1
|
Biase FH, Moorey SE, Schnuelle JG, Rodning S, Ortega MS, Spencer TE. Altered microRNA composition in the uterine lumen fluid in cattle (Bos taurus) pregnancies initiated by artificial insemination or transfer of an in vitro produced embryo. J Anim Sci Biotechnol 2024; 15:130. [PMID: 39267128 PMCID: PMC11397056 DOI: 10.1186/s40104-024-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/29/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are presented in the uterine lumen of many mammals, and in vitro experiments have determined that several miRNAs are important for the regulation of endometrial and trophoblast functions. Our aim was to identify and contrast the miRNAs present in extracellular vesicles (EVs) in the uterine lumen fluid (ULF) at the onset of attachment in cattle pregnancies (gestation d 18) initiated by artificial insemination (AI) or by the transfer of an in vitro-produced blastocyst (IVP-ET). A third group had no conceptus after the transfer of an IVP embryo. RESULTS The abundance of 263 annotated miRNAs was quantified in the EVs collected from ULF. There was an increase in the transcript abundance of 20 miRNAs in the ULF EVs from the AI pregnant group, while 4 miRNAs had a lower abundance relative to the group not containing a conceptus. Additionally, 4 miRNAs were more abundant in ULF EVs in the AI pregnant group relative to IVP-ET group (bta-mir-17, bta-mir-7-3, MIR7-1, MIR18A). Specific miRNAs in the ULF EVs were co-expressed with messenger RNAs expressed in extra-embryonic tissues and endometrium, including genes that are known to be their targets. CONCLUSIONS The results provide biological insights into the participation of miRNAs in the regulation of trophoblast proliferation and differentiation, as well as in endometrium receptivity. The knowledge that in vitro cultured embryos can contribute to the altered abundance of specific miRNAs in the uterine lumen can lead to the development of corrective approaches to reduce conceptus losses during the first month of pregnancy in cattle.
Collapse
Affiliation(s)
- Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr, Blacksburg, VA, 24061, USA.
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Julie G Schnuelle
- Department of Clinical Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Soren Rodning
- Department of Animal Science, Auburn University, Auburn, AL, 36849, USA
| | - Martha Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Madureira G, Mion B, Van Winters B, Peñagaricano F, Li J, Ribeiro ES. Endometrial responsiveness to interferon-tau and its association with subsequent reproductive performance in dairy heifers. J Dairy Sci 2024; 107:7371-7391. [PMID: 38642656 DOI: 10.3168/jds.2023-24627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/14/2024] [Indexed: 04/22/2024]
Abstract
Our objectives were to evaluate the endometrial responsiveness of dairy heifers to an intrauterine infusion of recombinant bovine interferon-tau (rbIFN-τ) and to associate endometrial responses to rbIFN-τ with subsequent reproductive performance. In experiments 1 and 2, cyclic heifers were enrolled in a program for synchronization of the estrous cycle, and blood sampling and ultrasonography examinations were performed on d 0, 4, 7, 11, and 14 of the estrous cycle. In experiment 1, heifers were randomly assigned to receive an intrauterine infusion containing 2 µg of rbIFN-τ (rbIFN-τ = 19) or saline control (CTRL = 19) into the uterine horn ipsilateral to the corpus luteum (CL) on d 14 of the estrous cycle. Then, 6 hours after the infusion, the infused uterine horn was flushed for sampling of the uterine luminal fluid (ULF) for composition analysis, and the endometrium was biopsied for transcriptomics. In experiment 2, 100 heifers received an intrauterine infusion of rbIFN-τ, and the same procedures for uterine sample collection were performed as described in experiment 1. After the intrauterine test, heifers were enrolled in a breeding program and classified as highly fertile (HF; pregnant at first AI) or subfertile (SF; not pregnant at first AI). Statistical analyses were performed using regression models, which included the effects of treatment (experiment 1: CTRL vs. rbIFN-τ) or fertility group (experiment 2: HF vs. SF) and block of samples. Intrauterine infusion of rbIFN-τ increased the expression of classical interferon-stimulated genes in the endometrium (e.g., ISG15, MX1, OAS2, IRF9, and USP18), and an antiviral response was predicted to be the main downstream effect of the transcriptome changes. In addition, rbIFN-τ increased the abundance of cholesterol, glycerol, and the overall concentration of oxylipins in the ULF. Analysis of endometrial transcriptome between HF and SF heifers revealed important differences in the expression of genes associated with cell signaling, metabolism, attachment, and migration, with a large representation of genes encoding extracellular matrix proteins. In general, differentially expressed genes were expected to be downregulated by IFN-τ but seemed to fail to be downregulated in SF heifers, resulting in higher expression in SF compared with HF heifers. Subfertile heifers had lower concentrations of glycerol and an altered profile of oxylipins in the ULF, with a lower abundance of oxylipins derived from arachidonic acid and dihomo-γ-linolenic acid, and a greater abundance of oxylipins derived from linoleic acid. Measurements of ovarian function did not differ between groups and, therefore, did not influence the observed results in uterine biology. Overall, the endometrial responsiveness to IFN-τ is variable among individuals and associated with subsequent fertility of heifers, indicating that communication between conceptus and endometrium is critical for the uterine receptivity and survival of pregnancy.
Collapse
Affiliation(s)
- G Madureira
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - B Van Winters
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - J Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
3
|
Sakumoto R. Role of chemokines in regulating luteal and uterine functions in pregnant cows. J Reprod Dev 2024; 70:145-151. [PMID: 38403584 PMCID: PMC11153120 DOI: 10.1262/jrd.2023-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024] Open
Abstract
Pregnancy is intricately regulated by the interactions between various bioactive substances secreted by the conceptus, uterus, and corpus luteum (CL). Interferon-τ, synthesized and secreted by the conceptus, plays a central role in the interaction mechanism of maternal recognition in cows. Chemokines, chemotaxis mediators that are primarily secreted by immune cells, regulate various reproductive responses in various species. Although there are scattered reports on the potential roles of chemokines in the bovine CL and the uterus during the estrous cycle, there is little information on chemokines in these organs during pregnancy. Therefore, in this review, we discuss the possible physiological roles of chemokines in the CL and uterus of pregnant cows, focusing on our recent findings on chemokines and changes in their receptor expression in the CL and endometrium of cows at some stages of pregnancy.
Collapse
Affiliation(s)
- Ryosuke Sakumoto
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
4
|
De Bem THC, Bridi A, Tinning H, Sampaio RV, Malo-Estepa I, Wang D, Vasconcelos EJR, Nociti RP, de Ávila ACFCM, Rodrigues Sangalli J, Motta IG, Arantes Ataíde G, da Silva JCB, Fumie Watanabe Y, Gonella-Diaza A, da Silveira JC, Pugliesi G, Vieira Meirelles F, Forde N. Biosensor capability of the endometrium is mediated in part, by altered miRNA cargo from conceptus-derived extracellular vesicles. FASEB J 2024; 38:e23639. [PMID: 38742798 DOI: 10.1096/fj.202302423rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Alessandra Bridi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Irene Malo-Estepa
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ricardo Perecin Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Ana C F C M de Ávila
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Igor Garcia Motta
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Gilmar Arantes Ataíde
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Júlio C B da Silva
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | | | - Angela Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Juliano C da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Alfattah MA, Correia CN, Browne JA, McGettigan PA, Pluta K, Carrington SD, MacHugh DE, Irwin JA. Transcriptomics analysis of the bovine endometrium during the perioestrus period. PLoS One 2024; 19:e0301005. [PMID: 38547106 PMCID: PMC10977793 DOI: 10.1371/journal.pone.0301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/10/2024] [Indexed: 04/02/2024] Open
Abstract
During the oestrous cycle, the bovine endometrium undergoes morphological and functional changes, which are regulated by alterations in the levels of oestrogen and progesterone and consequent changes in gene expression. To clarify these changes before and after oestrus, RNA-seq was used to profile the transcriptome of oestrus-synchronized beef heifers. Endometrial samples were collected from 29 animals, which were slaughtered in six groups beginning 12 h after the withdrawal of intravaginal progesterone releasing devices until seven days post-oestrus onset (luteal phase). The groups represented proestrus, early oestrus, metoestrus and early dioestrus (luteal phase). Changes in gene expression were estimated relative to gene expression at oestrus. Ingenuity Pathway Analysis (IPA) was used to identify canonical pathways and functional processes of biological importance. A total of 5,845 differentially expressed genes (DEGs) were identified. The lowest number of DEGs was observed at the 12 h post-oestrus time point, whereas the greatest number was observed at Day 7 post-oestrus onset (luteal phase). A total of 2,748 DEGs at this time point did not overlap with any other time points. Prior to oestrus, Neurological disease and Organismal injury and abnormalities appeared among the top IPA diseases and functions categories, with upregulation of genes involved in neurogenesis. Lipid metabolism was upregulated before oestrus and downregulated at 48h post-oestrus, at which point an upregulation of immune-related pathways was observed. In contrast, in the luteal phase the Lipid metabolism and Small molecule biochemistry pathways were upregulated.
Collapse
Affiliation(s)
- Mohammed A. Alfattah
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
- King Faisal University, Al-Ahsa, Saudi Arabia
| | - Carolina N. Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - John A. Browne
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Paul A. McGettigan
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Katarzyna Pluta
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Stephen D. Carrington
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Jane A. Irwin
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
6
|
Talukder AK, Rabaglino MB, Browne JA, Charpigny G, Lonergan P. Dose- and time-dependent effects of interferon tau on bovine endometrial gene expression. Theriogenology 2023; 211:1-10. [PMID: 37549523 DOI: 10.1016/j.theriogenology.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
Failure by the developing conceptus to secrete sufficient interferon tau (IFNT), required for maternal recognition of pregnancy (MRP), at the appropriate time is related to early pregnancy loss in cattle. We aimed to test the hypothesis that there is a dose- and time-dependent relationship between IFNT and the endometrial expression of key interferon-stimulated genes (ISGs) involved in the signalling cascade leading to MRP in cattle. Candidate genes were identified first through a bioinformatic approach, where integrated transcriptomic data from two previous studies were analyzed to identify endometrial genes induced by IFNT. Next, expression of selected candidate genes was investigated in vitro in endometrial explants. Endometrial explants collected from cows (n = 8) in the late luteal phase of the estrous cycle were cultured in medium without (control) or with recombinant ovine IFNT (1, 10, 100 ng/mL) for 6 h. Simultaneously, endometrial explants were cultured in medium containing 100 ng/mL IFNT for different time periods (15 min, 30 min, 1 h, 3 h, 6 h). Gene expression was analyzed by RT-qPCR. We identified 54 endometrial genes responding to IFNT and to some degree to the conceptus, from which five ISGs (CMPK2, BPNT1, IFI35, TNFSF10 and TRIM38) were further selected for the dose- and time-dependent experiments. Classical ISGs (ISG15, OAS1, MX1 and MX2) were up-regulated (P < 0.05) in endometrium by 1 ng/mL IFNT. However, other selected ISGs (CMPK2, BPNT1, IFI35, TNFSF10 and TRIM38) were induced only by higher concentrations (10 and 100 ng/mL) of IFNT (P < 0.05). In terms of duration of exposure, IFNT at 100 ng/mL induced a significant (P < 0.05) increase in ISG15 and CMPK2 expression after 1 h incubation, while all other studied ISGs in the endometrium were upregulated when cultured for 3 or 6 h, but did not affect expression when the duration of culture was for 1 h or less. These results suggest that IFNT acts on the uterus in both a dose- and time-dependent manner in cattle and that timely exposure of the endometrium to sufficient IFNT is essential for appropriate signalling to ensure successful pregnancy establishment.
Collapse
Affiliation(s)
- A K Talukder
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Department of Gynecology, Obstetrics & Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M B Rabaglino
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - J A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - G Charpigny
- INRAE, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Biase FH, Moorey SE, Schnuelle JG, Rodning S, Ortega MS, Spencer TE. Extensive rewiring of the gene regulatory interactions between in vitro-produced conceptuses and endometrium during attachment. PNAS NEXUS 2023; 2:pgad284. [PMID: 37711857 PMCID: PMC10498941 DOI: 10.1093/pnasnexus/pgad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Pregnancy loss is a significant problem when embryos produced in vitro are transferred to a synchronized uterus. Currently, mechanisms that underlie losses of in vitro-produced embryos during implantation are largely unknown. We investigated this problem using cattle as a model of conceptus attachment by analyzing transcriptome data of paired extraembryonic membrane and endometrial samples collected on gestation days 18 and 25, which spans the attachment window in cattle. We identified that the transfer of an in vitro-produced embryo caused a significant alteration in transcript abundance of hundreds of genes in extraembryonic and endometrial tissues on gestation days 18 and 25, when compared to pregnancies initiated by artificial insemination. Many of the genes with altered transcript abundance are associated with biological processes that are relevant to the establishment of pregnancy. An integrative analysis of transcriptome data from the conceptus and endometrium identified hundreds of putative ligand-receptor pairs. There was a limited variation of ligand-receptor pairs in pregnancies initiated by in vitro-produced embryos on gestation day 18, and no alteration was observed on gestation day 25. In parallel, we identified that in vitro production of embryos caused an extensive alteration in the coexpression of genes expressed in the extraembryonic membranes and the corresponding endometrium on both gestation days. Both the transcriptional dysregulation that exists in the conceptus or endometrium independently and the rewiring of gene transcription between the conceptus and endometrium are a potential component of the mechanisms that contribute to pregnancy losses caused by in vitro production of embryos.
Collapse
Affiliation(s)
- Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Julie G Schnuelle
- Department of Clinical Sciences, Auburn University, Auburn, AL 36849, USA
| | - Soren Rodning
- Department of Animal Science, Auburn University, Auburn, AL 36849, USA
| | - Marta Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Tinning H, Edge JC, DeBem THC, Deligianni F, Giovanardi G, Pensabene V, Meirelles FV, Forde N. Review: Endometrial function in pregnancy establishment in cattle. Animal 2023; 17 Suppl 1:100751. [PMID: 37567655 DOI: 10.1016/j.animal.2023.100751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
The endometrium is fundamentally required for successful pregnancy in ruminants and species where the posthatching conceptus undergoes a protracted elongation and peri-implantation phase of pregnancy. Moreover, there are substantial waves of pregnancy loss during this pre- and peri-implantation period of pregnancy the precise source of which has not been clearly defined i.e., the maternal uterine contribution to this loss. Understanding the molecular interactions required for successful pregnancy in cattle will allow us to intervene to support pregnancy success during this vulnerable window. The endometrium contributes to most key developmental milestones of pregnancy establishment, including (1) contributing to the regulation of the oestrus cycle, (2) nourishing the preimplantation conceptus, (3) responding to the conceptus to create a more receptive microenvironment, (4) providing essential biophysical support, and (5) signalling and producing factors which affect the mother systemically. This review will summarise what we currently know about conceptus-maternal interactions as well as identify the gaps in our knowledge that could be filled with newer in vitro model approaches. These include the use of microfluidics, organ-on-a-chip devices, and bioinformatic approaches. This will help maximise food production efficiency (both meat and dairy) and decrease the environmental burden, while enhancing our understanding of the fundamental processes required for successful implantation in cattle.
Collapse
Affiliation(s)
- H Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J C Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - T H C DeBem
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Sao Paulo, Brazil
| | - F Deligianni
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G Giovanardi
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - V Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - F V Meirelles
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - N Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
9
|
Integrating Analysis to Identify Differential circRNAs Involved in Goat Endometrial Receptivity. Int J Mol Sci 2023; 24:ijms24021531. [PMID: 36675045 PMCID: PMC9865150 DOI: 10.3390/ijms24021531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Endometrial receptivity is one of the main factors underlying a successful pregnancy, with reports substantiating the fact that suboptimal endometrial receptivity accounts for two-thirds of early implantation event failures. The association between circRNAs and endometrial receptivity in the goat remains unclear. This study aims to identify potential circRNAs and regulatory mechanisms related to goat endometrial receptivity. Therefore, the endometrial samples on day 16 of pregnancy and day 16 of the estrous cycle were analyzed using high-throughput RNA-seq and bioinformatics. The results show that 4666 circRNAs were identified, including 7 downregulated and 11 upregulated differentially expressed circRNAs (DE-circRNAs). Back-splicing and RNase R resistance verified the identified circRNAs. We predicted the competing endogenous RNA (ceRNA) regulatory mechanism and potential target genes of DE-circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of these predicted target genes suggest that DE-circRNAs were significantly involved in establishing endometrial receptivity. Furthermore, Sanger sequencing, qPCR, correlation analysis and Fluorescence in Situ Hybridization (FISH) show that circ_MYRF derived from the host gene myelin regulatory factor (MYRF) might regulate the expression of interferon stimulating gene 15 (ISG15), thereby promoting the formation of endometrial receptivity. These novel findings may contribute to a better understanding of the molecular mechanisms regulating endometrial receptivity and promoting the maternal recognition of pregnancy (MRP).
Collapse
|
10
|
Hughes CHK, Mezera MA, Wiltbank MC, Pate JL. Insights from two independent transcriptomic studies of the bovine corpus luteum during pregnancy. J Anim Sci 2022; 100:skac115. [PMID: 35772758 PMCID: PMC9246655 DOI: 10.1093/jas/skac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
Several recent studies have used transcriptomics to investigate luteal changes during the maternal recognition of the pregnancy period in ruminants. Although these studies have contributed to our understanding of luteal function during early pregnancy, few attempts have been made to integrate information across these studies and distinguish key luteal transcripts or functions that are repeatably identified across multiple studies. Therefore, in this study, two independent studies of the luteal transcriptome during early pregnancy were combined and compared. In the first study, corpora lutea (CL) from day 20 of pregnancy were compared with CL collected on day 14 of pregnancy, prior to embryonic signaling. The cattle were nonlactating. In the second study, CL from day 20 of pregnancy were compared with CL collected from day 20 cyclic cattle that had been confirmed as not yet undergoing luteal regression. These were lactating cattle. Three methods were used to compare these two datasets, to identify key luteal regulators. In the first method, all transcripts with Benjamini-Hochberg-adjusted P-value (Q value) < 0.05 in both datasets were considered. This yielded 22 transcripts, including several classical interferon-stimulated genes, as well as regulators of transforming growth factor-beta (TGFB) and latent TGFB-binding proteins (LTBP)1 and 2. In the second, less conservative method, all transcripts with P < 0.01 and changed in the same direction in both datasets were considered. This yielded an additional 20 transcripts that were not identified in the first analysis, for a total of 42 common transcripts. These transcripts were regulators of functions such as inflammatory balance and matrix remodeling. In the third method, transcripts with Q < 0.10 were subject to pathway analysis, and common pathways were identified. Retinoic acid signaling and classical interferon signaling pathways were identified with this method. Finally, regulation by interferon tau (IFNT) was investigated. Among the 42 transcripts identified, 32 were regulated by IFNT in cultured luteal cells (Q < 0.05). Among those not regulated by IFNT were LTBP1 and 2, which are TGFB-binding proteins. In summary, common transcripts from two studies of the luteal transcriptome during early pregnancy were combined and shared changes were identified. This not only generated a list of potential key luteal regulators, which were mostly IFNT regulated, but also included transcripts not regulated by IFNT, including LTBP1 and 2.
Collapse
Affiliation(s)
- Camilla H K Hughes
- Center for Reproductive Biology and Health, Department of Animal Science, Penn State University, University Park, PA 16802, USA
| | - Megan A Mezera
- Endocrinology and Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Milo C Wiltbank
- Endocrinology and Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joy L Pate
- Center for Reproductive Biology and Health, Department of Animal Science, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Dickson MJ, Bishop JV, Hansen TR, Sheldon IM, Bromfield JJ. The endometrial transcriptomic response to pregnancy is altered in cows after uterine infection. PLoS One 2022; 17:e0265062. [PMID: 35358206 PMCID: PMC8970397 DOI: 10.1371/journal.pone.0265062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Pregnancy induces changes in the transcriptome of the bovine endometrium from 15 days after insemination. However, pregnancy is less likely to occur if cows had a postpartum bacterial infection of the uterus, even after the resolution of disease. We hypothesized that uterine bacterial infection alters the endometrial transcriptomic signature of pregnancy after the resolution of disease. To examine the endometrial transcriptomic signature of pregnancy, cows were inseminated 130 days after intrauterine infusion of pathogenic Escherichia coli and Trueperella pyogenes, subsequently endometrium was collected 16 days after insemination for RNA sequencing. We found 171 pregnancy regulated genes in cows 146 days after bacterial infection. When comparing our findings with previous studies that described the endometrial transcriptomic signature of pregnancy in healthy cows, 24 genes were consistently differentially expressed in pregnancy, including MX1, MX2 and STAT1. However, 12 pregnancy regulated genes were found only in the endometrium of healthy cows, including ISG15 and TRANK1. Furthermore, 28 pregnancy regulated genes were found only in the endometrium of cows following bacterial infection and these were associated with altered iNOS, TLR, and IL-7 signaling pathways. Although 94 predicted upstream regulators were conserved amongst the studies, 14 were found only in the endometrium of pregnant healthy cows, and 5 were found only in cows following bacterial infection, including AIRE, NFKBIA, and DUSP1. In conclusion, there were both consistent and discordant features of the endometrial transcriptomic signature of pregnancy 146 days after intrauterine bacterial infusion. These findings imply that there is an essential transcriptomic signature of pregnancy, but that infection induces long-term changes in the endometrium that affect the transcriptomic response to pregnancy.
Collapse
Affiliation(s)
- Mackenzie J. Dickson
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | | | - John J. Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Fakhr Y, Koshti S, Habibyan YB, Webster K, Hemmings DG. Tumor Necrosis Factor-α Induces a Preeclamptic-like Phenotype in Placental Villi via Sphingosine Kinase 1 Activation. Int J Mol Sci 2022; 23:ijms23073750. [PMID: 35409108 PMCID: PMC8998215 DOI: 10.3390/ijms23073750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) involves inadequate placental function. This can occur due to elevated pro-inflammatory tumor necrosis factor-α (TNF-α). In other tissues, TNF-α signals via sphingosine kinase 1 (SphK1). SphK1 hinders syncytial formation. Whether this occurs downstream of TNF-α signaling is unclear. We hypothesized that placental SphK1 levels are higher in PE and elevated TNF-α decreases syncytial function, increases syncytial shedding, and increases cytokine/factor release via SphK1 activity. Term placental biopsies were analyzed for SphK1 using immunofluorescence and qRT-PCR. Term placental explants were treated after 4 days of culture, at the start of syncytial regeneration, with TNF-α and/or SphK1 inhibitors, PF-543. Syncytialization was assessed by measuring fusion and chorionic gonadotropin release. Cell death and shedding were measured by lactate dehydrogenase release and placental alkaline phosphatase-positive shed particles. Forty-two cytokines were measured using multiplex assays. Placental SphK1 was increased in PE. Increased cell death, shedding, interferon-α2, IFN-γ-induced protein 10, fibroblast growth factor 2, and platelet-derived growth factor-AA release induced by TNF-α were reversed upon SphK1 inhibition. TNF-α increased the release of 26 cytokines independently of SphK1. TNF-α decreased IL-10 release and inhibiting SphK1 reversed this effect. Inhibiting SphK1 alone decreased TNF-α release. Hence, SphK1 partially mediates the TNF-α-induced PE placental phenotype, primarily through cell damage, shedding, and specific cytokine release.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Saloni Koshti
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Yasaman Bahojb Habibyan
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kirsten Webster
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Denise G. Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-2098
| |
Collapse
|
13
|
Martins T, Sponchiado M, Silva FACC, Estrada-Cortés E, Hansen PJ, Peñagaricano F, Binelli M. Progesterone-dependent and progesterone-independent modulation of luminal epithelial transcription to support pregnancy in cattle. Physiol Genomics 2022; 54:71-85. [PMID: 34890509 PMCID: PMC8791843 DOI: 10.1152/physiolgenomics.00108.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In cattle, starting 4-5 days after estrus, preimplantation embryonic development occurs in the confinement of the uterine lumen. Cells in the endometrial epithelial layer control the molecular traffic to and from the lumen and, thereby determine luminal composition. Starting early postestrus, endometrial function is regulated by sex steroids, but the effects of progesterone on luminal cells transcription have not been measured in vivo. The first objective was to determine the extent to which progesterone controls transcription in luminal epithelial cells 4 days (D4) after estrus. The second objective was to discover luminal transcripts that predict pregnancy outcomes when the effect of progesterone is controlled. Endometrial luminal epithelial cells were collected from embryo transfer recipients on D4 using a cytological brush and their transcriptome was determined by RNASeq. Pregnancy by embryo transfer was measured on D30 (25 pregnant and 18 nonpregnant). Progesterone concentration on D4 was associated positively (n = 182) and negatively (n = 58) with gene expression. Progesterone-modulated transcription indicated an increase in oxidative phosphorylation, biosynthetic activity, and proliferation of epithelial cells. When these effects of progesterone were controlled, different genes affected positively (n = 22) and negatively (n = 292) odds of pregnancy. These set of genes indicated that a receptive uterine environment was characterized by the inhibition of phosphoinositide signaling and innate immune system responses. A panel of 25 genes predicted the pregnancy outcome with sensitivity and specificity ranging from 64%-96% and 44%-83%, respectively. In conclusion, in the early diestrus, both progesterone-dependent and progesterone-independent mechanisms regulate luminal epithelial transcription associated with pregnancy outcomes in cattle.
Collapse
Affiliation(s)
- Thiago Martins
- 1Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida
| | - Mariana Sponchiado
- 2Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Felipe A. C. C. Silva
- 1Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida
| | - Eliab Estrada-Cortés
- 1Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida,3Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Mexico City, Mexico
| | - Peter J. Hansen
- 1Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida
| | - Francisco Peñagaricano
- 4Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mario Binelli
- 1Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
Cajas YN, Cañón-Beltrán K, de la Blanca MGM, Sánchez JM, Fernandez-Fuertes B, González EM, Rizos D. Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reprod Fertil Dev 2021; 34:117-138. [PMID: 35231231 DOI: 10.1071/rd21275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The coordinated interaction between the developing embryo and the maternal reproductive tract is essential for the establishment and maintenance of pregnancy in mammals. An early cross-talk is established between the oviduct/uterus and the gametes and embryo. This dialogue will shape the microenvironment in which gamete transport, fertilisation, and early embryonic development occur. Due to the small size of the gametes and the early embryo relative to the volume of the oviductal and uterine lumina, collection of tissue and fluid adjacent to these cells is challenging in cattle. Thus, the combination of in vivo and in vitro models seems to be the most appropriate approach to better understand this fine dialogue. In this respect, the aim of this review is to summarise the recent findings in relation to gamete/embryo-maternal interaction during the pre-elongation period.
Collapse
Affiliation(s)
- Yulia N Cajas
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain; and Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), EC010205 Cuenca, Ecuador
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain; and Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos (JdC), 150001 Tunja, Colombia
| | - María Gemma Millán de la Blanca
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - José M Sánchez
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| |
Collapse
|
15
|
Madureira AML, Burnett TA, Marques JCS, Moore AL, Borchardt S, Heuwieser W, Guida TG, Vasconcelos JLM, Baes CF, Cerri RLA. Occurrence and greater intensity of estrus in recipient lactating dairy cows improve pregnancy per embryo transfer. J Dairy Sci 2021; 105:877-888. [PMID: 34656349 DOI: 10.3168/jds.2021-20437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine the association between occurrence and intensity of estrous expression with pregnancy success in recipient lactating dairy cows subjected to embryo transfer (ET). Two observational studies were conducted. Holstein cows were synchronized using the same timed ET protocol, based on estradiol and progesterone in both experiments. At 9 d after the end of the timed ET protocol only animals that had ovulated were implanted with a 7-d embryo [experiment 1 (Exp. 1); n = 1,401 ET events from 1,045 cows, and experiment 2 (Exp. 2); n = 1,147 ET events from 657 cows]. Embryos were produced in vivo (Exp. 1 and Exp. 2) and in vitro (only Exp. 2), then transferred to recipient cows as fresh or frozen-thawed. Pregnancy was confirmed at 29 and 58 d after the end of timed ET protocol. In Exp. 1, animals had their estrous expression monitored through a tail chalk applied on the tail head of the cows and evaluated daily for chalk removal (no estrus: 100% of chalk remaining; estrus: <50% of chalk remaining). In Exp. 2, cows were continuously monitored by a leg-mounted automated activity monitor. Estrous expression was quantified using the relative increase in physical activity at estrus in relation to the days before estrus. Estrous expression was classified as no estrus [<100% relative increase in activity (RI)], weak intensity (100-299% RI), and strong intensity (≥300% RI). Data were analyzed by analysis of variance using mixed linear regression models (GLIMMIX) in SAS (SAS Institute Inc.). A total of 65.2% (914/1,401) and 89.2% (1,019/1,142) of cows from Exp. 1 and Exp. 2, respectively, displayed estrus at the end of the ovulation synchronization protocol. In Exp. 1, cows expressing estrus before to ET had greater pregnancy per ET than those that did not [41.0 ± 2.3% (381/914) vs. 31.5 ± 2.9% (151/487), respectively]. Similarly, in Exp. 2, cows classified in the strong intensity group had greater pregnancy per ET compared with cows in the weak intensity and no estrus groups [41.3 ± 2.2% (213/571) vs. 32.7 ± 2.7% (115/353) vs. 11.3 ± 3.5% (26/218), respectively]. There was no effect of ET type on pregnancy per ET in Exp. 1. However, in Exp. 2, cows that received an in vivo-produced embryo, either fresh or frozen, had greater pregnancy per ET compared with cows that received in vitro-produced embryo. Cows receiving embryos in the early blastocyst and blastocyst stage had greater fertility compared with cows receiving embryos in the morula stage. There was an interaction between the occurrence of estrus and the stage of embryo development on pregnancy per ET, cows which displayed estrus and received a morula or early blastocyst had greater pregnancy per ET than cows that did not display estrus. In conclusion, the occurrence and the intensity of estrous expression improved pregnancy per ET in recipient lactating dairy cows and thus could be used as a tool to assist in the decision making of reproduction strategies in dairy farms.
Collapse
Affiliation(s)
- A M L Madureira
- Applied Animal Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - T A Burnett
- Applied Animal Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4; Ridgetown Campus, University of Guelph, Ridgetown, ON, Canada, N0P 2C0
| | - J C S Marques
- Applied Animal Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - A L Moore
- Applied Animal Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - S Borchardt
- Clinic of Animal Reproduction, Freie Universitaet Berlin, Berlin, Germany, 14163
| | - W Heuwieser
- Clinic of Animal Reproduction, Freie Universitaet Berlin, Berlin, Germany, 14163
| | - T G Guida
- Department of Animal Production, São Paulo State University, Botucatu, Brazil 18168-000
| | - J L M Vasconcelos
- Department of Animal Production, São Paulo State University, Botucatu, Brazil 18168-000
| | - C F Baes
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada, N1G 2W1; Institute of Genetics, Vetsuisse Faculty, University of Bern, 3002 Bern, Switzerland
| | - R L A Cerri
- Applied Animal Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.
| |
Collapse
|
16
|
Moraes JGN, Behura SK, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids†. Biol Reprod 2021; 102:456-474. [PMID: 31616913 DOI: 10.1093/biolre/ioz191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Survival and growth of the bovine conceptus (embryo and associated extraembryonic membranes) are dependent on endometrial secretions or histotroph found in the uterine lumen. Previously, serial embryo transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components [glucose, prostaglandins (PGs), and lipids] in the uterine lumen of day 17 pregnant and open fertility-classified heifers. Concentrations of glucose in the uterine lumen were increased by pregnancy but did not differ among fertility-classified heifers. Differences in expression of genes encoding glucose transporters and involved with glycolysis and gluconeogenesis were observed between conceptuses collected from HF and SF heifers. In the uterine lumen, PGE2 and PGF2α were increased by pregnancy, and HF heifers had higher concentrations of PGE2, PGF2α, and 6-keto-PFG1α than SF heifers. Differences were found in expression of genes regulating PG signaling, arachidonic acid metabolism, and peroxisome proliferator-activated receptor signaling among conceptuses and endometrium from fertility-classified heifers. Lipidomics was conducted exclusively in samples from HF heifers, and phosphatidylcholine was the main lipid class that increased in the uterine lumen by pregnancy. Expression of several lipid metabolism genes differed between HF and SF conceptuses, and a number of fatty acids were differentially abundant in the uterine lumen of pregnant HF and SF heifers. These results support the ideas that uterine luminal histotroph impacts conceptus survival and programs its development and is a facet of dysregulated conceptus-endometrial interactions that result in loss of the conceptus in SF cattle during the implantation period of pregnancy establishment.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
17
|
De Bem THC, Tinning H, Vasconcelos EJR, Wang D, Forde N. Endometrium On-a-Chip Reveals Insulin- and Glucose-induced Alterations in the Transcriptome and Proteomic Secretome. Endocrinology 2021; 162:6167824. [PMID: 33693651 PMCID: PMC8143652 DOI: 10.1210/endocr/bqab054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 12/28/2022]
Abstract
The molecular interactions between the maternal environment and the developing embryo are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multicellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of nonpregnant cows in the early luteal phase (Days 4-7) were seeded in the upper chamber of the device (epithelial cells; 4-6 × 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 × 104 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0, or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) was performed at a flow rate of 1 µL/minute for 72 hours. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid were determined by RNA-sequencing and tandem mass tagging mass spectrometry, respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (P < .05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight 1 potential mechanism by which changes to maternal glucose and insulin alter uterine function.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
- Correspondence: Niamh Forde, PhD, University of Leeds, LIGHT Laboratories, Clarendon Way, LS2 9JT, Leeds, UK.
| |
Collapse
|
18
|
Fiorenza MF, Marey MA, Rashid MB, Zinnah MA, Ma D, Morillo VA, Kusama K, Shimada M, Imakawa K, Antoniazzi AQ, Miyamoto A. Neutrophils recognize and amplify IFNT signals derived from day 7 bovine embryo for stimulation of ISGs expression in vitro: A possible implication for the early maternal recognition of pregnancy. Biochem Biophys Res Commun 2021; 553:37-43. [PMID: 33765557 DOI: 10.1016/j.bbrc.2021.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 01/21/2023]
Abstract
Previously, we reported that the presence of multiple day 7 (D7) bovine embryos in the uterus induces systemic immune responses in circulating polymorphonuclear neutrophils (PMNs), but with unknown mechanism. Thus, this study aimed to investigate the direct impact of D7 bovine embryo on PMNs' immune responses in vitro and whether these PMNs can amplify and transfer embryo signals further to another PMN population. PMNs were directly stimulated by embryo culture media (ECM) or interferon tau (IFNT) (10 ng/ml) followed by evaluating mRNA expression by real-time PCR and phenotypic analysis by flow cytometry. To test whether PMNs can transfer embryo signals to a new PMN population, PMNs triggered by ECM or IFNT, were thoroughly washed and diluted to remove any media components, and again were incubated in fresh culture media for 3 h, from which culture supernatants were collected and used as PMN conditioned media (CM) to stimulate a new PMN population. Similar to ECM, IFNT directly stimulated expressions of IFNs (IFNA, IFNG), interferon-stimulated genes (ISGs; OAS1, ISG15, MX1), STAT1, TGFB and IL8, and downregulated TNFA in PMNs. Flow cytometrical analyses demonstrated that IFNT stimulated expressions of pregnancy-related phenotypic markers, CD16 and arginase-1 (ARG1), in PMNs. Most importantly, PMN CM induced ISGs and STAT1 mRNA in fresh PMNs. Since IFNT directly upregulated IFNA expression in PMNs, the impact of IFNA on PMNs' immune responses was further tested. Stimulation of PMNs with IFNA, especially at a low level (1 pg/ml), induced IFNT-like immune responses comparable to those induced by PMN CM. Together, these findings indicated that D7 bovine embryos induce direct anti-inflammatory responses with upregulation of ISGs expressions in PMNs mainly via IFNT. Additionally, PMNs can amplify and transfer embryo signals to a new PMN population in a cell-to-cell communication mechanism possibly mediated in part by IFNA. Such a novel immunological crosstalk might contribute to embryo tolerance and pregnancy establishment in cattle.
Collapse
Affiliation(s)
- Mariani F Fiorenza
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan; Laboratory of Biotechnology and Animal Reproduction, Federal University of Santa Maria, Santa Maria, Brazil
| | - Mohamed A Marey
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Mohammad B Rashid
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan; Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Mohammad A Zinnah
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan; Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dongxue Ma
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan
| | - Vernadyn A Morillo
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan; Department of Clinical Sciences, College of Veterinary Medicine, Nueva Vizcaya State University, Nueva Vizcaya, Philippines
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Alfredo Q Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction, Federal University of Santa Maria, Santa Maria, Brazil
| | - Akio Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan.
| |
Collapse
|
19
|
Mezera MA, Li W, Wiltbank MC. Pregnancy-induced changes in the transcriptome of the bovine corpus luteum during and after embryonic interferon-tau secretion†. Biol Reprod 2021; 105:148-163. [PMID: 33690863 DOI: 10.1093/biolre/ioab034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/04/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Understanding luteal maintenance during early pregnancy is of substantial biological and practical importance. Characterizing effects of early pregnancy, however, has historically been confounded by use of controls with potential exposure to early Prostaglandin F2-alpha (PGF) pulses or differences in Corpus Luteum (CL) age. To avoid this, the present study utilized bihourly blood sampling to ensure control CL (n = 6) were of a similar age to CL from pregnant animals (n = 5), yet without exposure to PGF pulses. Additionally, CL from second month of pregnancy (n = 4) were analyzed to track fate of altered genes after cessation of embryonic interferon tau (IFNT) secretion. The major alteration in gene expression in first month of pregnancy occurred in interferon-stimulated genes (ISGs), with immune/interferon signaling pathways enriched in three independent over-representation analyses. Most ISGs decreased during second month of pregnancy, though, surprisingly, some ISGs remained elevated in the second month even after cessation of IFNT secretion. Investigation of luteolytic genes found few altered transcripts, in contrast to previous reports, likely due to removal of controls exposed to PGF pulses. An exception to this trend was decreased expression of transcription factor NR4A1. Beyond luteolytic genes and ISGs, over representation analyses highlighted the prevalence of altered genes within the extracellular matrix and regulation of Insulin-like growth factor (IGF) availability, confirming results of other studies independent of luteolytic genes. These results support the idea that CL maintenance in early pregnancy is related to lack of PGF exposure, although potential roles for CL expression of diverse ISGs and other pathways activated during early pregnancy remain undefined.
Collapse
Affiliation(s)
- Megan A Mezera
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Wenli Li
- USDA Dairy Forage Research Center, Madison, WI, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Schabmeyer ST, Kneidl AM, Schneider JK, Kirsch S, Zablotski Y, Petzl W, Weber F, Zerbe H, Meyerholz MM. Concentration-Dependent Type 1 Interferon-Induced Regulation of MX1 and FABP3 in Bovine Endometrial Explants. Animals (Basel) 2021; 11:262. [PMID: 33494350 PMCID: PMC7912598 DOI: 10.3390/ani11020262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
The inadequate maternal recognition of embryonic interferon τ (IFNτ) might explain subfertility in cattle. This study aimed at modeling the inducibility of type 1 interferon receptor subunits 1/2 (IFNAR1/2), mimicking competition between IFNτ and infection-associated interferon α (IFNα), and simulating type 1 interferon pathways in vitro. Endometrial explants (n = 728 from n = 26 healthy uteri) were collected at the abattoir, challenged with IFNτ and/or IFNα in different concentrations, and incubated for 24 h. Gene expression analysis confirmed the inducibility of IFNAR1/2 within this model, it being most prominent in IFNAR2 with 10 ng/mL IFNα (p = 0.001). The upregulation of interferon-induced GTP-binding protein (MX1, classical pathway) was higher in explants treated with 300 ng/mL compared to 10 ng/mL IFNτ (p < 0.0001), whereas the non‑classical candidate fatty acid binding protein 3 (FABP3) exhibited significant downregulation comparing 300 ng/mL to 10 ng/mL IFNτ. The comparison of explants challenged with IFNτ + IFNα indicated the competition of IFNτ and IFNα downstream of the regulatory factors. In conclusion, using this well-defined explant model, interactions between infection-associated signals and IFNτ were indicated. This model can be applied to verify these findings and to mimic and explore the embryo-maternal contact zone in more detail.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marie Margarete Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine Ludwig Maximilians University Munich, 85764 Oberschleissheim, Germany; (S.T.S.); (A.M.K.); (J.K.S.); (S.K.); (Y.Z.); (W.P.); (F.W.); (H.Z.)
| |
Collapse
|
21
|
Interaction of preimplantation factor with the global bovine endometrial transcriptome. PLoS One 2020; 15:e0242874. [PMID: 33284816 PMCID: PMC7721156 DOI: 10.1371/journal.pone.0242874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Preimplantation factor (PIF) is an embryo derived peptide which exerts an immune modulatory effect on human endometrium, promoting immune tolerance to the embryo whilst maintaining the immune response to invading pathogens. While bovine embryos secrete PIF, the effect on the bovine endometrium is unknown. Maternal recognition of pregnancy is driven by an embryo-maternal cross talk, however the process differs between humans and cattle. As many embryos are lost during the early part of pregnancy in cattle, a greater knowledge of factors affecting the embryo-maternal crosstalk, such as PIF, is needed to improve fertility. Therefore, for the first time, we demonstrate the effect of synthetic PIF (sPIF) on the bovine transcriptome in an ex vivo bovine endometrial tissue culture model. Explants were cultured for 30h with sPIF (100nM) or in control media. Total RNA was analysed via RNA-sequencing. As a result of sPIF treatment, 102 genes were differentially expressed compared to the control (Padj<0.1), although none by more than 2-fold. The majority of genes (78) were downregulated. Pathway analysis revealed targeting of several immune based pathways. Genes for the TNF, NF-κB, IL-17, MAPK and TLR signalling pathways were down-regulated by sPIF. However, some immune genes were demonstrated to be upregulated following sPIF treatment, including C3. Steroid biosynthesis was the only over-represented pathway with all genes upregulated. We demonstrate that sPIF can modulate the bovine endometrial transcriptome in an immune modulatory manner, like that in the human endometrium, however, the regulation of genes was much weaker than in previous human work.
Collapse
|
22
|
Effects of dietary n-3-PUFA supplementation, post-insemination plane of nutrition and pregnancy status on the endometrial transcriptome of beef heifers. Sci Rep 2020; 10:20798. [PMID: 33247230 PMCID: PMC7695717 DOI: 10.1038/s41598-020-77604-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Supplementation of cattle diets with n-3-polyunsaturated fatty acids (PUFA) can improve reproductive efficiency. Conversely, short-term fluctuations in feed supply can impact pregnancy establishment. The objectives of this study were to examine the effects of (1) dietary supplementation with n-3-PUFA and (2) post-insemination plane of nutrition on the endometrial transcriptome. Beef crossbred heifers were offered concentrate based diets fortified with n-3-PUFA (PUFA; n = 32) or not (CONT; n = 28) for 30 days prior to breeding at a synchronised oestrous. Following artificial insemination, heifers were allocated within treatment to either a high or low plane of nutrition. Heifers were maintained on these diets for 16 days following which endometrial tissue was harvested at slaughter for subsequent RNAseq analysis. The influence of pregnancy status on the endomentrial transcriptome, within each dietary treatment group, was also examined. Post-insemination diet affected (P < 0.05) the endometrial transcriptome. Specifically, within n-3-PUFA-supplemented heifers, genes involved in embryonic development and mTOR signalling pathways, important in pregnancy establishment, were identified as differentially expressed. Results indicate that dietary supplementation of cattle diets with n-3-PUFA may have a positive effect on the expression of key fertility-related genes and pathways, during the critical window of maternal recognition of pregnancy, particularly where animals are underfed.
Collapse
|
23
|
Tinning H, Taylor A, Wang D, Constantinides B, Sutton R, Oikonomou G, Velazquez MA, Thompson P, Treumann A, O'Connell MJ, Forde N. The role of CAPG in molecular communication between the embryo and the uterine endometrium: Is its function conserved in species with different implantation strategies? FASEB J 2020; 34:11015-11029. [PMID: 32619075 DOI: 10.1096/fj.202000882rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/11/2022]
Abstract
During the preimplantation period of pregnancy in eutherian mammals, transcriptional and proteomic changes in the uterine endometrium are required to facilitate receptivity to an implanting blastocyst. These changes are mediated, in part, by proteins produced by the developing conceptus (inner cell mass and extraembryonic membranes). We hypothesized that this common process in early pregnancy in eutheria may be facilitated by highly conserved conceptus-derived proteins such as macrophage capping protein (CAPG). We propose that CAPG may share functionality in modifying the transcriptome of the endometrial epithelial cells to facilitate receptivity to implantation in species with different implantation strategies. A recombinant bovine form of CAPG (91% sequence identity between bovine and human) was produced and bovine endometrial epithelial (bEECs) and stromal (bESCs) and human endometrial epithelial cells (hEECs) were cultured for 24 hours with and without recombinant bovine CAPG (rbCAPG). RNA sequencing and quantitative real-time PCR analysis were used to assess the transcriptional response to rbCAPG (Control, vehicle, CAPG 10, 100, 1000 ng/mL: n = 3 biological replicates per treatment per species). Treatment of bEECs with CAPG resulted in alterations in the abundance of 1052 transcripts (629 increased and 423 decreased) compared to vehicle controls. Treatment of hEECs with bovine CAPG increased expression of transcripts previously known to interact with CAPG in different systems (CAPZB, CAPZA2, ADD1, and ADK) compared with vehicle controls (P < .05). In conclusion, we have demonstrated that CAPG, a highly conserved protein in eutherian mammals, elicits a transcriptional response in the endometrial epithelium in species with different implantation strategies that may contribute to pregnancy success.
Collapse
Affiliation(s)
- Haidee Tinning
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Alysha Taylor
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Bede Constantinides
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Ruth Sutton
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Georgios Oikonomou
- Department of Livestock Health and Welfare, Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Thompson
- Protein and Proteome Analysis (NUPPA), Newcastle University, Newcastle upon Tyne, UK
| | - Achim Treumann
- Protein and Proteome Analysis (NUPPA), Newcastle University, Newcastle upon Tyne, UK
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,School of School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
24
|
Lonergan P, Sánchez JM. Symposium review: Progesterone effects on early embryo development in cattle. J Dairy Sci 2020; 103:8698-8707. [PMID: 32622590 DOI: 10.3168/jds.2020-18583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
The causes of low fertility in dairy cattle are complex and multifactorial and may be due to compromised follicle development affecting oocyte quality, a suboptimal reproductive tract environment incapable of supporting normal embryo development, or a combination of both. Progesterone (P4) plays a key role in reproductive events associated with establishment and maintenance of pregnancy, through its effects on oocyte quality and its action on the uterine endometrium. Reduced P4 concentrations during growth of the ovulatory follicle are associated with lower fertility, and low concentrations of circulating P4 after ovulation have been associated with reductions in conceptus growth and elongation, decreased interferon-τ (IFNT) production, and lower pregnancy rates in cattle. In contrast, elevated concentrations of circulating P4 in the period immediately following conception have been associated with advancement of conceptus elongation, increased IFNT production, and, in some cases, higher pregnancy rates in cattle. Despite the potential beneficial effects of exogenous P4 supplementation on fertility, results of supplementation studies have been inconsistent. As part of the 2019 ADSA Reproduction Symposium, focusing on the etiology of pregnancy losses in dairy cattle, the aim of this review is to highlight recent findings from our group and others in relation to embryo-maternal interaction during bovine pregnancy establishment and the role of P4 in uterine biology and embryo development.
Collapse
Affiliation(s)
- P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| | - J M Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
25
|
Malo Estepa I, Tinning H, Rosas Vasconcelos EJ, Fernandez-Fuertes B, Sánchez JM, Burns GW, Spencer TE, Lonergan P, Forde N. Protein Synthesis by Day 16 Bovine Conceptuses during the Time of Maternal Recognition of Pregnancy. Int J Mol Sci 2020; 21:ijms21082870. [PMID: 32325999 PMCID: PMC7215316 DOI: 10.3390/ijms21082870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Tau (IFNT), the conceptus-derived pregnancy recognition signal in cattle, significantly modifies the transcriptome of the endometrium. However, the endometrium also responds to IFNT-independent conceptus-derived products. The aim of this study was to determine what proteins are produced by the bovine conceptus that may facilitate the pregnancy recognition process in cattle. We analysed by mass spectrometry the proteins present in conceptus-conditioned media (CCM) after 6 h culture of Day 16 bovine conceptuses (n = 8) in SILAC media (arginine- and lysine-depleted media supplemented with heavy isotopes) and the protein content of extracellular vesicles (EVs) isolated from uterine luminal fluid (ULF) of Day 16 pregnant (n = 7) and cyclic (n = 6) cross-bred heifers on day 16. In total, 11,122 proteins were identified in the CCM. Of these, 5.95% (662) had peptides with heavy labelled amino acids, i.e., de novo synthesised by the conceptuses. None of these proteins were detected in the EVs isolated from ULF. Pregnancy-associated glycoprotein 11, Trophoblast Kunitz domain protein 1 and DExD-Box Helicase 39A were de novo produced and present in the CCM from all conceptuses and in previously published CCM data following 6 and 24 h. A total of 463 proteins were present in the CCM from all the conceptuses in the present study, and after 6 and 24 h culture in a previous study, while expression of their transcripts was not detected in endometrium indicating that they are likely conceptus-derived. Of the proteins present in the EVs, 67 were uniquely identified in ULF from pregnant heifers; 35 of these had been previously reported in CCM from Day 16 conceptuses. This study has narrowed a set of conceptus-derived proteins that may be involved in EV-mediated IFNT-independent embryo–maternal communication during pregnancy recognition in cattle.
Collapse
Affiliation(s)
- Irene Malo Estepa
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
| | | | - Beatriz Fernandez-Fuertes
- Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (J.M.S.); (P.L.)
| | - Gregory W. Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (G.W.B.); (T.E.S.)
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (G.W.B.); (T.E.S.)
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (J.M.S.); (P.L.)
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
- Correspondence:
| |
Collapse
|
26
|
Mathew DJ, Sánchez JM, Passaro C, Charpigny G, Behura SK, Spencer TE, Lonergan P. Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome†. Biol Reprod 2020; 100:365-380. [PMID: 30203055 DOI: 10.1093/biolre/ioy199] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
This study investigated bovine conceptus-induced modifications to the endometrial transcriptome related to effects of interferon tau (IFNT), conceptus origin (in vivo vs. in vitro), and conceptus sex. In vitro (IVF) or in vivo (superovulation and artificial insemination, AI) produced blastocysts were transferred into recipient heifers on day 7 of the estrous cycle. On day 15, IVF- or AI-derived conceptuses were obtained by uterine flushing and individually placed on endometrial explants in media for 6 h. Explants were also cultured with media alone as a control or media containing 100 ng/mL IFNT. Total explant RNA was analyzed by RNA-Seq. Incubation of endometrium with IFNT or IVF- or AI-derived conceptuses changed (P ≤ 0.001) expression of 491, 498, and 576 transcripts, respectively, compared to the control. Further, 369 differentially expressed genes (DEGs) were common between explants exposed to IFNT or a conceptus. A total of 240 DEGs were uniquely altered by conceptuses (IVF- and AI-derived) but not IFNT. Of these transcripts, 46 were shared between the IVF and AI groups, while 61 and 133 were specific to IVF and AI conceptuses, respectively. Five genes [melanophilin (MLPH), prominin-2 (PROM2), myeloid associated differentiation marker (MYADM), vomeronasal 1 receptor 4 like (VN1R4L) and 5-hydroxytryptamine receptor 1A (HTR1A)] were more abundant in endometrium exposed to female compared to male conceptuses (P < 0.001). A single gene [ADP-ribosylation factor like GTPase 4C (ARL4C)] was more abundant in response to male conceptuses (P < 0.001) than female conceptuses. These data support the hypothesis that conceptus regulation of gene expression in the endometrium is complex and involves factors other than IFNT that may have a biological role in pregnancy establishment.
Collapse
Affiliation(s)
- Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
27
|
Challenges in studying preimplantation embryo-maternal interaction in cattle. Theriogenology 2020; 150:139-149. [PMID: 31973965 DOI: 10.1016/j.theriogenology.2020.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/10/2023]
Abstract
A comprehensive understanding of the complex embryo-maternal interactions during the preimplantation period requires the analysis of the very early stages of pregnancy encompassing early embryonic development, maternal recognition and the events leading to implantation. Despite the fact that embryo development until blastocyst stage is somewhat autonomous (i.e., does not require contact with the maternal reproductive tract and can be successfully recapitulated in vitro), many studies on ruminant embryo production have focused on the fundamental question of why: (i) only 30%-40% of immature oocytes develop to the blastocyst stage and (ii) the quality of such blastocysts continually lags behind that of blastocysts produced in vivo. Clear evidence indicates that in vitro culture conditions are far from optimal with deficiencies being manifested in short- and long-term effects on the embryo. Thus, enhanced knowledge of mechanisms controlling embryo-maternal interactions would allow the design of novel strategies to improve in vitro embryo conditions and reproductive outcomes in cattle.
Collapse
|
28
|
Zeng S, Ulbrich SE, Bauersachs S. Spatial organization of endometrial gene expression at the onset of embryo attachment in pigs. BMC Genomics 2019; 20:895. [PMID: 31752681 PMCID: PMC6873571 DOI: 10.1186/s12864-019-6264-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During the preimplantation phase in the pig, the conceptus trophoblast elongates into a filamentous form and secretes estrogens, interleukin 1 beta 2, interferons, and other signaling molecules before attaching to the uterine epithelium. The processes in the uterine endometrium in response to conceptus signaling are complex. Thus, the objective of this study was to characterize transcriptome changes in porcine endometrium during the time of conceptus attachment considering the specific localization in different endometrial cell types. RESULTS Low-input RNA-sequencing was conducted for the main endometrial compartments, luminal epithelium (LE), glandular epithelium (GE), blood vessels (BV), and stroma. Samples were isolated from endometria collected on Day 14 of pregnancy and the estrous cycle (each group n = 4) by laser capture microdissection. The expression of 12,000, 11,903, 11,094, and 11,933 genes was detectable in LE, GE, BV, and stroma, respectively. Differential expression analysis was performed between the pregnant and cyclic group for each cell type as well as for a corresponding dataset for complete endometrium tissue samples. The highest number of differentially expressed genes (DEGs) was found for LE (1410) compared to GE, BV, and stroma (800, 1216, and 384). For the complete tissue, 3262 DEGs were obtained. The DEGs were assigned to Gene Ontology (GO) terms to find overrepresented functional categories and pathways specific for the individual endometrial compartments. GO classification revealed that DEGs in LE were involved in 'biosynthetic processes', 'related to ion transport', and 'apoptotic processes', whereas 'cell migration', 'cell growth', 'signaling', and 'metabolic/biosynthetic processes' categories were enriched for GE. For blood vessels, categories such as 'focal adhesion', 'actin cytoskeleton', 'cell junction', 'cell differentiation and development' were found as overrepresented, while for stromal samples, most DEGs were assigned to 'extracellular matrix', 'gap junction', and 'ER to Golgi vesicles'. CONCLUSIONS The localization of differential gene expression to different endometrial cell types provided a significantly improved view on the regulation of biological processes involved in conceptus implantation, such as the control of uterine fluid secretion, trophoblast attachment, growth regulation by Wnt signaling and other signaling pathways, as well as the modulation of the maternal immune system.
Collapse
Affiliation(s)
- Shuqin Zeng
- Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Eschikon 27 AgroVet-Strickhof, Zurich, Switzerland
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Lindau, ZH 8315 Switzerland
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Lindau, ZH 8315 Switzerland
| | - Stefan Bauersachs
- Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Eschikon 27 AgroVet-Strickhof, Zurich, Switzerland
| |
Collapse
|
29
|
Sánchez JM, Simintiras CA, Lonergan P. Aspects of embryo-maternal communication in establishment of pregnancy in cattle. Anim Reprod 2019; 16:376-385. [PMID: 32435281 PMCID: PMC7234086 DOI: 10.21451/1984-3143-ar2019-0075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Establishment of pregnancy in mammals requires reciprocal molecular communication between the conceptus and endometrium that modifies the endometrial transcriptome and uterine luminal milieu to support pregnancy. Due to the small size of the early embryo and elongating conceptus relative to the volume of the uterine lumen, collection of endometrium adjacent to the developing conceptus is difficult following conventional uterine flushing methods in cattle. Use of endometrial explants in culture can overcome this challenge and reveal information about the dialogue between the developing embryo and the uterus. The aim of this short review is to summarize some of our recent findings in relation to embryo maternal interaction during bovine pregnancy establishment and to put them in the wider context of fertility in cattle.
Collapse
Affiliation(s)
- José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
30
|
Sánchez JM, Mathew DJ, Behura SK, Passaro C, Charpigny G, Butler ST, Spencer TE, Lonergan P. Bovine endometrium responds differentially to age-matched short and long conceptuses†. Biol Reprod 2019; 101:26-39. [PMID: 30977805 PMCID: PMC6614577 DOI: 10.1093/biolre/ioz060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
This study combined in vitro production of bovine blastocysts, multiple embryo transfer techniques, and a conceptus-endometrial explant co-culture system to test the hypothesis that bovine endometrium exposed to long vs. short day 15 conceptuses would exhibit a different transcriptome profile reflective of potential for successful pregnancy establishment. Bovine endometrial explants collected at the late luteal stage of the estrous cycle were cultured in RPMI medium for 6 h with nothing (control), 100 ng/mL recombinant ovine interferon tau (IFNT), a long day 15 conceptus, or a short day 15 conceptus. Transcriptional profiling of the endometrial explants found that exposure of endometrium to IFNT, long conceptuses, or short conceptuses altered (P < 0.05) expression of 491, 498, and 230 transcripts, respectively, compared to the control. Further analysis revealed three categories of differentially expressed genes (DEG): (i) commonly responsive to exposure to IFNT and conceptuses, irrespective of size (n = 223); (ii) commonly responsive to IFNT and long conceptuses only (n = 168); and genes induced by the presence of a conceptus but independent of IFNT (n = 108). Of those 108 genes, 101 were exclusively induced by long conceptuses and functional analysis revealed that regulation of molecular function, magnesium-ion transmembrane transport, and clathrin coat assembly were the principal gene ontologies associated with these DEG. In conclusion, bovine endometrium responds differently to age-matched conceptuses of varying size in both an IFNT-dependent and -independent manner, which may be reflective of the likelihood of successful pregnancy establishment.
Collapse
Affiliation(s)
- José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Stephen T Butler
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Sánchez JM, Mathew DJ, Passaro C, Fair T, Lonergan P. Embryonic maternal interaction in cattle and its relationship with fertility. Reprod Domest Anim 2018; 53 Suppl 2:20-27. [PMID: 30238655 DOI: 10.1111/rda.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022]
Abstract
Embryo mortality is a major contributor to poor reproductive efficiency and profitability in cattle production systems. While conception is achieved (i.e., the oocyte is fertilized) in the vast majority of cases if insemination is carried out correctly, a significant proportion of the resulting embryos fail to develop to term. Appropriate communication between the developing conceptus and the maternal endometrium is essential for the establishment and maintenance of pregnancy in all mammals. Up to the blastocyst stage, around Days 7-9, contact worth the female reproductive system is not required. However, the process of conceptus elongation after hatching and prior to implantation is entirely maternally driven and is essential to ensure that sufficient quantities of interferon-tau (IFNT) are secreted by the developing conceptus to abrogate the mechanisms that bring about luteolysis. While the importance of conceptus-derived IFNT in maternal recognition of pregnancy and prevention of luteolysis in cattle is unequivocal, many questions, such as the threshold level of IFNT required for pregnancy maintenance, remain unanswered. Furthermore, the precise role of IFNT-independent mechanisms in pregnancy establishment remains to be elucidated. Irrespective of this, failure of the conceptus to elongate undoubtedly results in embryonic loss and is thus believed to contribute greatly to reproductive failure in cattle. This review will address some of these answered questions and try to shed some light on those gaps in knowledge that could potentially contribute to improved embryo survival and reproductive efficiency.
Collapse
Affiliation(s)
- José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Passaro C, Tutt D, Mathew DJ, Sanchez JM, Browne JA, Boe-Hansen GB, Fair T, Lonergan P. Blastocyst-induced changes in the bovine endometrial transcriptome. Reproduction 2018; 156:219-229. [PMID: 30021913 DOI: 10.1530/rep-18-0188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
The objectives of this study were (i) to determine whether blastocyst-induced responses in endometrial explants were detectable after 6- or 24-h co-culture in vitro; (ii) to test if direct contact is required between embryos and the endometrial surface in order to stimulate endometrial gene expression; (iii) to establish the number of blastocysts required to elicit a detectable endometrial response; (iv) to investigate if upregulation of five interferon-stimulated genes (ISGs) in the endometrium was specific to the blastocyst stage and (v) to test if alterations in endometrial gene expression can be induced by blastocyst-conditioned medium. Exposure of endometrial explants to Day 8 blastocysts in vitro for 6 or 24 h induced the expression of ISGs (MX1, MX2, OAS1, ISG15, RSAD2); expression of IFNAR1, IFNAR2, NFKB1, IL1B, STAT1, LGALS3BP, LGALS9, HPGD, PTGES, ITGB1, AKR1C4, AMD1 and AQP4 was not affected. Culture of explants in the presence of more than five blastocysts was sufficient to induce the effect, with maximum expression of ISGs occurring in the presence of 20 blastocysts. This effect was exclusive to blastocyst stage embryos; oocytes, 2-cell embryos or Day 5 morulae did not alter the relative abundance of any of the transcripts examined. Direct contact between blastocysts and the endometrial surface was not required in order to alter the abundance of these transcripts and blastocyst-conditioned medium alone was sufficient to stimulate a response. Results support the notion that local embryo-maternal interaction may occur as early as Day 8 of pregnancy in cattle.
Collapse
Affiliation(s)
- C Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - D Tutt
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - D J Mathew
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - J M Sanchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - G B Boe-Hansen
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - T Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
33
|
Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G. Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations. Biol Reprod 2018; 99:225-241. [PMID: 29462279 PMCID: PMC6044348 DOI: 10.1093/biolre/ioy047] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/14/2022] Open
Abstract
Research on the functions of interferon tau (IFNT) led to the theory of pregnancy recognition signaling in ruminant species. But IFNT does much more as it induces expression of interferon regulatory factor 2 (IRF2) in uterine luminal (LE), superficial glandular (sGE), but not glandular (GE) epithelia. First, IRF2 silences transcription of the estrogen receptor alpha gene and, indirectly, transcription of the oxytocin receptor gene to abrogate development of the luteolytic mechanism to prevent regression of the corpus luteum and its production of progesterone for establishing and maintaining pregnancy. Second, IRF2 silences expression of classical interferon-stimulated genes in uterine LE and sGE; however, uterine LE and sGE respond to progesterone (P4) and IFNT to increase expression of genes for transport of nutrients into the uterine lumen such as amino acids and glucose. Other genes expressed by uterine LE and sGE encode for adhesion molecules such as galectin 15, cathepsins, and cystatins for tissue remodeling, and hypoxia-inducible factor relevant to angiogenesis and survival of blastocysts in a hypoxic environment. IFNT is also key to a servomechanism that allows uterine epithelia, particularly GE, to proliferate and to express genes in response to placental lactogen and placental growth hormone in sheep. The roles of secreted phosphoprotein 1 are also discussed regarding its role in implantation in sheep and pigs, as well as its stimulation of expression of mechanistic target of rapamycin mRNA and protein which is central to proliferation, migration, and gene expression in the trophectoderm cells.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Thomas E Spencer
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
34
|
Ribeiro ES. Symposium review: Lipids as regulators of conceptus development: Implications for metabolic regulation of reproduction in dairy cattle. J Dairy Sci 2018; 101:3630-3641. [DOI: 10.3168/jds.2017-13469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/30/2017] [Indexed: 01/28/2023]
|
35
|
Gómez E, Sánchez-Calabuig MJ, Martin D, Carrocera S, Murillo A, Correia-Alvarez E, Herrero P, Canela N, Gutiérrez-Adán A, Ulbrich S, Muñoz M. In vitro cultured bovine endometrial cells recognize embryonic sex. Theriogenology 2017; 108:176-184. [PMID: 29223655 DOI: 10.1016/j.theriogenology.2017.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
Abstract
Endometrial cell co-culture (ECC) with single embryo may reflect endometrium responses in vivo. Bovine Day-6 in vitro-produced morulae were cultured until Day-8 in modified synthetic oviductal fluid (mSOF), or on the epithelial side of ECC. Expression of epithelial- and stromal-cell transcripts was analyzed by RT-PCR in ECC with one male (ME) or female embryo (FE). Concentrations of ARTEMIN (ARTN) and total protein were determined in epithelial cell-conditioned medium. ECCs yielded embryos with more cells in the inner cell mass than embryos cultured in mSOF. Embryos altered transcript expression only in epithelial cells, not in stromal ones. Thus, ME induced larger reductions than FE and controls (i.e., no embryos cultured) in hexose transporter solute carrier family 2 member 1 (SLC2A1) and member 5 (SLC2A5), connective tissue growth factor (CTGF), artemin (ARTN), and interferon alpha and beta receptors subunit IFNAR1 and IFNAR2. FE reduced SLC2A1 and SLC2A5, and increased ARTN expression with respect to controls. ME tended to reduce total protein concentration (P < 0.082) in ECC-conditioned medium, while ARTN protein and gene expressions strongly correlated (R > 0.90; P < 0.05) in the group of ME or FE, but not in controls (without embryo). Isolated male and female embryos may differentially release signaling factors that induce sexually dimorphic responses in endometrial cells.
Collapse
Affiliation(s)
- E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain.
| | - M J Sánchez-Calabuig
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - D Martin
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Murillo
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Correia-Alvarez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - P Herrero
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - N Canela
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Avda. Puerta de Hierro, n°12, local 10, 28040 Madrid, Spain
| | - S Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Switzerland
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
36
|
Vitorino Carvalho A, Eozenou C, Healey GD, Forde N, Reinaud P, Chebrout M, Gall L, Rodde N, Padilla AL, Delville CG, Leveugle M, Richard C, Sheldon IM, Lonergan P, Jolivet G, Sandra O. Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium. Reprod Fertil Dev 2017; 28:459-74. [PMID: 25116692 DOI: 10.1071/rd14034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/12/2014] [Indexed: 01/24/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation.
Collapse
Affiliation(s)
- A Vitorino Carvalho
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - C Eozenou
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - G D Healey
- Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - P Reinaud
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - M Chebrout
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - L Gall
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - N Rodde
- INRA, UPR1258 Centre National des Ressources Génomiques Végétales, F-31326 Castanet Tolosan, France
| | - A Lesage Padilla
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - C Giraud Delville
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - M Leveugle
- INRA, UR1077 Unité Mathématique Informatique et Génome, Jouy-en-Josas, France
| | - C Richard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - I M Sheldon
- Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - G Jolivet
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - O Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
37
|
Sakumoto R, Hayashi KG, Fujii S, Kanahara H, Hosoe M, Furusawa T, Kizaki K. Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy. Int J Mol Sci 2017; 18:ijms18040742. [PMID: 28362325 PMCID: PMC5412327 DOI: 10.3390/ijms18040742] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to determine the possible roles of chemokines in regulating bovine endometrial function during early pregnancy. The expression of six chemokines, including CCL2, CCL8, CCL11, CCL14, CCL16, and CXCL10, was higher in the endometrium at 15 and 18 days of pregnancy than at the same days in non-pregnant animals. Immunohistochemical staining showed that chemokine receptors (CCR1, CCR2, CCR3, and CXCR3) were expressed in the epithelial cells and glandular epithelial cells of the bovine endometrium as well as in the fetal trophoblast obtained from a cow on day 18 of pregnancy. The addition of interferon-τ (IFNT) to an endometrial tissue culture system increased CCL8 and CXCL10 expression in the tissues, but did not affect CCL2, CCL11, and CCL16 expression. CCL14 expression by these tissues was inhibited by IFNT. CCL16, but not other chemokines, clearly stimulated interferon-stimulated gene 15 (ISG15) and myxovirus-resistance gene 1 (MX1) expression in these tissues. Cyclooxygenase 2 (COX2) expression decreased after stimulation with CCL8 and CCL14, and oxytocin receptor (OTR) expression was decreased by CCL2, CCL8, CCL14, and CXCL10. Collectively, the expression of chemokine genes is increased in the endometrium during early pregnancy. These genes may contribute to the regulation of endometrial function by inhibiting COX2 and OTR expression, subsequently decreasing prostaglandin production and preventing luteolysis in cows.
Collapse
MESH Headings
- Animals
- Cattle
- Cells, Cultured
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Chemokines, CC/physiology
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Chemokines, CXC/physiology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Embryo Implantation/genetics
- Embryo Implantation/physiology
- Endometrium/cytology
- Endometrium/metabolism
- Endometrium/physiology
- Epithelial Cells/metabolism
- Female
- Gene Expression Profiling/methods
- Immunohistochemistry
- Pregnancy
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Tissue Culture Techniques
- Trophoblasts/metabolism
Collapse
Affiliation(s)
- Ryosuke Sakumoto
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan.
| | - Ken-Go Hayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan.
| | - Shiori Fujii
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan.
| | - Hiroko Kanahara
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan.
| | - Misa Hosoe
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan.
| | - Tadashi Furusawa
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan.
| | - Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Iwate University, Iwate 020-8550, Japan.
| |
Collapse
|
38
|
Hayashi KG, Hosoe M, Kizaki K, Fujii S, Kanahara H, Takahashi T, Sakumoto R. Differential gene expression profiling of endometrium during the mid-luteal phase of the estrous cycle between a repeat breeder (RB) and non-RB cows. Reprod Biol Endocrinol 2017; 15:20. [PMID: 28335821 PMCID: PMC5364712 DOI: 10.1186/s12958-017-0237-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/03/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Repeat breeding directly affects reproductive efficiency in cattle due to an increase in services per conception and calving interval. This study aimed to investigate whether changes in endometrial gene expression profile are involved in repeat breeding in cows. Differential gene expression profiles of the endometrium were investigated during the mid-luteal phase of the estrous cycle between repeat breeder (RB) and non-RB cows using microarray analysis. METHODS The caruncular (CAR) and intercaruncular (ICAR) endometrium of both ipsilateral and contralateral uterine horns to the corpus luteum were collected from RB (inseminated at least three times but not pregnant) and non-RB cows on Day 15 of the estrous cycle (4 cows/group). Global gene expression profiles of these endometrial samples were analyzed with a 15 K custom-made oligo-microarray for cattle. Immunohistochemistry was performed to investigate the cellular localization of proteins of three identified transcripts in the endometrium. RESULTS Microarray analysis revealed that 405 and 397 genes were differentially expressed in the CAR and ICAR of the ipsilateral uterine horn of RB, respectively when compared with non-RB cows. In the contralateral uterine horn, 443 and 257 differentially expressed genes were identified in the CAR and ICAR of RB, respectively when compared with non-RB cows. Gene ontology analysis revealed that genes involved in development and morphogenesis were mainly up-regulated in the CAR of RB cows. In the ICAR of both the ipsilateral and contralateral uterine horns, genes related to the metabolic process were predominantly enriched in the RB cows when compared with non-RB cows. In the analysis of the whole uterus (combining the data above four endometrial compartments), RB cows showed up-regulation of 37 genes including PRSS2, GSTA3 and PIPOX and down-regulation of 39 genes including CHGA, KRT35 and THBS4 when compared with non-RB cows. Immunohistochemistry revealed that CHGA, GSTA3 and PRSS2 proteins were localized in luminal and glandular epithelial cells and stroma of the endometrium. CONCLUSION The present study showed that endometrial gene expression profiles are different between RB and non-RB cows. The identified candidate endometrial genes and functions in each endometrial compartment may contribute to bovine reproductive performance.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- 0000 0000 9191 6962grid.419600.aDivision of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901 Japan
| | - Misa Hosoe
- 0000 0001 2222 0432grid.416835.dDivision of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602 Japan
| | - Keiichiro Kizaki
- 0000 0001 0018 0409grid.411792.8Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, 020-8550 Japan
| | - Shiori Fujii
- 0000 0000 9191 6962grid.419600.aDivision of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901 Japan
| | - Hiroko Kanahara
- 0000 0000 9191 6962grid.419600.aDivision of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901 Japan
| | - Toru Takahashi
- 0000 0001 0018 0409grid.411792.8Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, 020-8550 Japan
| | - Ryosuke Sakumoto
- 0000 0000 9191 6962grid.419600.aDivision of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901 Japan
| |
Collapse
|
39
|
Shirozu T, Iwano H, Ogiso T, Suzuki T, Balboula AZ, Bai H, Kawahara M, Kimura K, Takahashi H, Rulan B, Kim SW, Yanagawa Y, Nagano M, Imakawa K, Takahashi M. Estrous cycle stage-dependent manner of type I interferon-stimulated genes induction in the bovine endometrium. J Reprod Dev 2017; 63:211-220. [PMID: 28239027 PMCID: PMC5481623 DOI: 10.1262/jrd.2016-176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Interferon tau (IFN-τ) is a ruminant-specific type I IFN secreted by a conceptus before its attachment to the uterus. IFN-τ induces the expression of IFN-stimulated genes (ISGs) via the type I IFN receptor (IFNAR), which is
composed of IFNAR1 and IFNAR2 subunits in the endometrium. However, expression patterns of IFNARs during the estrous cycle have not been reported. We hypothesized that the response to a type I IFN changes along with IFNARs and the
IFN-regulatory factors (IRFs) driving transcription of IFN signal-related genes and modulating a type I IFN signal during the estrous cycle. We investigated the estrous cycle stage-dependent type I IFN induction of ISGs and
expression patterns of IFN signal-related genes in bovine endometrial tissues. Endometrial tissue pieces collected from bovine uteri at each estrous stage (early, mid, and late) were cultured with or without recombinant bovine
IFN-α or concentrated pregnant uterine flushing (PUF) on day 18 after confirming the presence of a conceptus. IFN-α and PUF each significantly increased the expression of ISGs in endometrial tissues. The induction levels of the
typical ISGs (MX1-a and ISG15) were significantly higher at the mid stage and correlated with high expression of IRFs at the mid stage. The immunostaining of IFNARs showed strong
fluorescence intensities in luminal and glandular epithelia at the early and mid stages. Collectively, these results suggest that the endometrium exhibits estrous cycle stage-dependent responsiveness to type I IFN that may be
associated with the expression of IFNARs and IRFs for pregnancy recognition.
Collapse
Affiliation(s)
- Takahiro Shirozu
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroki Iwano
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Takatoshi Ogiso
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Toshiyuki Suzuki
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Ahmed Z Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Hitomi Takahashi
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Ibaraki 305-8517, Japan
| | - Bai Rulan
- Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sung-Woo Kim
- National Institute of Animal Science, Animal Genetic Resources Research Center, Namwon 590-832, Republic of Korea
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-8589, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-8589, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| |
Collapse
|
40
|
Lonergan P, Forde N, Spencer T. Role of progesterone in embryo development in cattle. Reprod Fertil Dev 2017; 28:66-74. [PMID: 27062875 DOI: 10.1071/rd15326] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Progesterone (P4) from the corpus luteum is critical for the establishment and maintenance of pregnancy and plays a major role in regulating endometrial secretions essential for stimulating and mediating changes in conceptus growth and differentiation throughout early pregnancy in ruminants. Numerous studies have demonstrated an association between elevated systemic P4 and acceleration in conceptus elongation. A combination of in vivo and in vitro experiments found that the effects of P4 on conceptus elongation are indirect and mediated through P4-induced effects in the endometrium. Despite effects on elongation, data on the effects of post-insemination supplementation with P4 on pregnancy rates are conflicting. This review highlights the effects of P4 on conceptus development and examines strategies that have been undertaken to manipulate P4 concentrations to increase fertility.
Collapse
Affiliation(s)
- Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Molecular Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Thomas Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
41
|
Spencer TE, Forde N, Lonergan P. Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev 2017; 29:84-100. [DOI: 10.1071/rd16359] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review integrates established and new information on the factors and pathways regulating conceptus–endometrial interactions, conceptus elongation and establishment of pregnancy in sheep and cattle. Establishment of pregnancy in domestic ruminants begins at the conceptus stage (embryo or fetus and associated extra-embryonic membranes) and includes pregnancy recognition signalling, implantation and the onset of placentation. Survival and growth of the preimplantation blastocyst and elongating conceptus require embryotrophic factors (amino acids, carbohydrates, proteins, lipids and other substances) provided by the uterus. The coordinated and interactive actions of ovarian progesterone and conceptus-derived factors (interferon-τ and prostaglandins) regulate expression of elongation- and implantation-related genes in the endometrial epithelia that alter the uterine luminal milieu and affect trophectoderm proliferation, migration, attachment, differentiation and function. A comparison of sheep and cattle finds both conserved and non-conserved embryotrophic factors in the uterus; however, the overall biological pathways governing conceptus elongation and establishment of pregnancy are likely conserved. Given that most pregnancy losses in ruminants occur during the first month of pregnancy, increased knowledge is necessary to understand why and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.
Collapse
|
42
|
O'Doherty AM, O'Shea LC, Sandra O, Lonergan P, Fair T, Forde N. Imprinted and DNA methyltransferase gene expression in the endometrium during the pre- and peri-implantation period in cattle. Reprod Fertil Dev 2017; 29:1729-1738. [DOI: 10.1071/rd16238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
The endometrium plays a key role in providing an optimal environment for attachment of the preimplantation embryo during the early stages of pregnancy. Investigations over the past 2 decades have demonstrated that vital epigenetic processes occur in the embryo during the preimplantation stages of development. However, few studies have investigated the potential role of imprinted genes and their associated modulators, the DNA methyltransferases (DNMTs), in the bovine endometrium during the pre- and peri-implantation period. Therefore, in the present study we examined the expression profiles of the DNMT genes (3A, 3A2 and 3B) and a panel of the most comprehensively studied imprinted genes in the endometrium of cyclic and pregnant animals. Intercaruncular (Days 5, 7, 13, 16 and 20) and caruncular (Days 16 and 20) regions were analysed for gene expression changes, with protein analysis also performed for DNMT3A, DNMT3A2 and DNMT3B on Days 16 and 20. An overall effect of day was observed for expression of several of the imprinted genes. Tissue-dependent gene expression was detected for all genes at Day 20. Differences in DNMT protein abundance were mostly observed in the intercaruncular regions of pregnant heifers at Day 16 when DNMT3A, DNMT3A2 and DNMT3B were all lower when compared with cyclic controls. At Day 20, DNMT3A2 expression was lower in the pregnant caruncular samples compared with cyclic animals. This study provides evidence that epigenetic mechanisms in the endometrium may be involved with implantation of the embryo during the early stages of pregnancy in cattle.
Collapse
|
43
|
Forde N, Maillo V, O'Gaora P, Simintiras CA, Sturmey RG, Ealy AD, Spencer TE, Gutierrez-Adan A, Rizos D, Lonergan P. Sexually Dimorphic Gene Expression in Bovine Conceptuses at the Initiation of Implantation. Biol Reprod 2016; 95:92. [PMID: 27488033 PMCID: PMC5333939 DOI: 10.1095/biolreprod.116.139857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023] Open
Abstract
In cattle, maternal recognition of pregnancy occurs on Day 16 via secretion of interferon tau (IFNT) by the conceptus. The endometrium can distinguish between embryos with different developmental competencies. In eutherian mammals, X-chromosome inactivation (XCI) is required to ensure an equal transcriptional level of most X-linked genes for both male and female embryos in adult tissues, but this process is markedly different in cattle than mice. We examined how sexual dimorphism affected conceptus transcript abundance and amino acid composition as well as the endometrial transcriptome during the peri-implantation period of pregnancy. Of the 5132 genes that were differentially expressed on Day 19 in male compared to female conceptuses, 2.7% were located on the X chromosome. Concentrations of specific amino acids were higher in the uterine luminal fluid of male compared to female conceptuses, while female conceptuses had higher transcript abundance of specific amino acid transporters (SLC6A19 and SLC1A35). Of note, the endometrial transcriptome was not different in cattle gestating a male or a female conceptus. These data support the hypothesis that, far from being a blastocyst-specific phenomenon, XCI is incomplete before and during implantation in cattle. Despite differences in transcript abundance and amino acid utilization in male versus female conceptuses, the sex of the conceptus itself does not elicit a different transcriptomic response in the endometrium.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | - Peadar O'Gaora
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Constantine A Simintiras
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Roger G Sturmey
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
44
|
Spencer TE, Forde N, Lonergan P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J Dairy Sci 2016; 99:5941-5950. [DOI: 10.3168/jds.2015-10070] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
|
45
|
Lonergan P, Fair T, Forde N, Rizos D. Embryo development in dairy cattle. Theriogenology 2016; 86:270-7. [PMID: 27158131 DOI: 10.1016/j.theriogenology.2016.04.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 01/01/2023]
Abstract
During the past 50 years, the fertility of high-producing lactating dairy cows has decreased, associated with intensive selection for increased milk production. The physiological and metabolic changes associated with high milk production, including decreased (glucose, insulin, IGF-I) or increased (nonesterified fatty acids, ketone bodies) concentrations of circulating metabolites during nutrient partitioning associated with negative energy balance as well as uterine and nonuterine diseases have been linked with poor reproductive efficiency. Fertilization is typically above 80% and does not seem to be the principal factor responsible for the low fertility in dairy cows. However, early embryonic development is compromised in high-producing dairy cows, as observed by most embryonic losses occurring during the first 2 weeks after fertilization and may be linked to compromised oocyte quality due to a poor follicular microenvironment, suboptimal reproductive tract environment for the embryo, and/or inadequate maternal-embryonic communication. These and other factors related to embryo development will be discussed.
Collapse
Affiliation(s)
- Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niamh Forde
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Molecular Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Dimitrios Rizos
- Departamento de Reproducción Animal Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain
| |
Collapse
|
46
|
Ribeiro ES, Greco LF, Bisinotto RS, Lima FS, Thatcher WW, Santos JE. Biology of Preimplantation Conceptus at the Onset of Elongation in Dairy Cows1. Biol Reprod 2016; 94:97. [DOI: 10.1095/biolreprod.115.134908] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/25/2016] [Indexed: 01/11/2023] Open
|
47
|
Shirozu T, Sasaki K, Kawahara M, Yanagawa Y, Nagano M, Yamauchi N, Takahashi M. Expression dynamics of bovine MX genes in the endometrium and placenta during early to mid pregnancy. J Reprod Dev 2015; 62:29-35. [PMID: 26498202 PMCID: PMC4768776 DOI: 10.1262/jrd.2015-086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MX belongs to a family of type I interferon (IFN)-stimulated genes, and the MX protein has
antiviral activity. MX has at least two isoforms, known as MX1 and
MX2, in mammals. Moreover, bovine MX1 has been found to have alternative
splice variants—namely, MX1-a and MX1B. In ruminants, IFN-τ—a type I IFN—is
temporarily produced from the conceptus before implantation and induces MX expression in the
endometrium. However, the expression dynamics of MX after implantation are not clear. In the
present study, we investigated the expression of MX1-a, MX1B and
MX2 in the endometrium and placenta before and after implantation along with the expression
of IFN-α, type I receptors (IFNAR1 and IFNAR2) and
interferon regulatory factors (IRF3 and IRF9). Pregnant uterine samples were
divided into five groups according to pregnancy days 14–18, 25–40, 50–70, 80–100, and 130–150. Tissue samples
were collected from the intercaruncular endometrium (IC), caruncular endometrium (C) and fetal placenta (P).
Although all the MX expressions were significantly higher in the IC and C at days 14–18,
presumably caused by embryo-secreted IFN-τ stimulation, their expressions were also detectable in the IC, C
and P after implantation. Furthermore, IFN-α expression was significantly higher in the IC.
RT-PCR indicated IFNAR1, IFNAR2, IRF3 and
IRF9 mRNA in all the tissues during pregnancy. These results suggest that all the
MX genes are affected by the type I IFN pathway during pregnancy and are involved in an
immune response to protect the mother and fetus.
Collapse
Affiliation(s)
- Takahiro Shirozu
- Laboratory of Animal Breeding and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Oguejiofor CF, Cheng Z, Abudureyimu A, Fouladi-Nashta AA, Wathes DC. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity. Biol Reprod 2015; 93:100. [PMID: 26353891 DOI: 10.1095/biolreprod.115.128868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/17/2015] [Indexed: 11/01/2022] Open
Abstract
The dysregulation of endometrial immune response to bacterial lipopolysaccharide (LPS) has been implicated in uterine disease and infertility in the postpartum dairy cow, although the mechanisms are not clear. Here, we investigated whole-transcriptomic gene expression in primary cultures of mixed bovine epithelial and stromal endometrial cells. Cultures were exposed to LPS for 6 h, and cellular response was measured by bovine microarray. Approximately 30% of the 1006 genes altered by LPS were classified as being involved in immune response. Cytokines and chemokines (IL1A, CX3CL1, CXCL2, and CCL5), interferon (IFN)-stimulated genes (RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase molecule SAA3 were the most up-regulated genes. Ingenuity Pathway Analysis identified up-regulation of many inflammatory cytokines and chemokines, which function to attract immune cells to the endometrium, together with vascular adhesion molecules and matrix metalloproteinases, which can facilitate immune cell migration from the tissue toward the uterine lumen. Increased expression of many IFN-signaling genes, immunoproteasomes, guanylate-binding proteins, and genes involved in the intracellular recognition of pathogens suggests important roles for these molecules in the innate defense against bacterial infections. Our findings confirmed the important role of endometrial cells in uterine innate immunity, whereas the global approach used identified several novel immune response pathways triggered by LPS in the endometrium. Additionally, many genes involved in endometrial response to the conceptus in early pregnancy were also altered by LPS, suggesting one mechanism whereby an ongoing response to infection may interfere with the establishment of pregnancy.
Collapse
Affiliation(s)
- Chike F Oguejiofor
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Zhangrui Cheng
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Ayimuguli Abudureyimu
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom Life Science and Engineering College, Northwest University for Nationalities, Lanzhou, China
| | - Ali A Fouladi-Nashta
- Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - D Claire Wathes
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| |
Collapse
|
49
|
Forde N, Bazer FW, Spencer TE, Lonergan P. 'Conceptualizing' the Endometrium: Identification of Conceptus-Derived Proteins During Early Pregnancy in Cattle. Biol Reprod 2015; 92:156. [PMID: 25947061 DOI: 10.1095/biolreprod.115.129296] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/05/2015] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to identify conceptus-derived proteins, in addition to IFNT, that may facilitate pregnancy recognition in cattle. Analysis of the protein content of the uterine luminal fluid (ULF) from cyclic heifers on Day 16 by nano liquid chromatography tandem mass spectrometry identified 334 proteins. Comparison of these data with 299 proteins identified in the ULF of pregnant heifers on Day 16 identified 85 proteins only present in the ULF of pregnant heifers. Analysis of Day 16 conceptus-conditioned culture medium revealed the presence of 1005 proteins of which 30 proteins were unique to ULF from Day 16 pregnant heifers. Of these 30 proteins, 12 had mRNA expression values at least 2-fold higher in abundance (P < 0.05) in the conceptus compared to the endometrium (ARPC5L, CAPG, CKMT1, CSTB, HSPA8, HSPE1, LGALS3, MSN, NUTF2, P4HB, PRKAR2A, TKT) as determined by RNA sequencing. In addition, genes that have a significant biological interaction with the proteins (ACO2, CKMT1, CSTB, EEF2, GDI1, GLB1, GPLD1, HNRNPA1, HNRNPA2B1, HNRNPF, HSPA8, HSPE1, IDH2, KRT75, LGALS3, MSN, NUTF2, P4HB, PRKAR2A, PSMA4, PSMB5, PSMC4, SERPINA3, TKT) were differentially expressed in the endometrium of pregnant compared to cyclic heifers during the pregnancy recognition period (Days 16-18). These results indicate that 30 proteins unique to ULF from pregnant heifers and produced by short-term in vitro cultured Day 16 conceptuses could potentially be involved in facilitating the interactions between the conceptus and the endometrium during the pregnancy recognition period.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Ireland
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Ireland
| |
Collapse
|
50
|
Maillo V, Gaora PÓ, Forde N, Besenfelder U, Havlicek V, Burns GW, Spencer TE, Gutierrez-Adan A, Lonergan P, Rizos D. Oviduct-Embryo Interactions in Cattle: Two-Way Traffic or a One-Way Street? Biol Reprod 2015; 92:144. [PMID: 25926440 DOI: 10.1095/biolreprod.115.127969] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022] Open
Abstract
This study examined the effect of the presence of single or multiple embryos on the transcriptome of the bovine oviduct. In experiment 1, cyclic (nonbred, n = 6) and pregnant (artificially inseminated, n = 11) heifers were slaughtered on Day 3 after estrus, and the ampulla and isthmic regions of the oviduct ipsilateral to the corpus luteum were separately flushed. Oviductal epithelial cells from the isthmus region, in which all oocytes/embryos were located, were snap-frozen for microarray analysis. In experiment 2, heifers were divided into cyclic (nonbred, n = 6) or pregnant (multiple embryo transfer, n = 10) groups. In vitro-produced presumptive zygotes were transferred endoscopically to the ipsilateral oviduct on Day 1.5 postestrus (n = 50 zygotes/heifer). Heifers were slaughtered on Day 3, and oviductal isthmus epithelial cells were recovered for RNA sequencing. Microarray analysis in experiment 1 failed to detect any difference in the transcriptome of the oviductal isthmus induced by the presence of a single embryo. In experiment 2, following multiple embryo transfer, RNA sequencing revealed 278 differentially expressed genes, of which 123 were up-regulated and 155 were down-regulated in pregnant heifers. Most of the down-regulated genes were related to immune function. In conclusion, the presence of multiple embryos in the oviduct resulted in the detection of differentially expressed genes in the oviductal isthmus; failure to detect changes in the oviduct transcriptome in the presence of a single embryo may be due to the effect being local and undetectable under the conditions of this study.
Collapse
Affiliation(s)
| | - Peadar Ó Gaora
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Urban Besenfelder
- Reproduction Centre-Wieselburg, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vitezslav Havlicek
- Reproduction Centre-Wieselburg, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gregory W Burns
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Thomas E Spencer
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|