1
|
Herta AC, Mengden L, Akin N, Billooye K, Coucke W, Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Characterization of carbohydrate metabolism in in vivo and in vitro grown and matured mouse antral follicles. Biol Reprod 2022; 107:998-1013. [PMID: 35717588 DOI: 10.1093/biolre/ioac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/14/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing an ideal human follicle culture system for oncofertility patients relies mainly on animal models since donor tissue is scarce and often of suboptimal quality. The in vitro system developed in our laboratory supports the growth of prepubertal mouse secondary follicles up to mature oocytes. Given the importance of glucose in preparing the oocyte for proper maturation, a baseline characterization of follicle metabolism both in the culture system and in vivo was carried out. Markers of glucose-related pathways (glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), polyol pathway, hexosamine biosynthesis pathway (HBP)) as well as for the antioxidant capacity were measured in the different follicle cell types by both enzymatic activities (spectrophotometric detection) and gene expression (qPCR). This study confirmed that in vivo the somatic cells, mainly granulosa, exhibit intense glycolytic activity, while oocytes perform PPP. Throughout the final maturation step, oocytes in vivo and in vitro showed steady levels for all the key enzymes and metabolites. On the other hand, ovulation triggers a boost of pyruvate and lactate uptake in cumulus cells in vivo, consumes reduced nicotinamide adenine dinucleotide phosphate (NADPH) and increases TCA cycle and small molecules antioxidant capacity (SMAC) activities, while in vitro, the metabolic upregulation in all the studied pathways is limited. This altered metabolic pattern might be a consequence of cell exhaustion because of culture conditions, impeding cumulus cells to fulfil their role in providing proper support for acquiring oocyte competence. SUMMARY SENTENCE: In vitro cultured mouse follicles exhibit altered glycolytic activity and redox metabolism in the somatic compartment during meiotic maturation.
Collapse
Affiliation(s)
- Anamaria-Cristina Herta
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Lucia Mengden
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), 90035003, Brazil
| | - Nazli Akin
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Katy Billooye
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Wim Coucke
- Freelance statistician, Brugstraat 107, 3001 Heverlee, Belgium
| | - Julia Leersum
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Berta Cava-Cami
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Laura Saucedo-Cuevas
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), 90035003, Brazil
| | - Johan Smitz
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| |
Collapse
|
2
|
Chernus JM, Sherman SL, Feingold E. Analyses stratified by maternal age and recombination further characterize genes associated with maternal nondisjunction of chromosome 21. Prenat Diagn 2021; 41:591-609. [PMID: 33596328 DOI: 10.1002/pd.5919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE In our previous work, we performed the first genome-wide association study to find genetic risk factors for maternal nondisjunction of chromosome 21. The objective of the current work was to perform stratified analyses of the same dataset to further elucidate potential mechanisms of genetic risk factors. METHODS We focused on loci that were statistically significantly associated with maternal nondisjunction based on this same dataset in our previous study and performed stratified association analyses in seven subgroups defined by age and meiotic recombination profile. In each analysis, we contrasted a different subgroup of mothers with the same set of fathers, the mothers serving as cases (phenotype: meiotic nondisjunction of chromosome 21) and the fathers as controls. RESULTS Our stratified analyses identified several genes whose patterns of association are consistent with generalized effects across groups, as well as other genes that are consistent with specific effects in certain groups. CONCLUSIONS While our results are epidemiological in nature and cannot conclusively prove mechanisms, we identified a number of patterns that are consistent with specific mechanisms. In many cases those mechanisms are strongly supported by available literature on the associated genes.
Collapse
Affiliation(s)
- Jonathan M Chernus
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Zhu Y, Jiang YH, He YP, Zhang X, Sun ZG, Jiang MX, Wang J. Knockdown of regulator of G-protein signalling 2 (Rgs2) leads to abnormal early mouse embryo development in vitro. Reprod Fertil Dev 2017; 27:557-66. [PMID: 24524188 DOI: 10.1071/rd13269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/16/2014] [Indexed: 11/23/2022] Open
Abstract
Regulator of G-protein signalling 2 (Rgs2) is involved in G-protein-mediated signalling by negatively regulating the activity of the G-protein α-subunit. In the present study, the expression patterns of Rgs2 in mouse ovarian tissues and early embryos were determined by semiquantitative reverse transcription-polymerase chain reaction, immunohistochemistry and immunofluorescent analyses. Rgs2 expression was observed in the ovarian tissues of adult female mice, with an almost equal expression levels during different stages of the oestrous cycle. Rgs2 was abundant in the cytoplasm, membrane, nuclei and spindles of intact polar bodies in mouse early embryos at different developmental stages from the zygote to blastocyst. The effect of Rgs2 knockdown on early embryonic development in vitro was examined by microinjecting Rgs2-specific short interfering (si) RNAs into mouse zygotes. Knockdown of endogenous Rgs2 expression led to abnormal embryonic development in vitro, with a considerable number of early embryos arrested at the 2- or 4-cell stage. Moreover, mRNA expression of three zygotic gene activation-related genes (i.e. Zscan4, Tcstv1 and MuERV-L) was decreased significantly in 2-cell arrested embryos. These results suggest that Rgs2 plays a critical role in early embryo development.
Collapse
Affiliation(s)
- Yan Zhu
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Ya-Hong Jiang
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Ya-Ping He
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Xuan Zhang
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Zhao-Gui Sun
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Man-Xi Jiang
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Wang
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| |
Collapse
|
4
|
Barzilay E, Yung Y, Shapira L, Haas J, Ophir L, Yerushalmi GM, Maman E, Hourvitz A. Differential expression of poliovirus receptor, regulator of G-protein signaling 11 and erythrocyte protein band 4.1-like 3 in human granulosa cells during follicular growth and maturation. Gynecol Endocrinol 2014; 30:660-3. [PMID: 24828608 DOI: 10.3109/09513590.2014.912268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Poliovirus receptor (PVR), regulator of G-protein signaling-11 (RGS11), and erythrocyte protein band-4.1-like 3 (EPB41L3) have been proposed to function in follicular maturation in mouse models. We have examined their expression in human mural (mGCs) and cumulus granulosa cells (CCs). Expression of PVR and RGS11 in mGCs decreased in medium-sized follicles compared to small follicles of IVM cycles and increased again in large follicles. Luteinization caused decreased expression of both PVR and RGS11. In vitro incubation of mGCs with progesterone-rich conditioned media decreased expression of RGS11 without affecting PVR levels. Inhibition of progesterone signaling enhanced expression of both RGS11 and PVR. Expression in CCs was examined by means of global transcriptome sequencing analysis RGS11 and EPB41L3 increased in CCs during follicular maturation while PVR levels did not change. In conclusion, during human follicular maturation there are significant changes in expression of PVR, RGS11 and EPB41L3, possibly regulated by progesterone.
Collapse
Affiliation(s)
- Eran Barzilay
- IVF Unit, Human Embryonic Stem Cell and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center , Tel-Hashomer , Israel (affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wathlet S, Adriaenssens T, Segers I, Verheyen G, Janssens R, Coucke W, Devroey P, Smitz J. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil Steril 2012; 98:432-9.e1-4. [PMID: 22633264 DOI: 10.1016/j.fertnstert.2012.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To relate the gene expression in cumulus cells surrounding an oocyte to the potential of the oocyte, as evaluated by the embryo morphology (days 3 and 5) and pregnancy obtained in single-embryo transfer cycles. DESIGN Retrospective analysis of individual human cumulus complexes using quantitative real-time polymerase chain reaction for 11 genes. SETTING University hospital IVF center. PATIENT(S) Thirty-three intracytoplasmic sperm injection patients, of which 16 were pregnant (4 biochemical and 12 live birth). INTERVENTION(S) Gene expression analysis in human cumulus complexes collected individually at pickup, allowing a correlation with the outcome of the corresponding oocyte. Multiparametric models were built for embryo morphology parameters and pregnancy prediction to find the most predictive genes. MAIN OUTCOME MEASURE(S) Gene expression profile of 99 cumulus complexes for 11 genes. RESULT(S) For embryo morphology prediction, TRPM7, ITPKA, STC2, CYP11A1, and HSD3B1 were often retained as informative. Models for pregnancy-biochemical or live birth-complemented or not with patient and cycle characteristics, always retained EFNB2 and CAMK1D together with STC1 or STC2. Positive and negative predictive values of the live birth models were >85%. CONCLUSION(S) EFNB2 and CAMK1D are promising genes that could help to choose the embryo to transfer with the highest chance of a pregnancy.
Collapse
Affiliation(s)
- Sandra Wathlet
- Follicle Biology Laboratory, Universitair Ziekenhuis Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|