1
|
Dai Y, Bo Y, Wang P, Xu X, Singh M, Jia L, Zhang S, Niu S, Cheng K, Liang J, Mu L, Geng K, Xia G, Wang C, Zhang Y, Zhang H. Asynchronous embryonic germ cell development leads to a heterogeneity of postnatal ovarian follicle activation and may influence the timing of puberty onset in mice. BMC Biol 2022; 20:109. [PMID: 35550124 PMCID: PMC9101839 DOI: 10.1186/s12915-022-01318-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Ovarian follicles, which are the basic units of female reproduction, are composed of oocytes and surrounding somatic (pre) granulosa cells (GCs). A recent study revealed that signaling in somatic preGCs controlled the activation (initial recruitment) of follicles in the adult ovaries, but it is also known that there are two waves of follicle with age-related heterogeneity in their developmental dynamics in mammals. Although this heterogeneity was proposed to be crucial for female reproduction, our understanding of how it arises and its significance is still elusive. Results In the current study, by deleting the key secreted factor KIT ligand from preGCs and analyzing the follicle cell developmental dynamics, we revealed distinct patterns of activation and growth associated with the two waves of follicles in mouse ovary. Our results confirmed that activation of adult wave follicles is initiated by somatic preGCs and dependent on the KIT ligand. By contrast, activation of first wave follicles, which are awakened from germ cells before follicle formation, can occur in the absence of preGC-secreted KIT ligand in postnatal ovaries and appears to be oocyte-initiated. We also found that the asynchronous activity of phosphatidylinositol 3 kinases (PI3K) signaling and meiotic process in embryonic germ cells lead to the follicle heterogeneity in postnatal ovaries. In addition, we supplied evidence that the time sequence of embryonic germ cell development and its related first wave follicle growth are correlated to the time of puberty onset in females. Conclusion Taken together, our study provides evidence that asynchronous development of embryonic oocytes leads to the heterogeneity of postnatal ovarian follicle activation and development, and affects the timing of onset of puberty in females. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01318-y.
Collapse
Affiliation(s)
- Yanli Dai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingnan Bo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peike Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meenakshi Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaixin Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaiying Geng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Idrees M, Kumar V, Joo MD, Ali N, Lee KW, Kong IK. SHP2 Nuclear/Cytoplasmic Trafficking in Granulosa Cells Is Essential for Oocyte Meiotic Resumption and Maturation. Front Cell Dev Biol 2021; 8:611503. [PMID: 33553147 PMCID: PMC7862566 DOI: 10.3389/fcell.2020.611503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Src-homology-2-containing phosphotyrosine phosphatase (SHP2), a classic cytoplasmic protein and a major regulator of receptor tyrosine kinases and G protein-coupled receptors, plays a significant role in preimplantation embryo development. In this study, we deciphered the role of SHP2 in the somatic compartment of oocytes during meiotic maturation. SHP2 showed nuclear/cytoplasmic localization in bovine cumulus and human granulosa (COV434) cells. Follicle-stimulating hormone (FSH) treatment significantly enhanced cytoplasmic SHP2 localization, in contrast to the E2 treatment, which augmented nuclear localization. Enhanced cytoplasmic SHP2 was found to negatively regulate the expression of the ERα-transcribed NPPC and NPR2 mRNAs, which are vital for oocyte meiotic arrest. The co-immunoprecipitation results revealed the presence of the SHP2/ERα complex in the germinal vesicle-stage cumulus-oocyte complexes, and this complex significantly decreased with the progression of meiotic maturation. The complex formation between ERα and SHP2 was also confirmed by using a series of computational modeling methods. To verify the correlation between SHP2 and NPPC/NPR2, SHP2 was knocked down via RNA interference, and NPPC and NPR2 mRNAs were analyzed in the control, E2, and FSH-stimulated COV434 cells. Furthermore, phenyl hydrazonopyrazolone sulfonate 1, a site-directed inhibitor of active SHP2, showed no significant effect on the ERα-transcribed NPPC and NPR2 mRNAs. Taken together, these findings support a novel nuclear/cytoplasmic role of SHP2 in oocyte meiotic resumption and maturation.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Vikas Kumar
- Division of Applied Life Science, Department of Bio and Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Niaz Ali
- Institute of Basic Medical Sciences, Khybar Medical University, Peshawar, Pakistan
| | - Keun-Woo Lee
- Division of Applied Life Science, Department of Bio and Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea.,The King Kong Corp. Ltd., Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
3
|
Bilyk O, Coatham M, Jewer M, Postovit LM. Epithelial-to-Mesenchymal Transition in the Female Reproductive Tract: From Normal Functioning to Disease Pathology. Front Oncol 2017; 7:145. [PMID: 28725636 PMCID: PMC5497565 DOI: 10.3389/fonc.2017.00145] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a physiological process that is vital throughout the human lifespan. In addition to contributing to the development of various tissues within the growing embryo, EMT is also responsible for wound healing and tissue regeneration later in adulthood. In this review, we highlight the importance of EMT in the development and normal functioning of the female reproductive organs (the ovaries and the uterus) and describe how dysregulation of EMT can lead to pathological conditions, such as endometriosis, adenomyosis, and carcinogenesis. We also summarize the current literature relating to EMT in the context of ovarian and endometrial carcinomas, with a particular focus on how molecular mechanisms and the tumor microenvironment can govern cancer cell plasticity, therapy resistance, and metastasis.
Collapse
Affiliation(s)
- Olena Bilyk
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Mackenzie Coatham
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Michael Jewer
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | | |
Collapse
|
4
|
Altered state of primordial follicles in neonatal and early infantile rats due to maternal hypothyroidism: Light and electron microscopy approach. Micron 2016; 90:33-42. [PMID: 27569271 DOI: 10.1016/j.micron.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022]
Abstract
Thyroid hormones (TH) are one of the key factors for normal prenatal development in mammals. Previously, we showed that subclinical maternal hypothyroidism leads to premature atresia of ovarian follicles in female rat offspring in the pre-pubertal and pubertal periods. The influence of decreased concentration of TH on primordial follicles pool formation during neonatal and early infantile period of rat pups was not investigated previously. Maternal hypothyroidism during pregnancy has irreversible negative influence on primordial follicles pool formation and population of resting oocytes in female rat offspring. The study was done on neonatal and early infantile control (n-10) and hypothyroid (n-10) female rat pups derived from control (n-6) and propylthiouracil (PTU) treated pregnant dams (n-6), respectively. Ovaries of all pups were removed and processed for light and transmission electron microscopy (TEM). Number of nests, oogonia and oocytes per nest, primordial, primary, secondary and preantral follicles were determined. Screening for overall calcium presence in ovarian tissue was done using Alizarin red staining. Morphology and volume density of nucleus, mitochondria and smooth endoplasmic reticulum (sER) in the oocytes in primordial follicles was also assessed. Caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), both markers for apoptosis, and proliferating cell nuclear antigen (PCNA) for proliferation were determined in oocytes and granulosa cells in different type of follicles. In neonatal period, ovaries of hypothyroid pups had a decreased number of oogonia, oocytes and nests, an increased number of primordial follicles and a decreased number of primary and secondary follicles, while in early infantile period, increased number of primary, secondary and preantral follicles were found. Alizarin red staining was intense in hypothyroid neonatal rats that also had the highest content of dilated sER. Number of mitochondria with altered morphology in both groups of hypothyroid pups was increased. Apoptosis markers have not shown significant difference between groups but PCNA had an increased expression in the oocytes and granulosa cells in primordial follicles of hypothyroid rats. Light and electron microscopy analysis indicate that previously detected premature ovarian follicular atresia in pre-pubertal and pubertal hypothyroid rats is preceded with premature formation of primordial follicles followed by slight changes on sER and mitochondria in examined oocytes, and increased expression of PCNA.
Collapse
|
5
|
Zheng W, Zhang H, Liu K. The two classes of primordial follicles in the mouse ovary: their development, physiological functions and implications for future research. Mol Hum Reprod 2014; 20:286-92. [PMID: 24448914 DOI: 10.1093/molehr/gau007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ovarian follicles are the basic functional units in the mammalian ovary. This review summarizes early pioneering studies and focuses on recent progress that has shown that there are two distinct classes of primordial follicles in the ovary: the first wave of primordial follicles that are activated immediately after they are formed and the adult primordial follicles that are activated gradually in later life. These two separate classes have been proposed for two decades, but sufficient experimental evidence to support this hypothesis has only been obtained recently using newly developed follicular tracing techniques in genetically modified mouse models. These two follicle populations differ from each other primarily in terms of their developmental dynamics and their contributions to ovarian physiology. It is apparent now that these two follicle populations should be treated separately, and such knowledge will hopefully lead to a more in-depth understanding of how distinct types of primordial follicles contribute to physiologic and pathologic alterations of the mammalian ovary.
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | | | | |
Collapse
|
6
|
Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet 2013; 23:920-8. [PMID: 24087793 PMCID: PMC3900105 DOI: 10.1093/hmg/ddt486] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the mammalian ovary, progressive activation of primordial follicles serves as the source of fertilizable ova, and disorders in the development of primordial follicles lead to various ovarian diseases. However, very little is known about the developmental dynamics of primordial follicles under physiological conditions, and the fates of distinct populations of primordial follicles also remain unclear. In this study, by generating the Foxl2-CreER(T2) and Sohlh1-CreER(T2) inducible mouse models, we have specifically labeled and traced the in vivo development of two classes of primordial follicles, the first wave of simultaneously activated follicles after birth and the primordial follicles that are gradually activated in adulthood. Our results show that the first wave of follicles exists in the ovaries for ∼3 months and contributes to the onset of puberty and to early fertility. The primordial follicles at the ovarian cortex gradually replace the first wave of follicles and dominate the ovary after 3 months of age, providing fertility until the end of reproductive life. Moreover, by tracing the time periods needed for primordial follicles to reach various advanced stages in vivo, we were able to determine the exact developmental dynamics of the two classes of primordial follicles. We have now revealed the lifelong developmental dynamics of ovarian primordial follicles under physiological conditions and have clearly shown that two classes of primordial follicles follow distinct, age-dependent developmental paths and play different roles in the mammalian reproductive lifespan.
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | | | | | | | | | | |
Collapse
|