i>in vitro</i> maturation of mouse oocytes from secondary preantral follicles. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.31010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|