1
|
Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to One's Heart: The Intimate Relationship Between the Placenta and Fetal Heart. Front Physiol 2018; 9:629. [PMID: 29997513 PMCID: PMC6029139 DOI: 10.3389/fphys.2018.00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
The development of the fetal heart is exquisitely controlled by a multitude of factors, ranging from humoral to mechanical forces. The gatekeeper regulating many of these factors is the placenta, an external fetal organ. As such, resistance within the placental vascular bed has a direct influence on the fetal circulation and therefore, the developing heart. In addition, the placenta serves as the interface between the mother and fetus, controlling substrate exchange and release of hormones into both circulations. The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion is associated with congenital heart defects. Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, can result in cardiac remodeling and dysfunction in both fetuses. Moreover, epidemiological studies have suggested a link between placental phenotypic traits and increased risk of cardiovascular disease in adult life. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved. Likewise, surgical instrumentation of the maternal and fetal circulations in large animal species has enabled the manipulation of specific humoral and mechanical factors to investigate their roles in fetal cardiac development. This review will focus on such studies and what is known to date about the link between the placenta and heart development.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Tian M, Liu F, Liu H, Zhang Q, Li L, Hou X, Zhao J, Li S, Chang X, Sun Y. Grape seed procyanidins extract attenuates Cisplatin-induced oxidative stress and testosterone synthase inhibition in rat testes. Syst Biol Reprod Med 2018; 64:246-259. [DOI: 10.1080/19396368.2018.1450460] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Lei Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiangbo Hou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jianxin Zhao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol 2017; 595:5057-5093. [PMID: 28337745 DOI: 10.1113/jp273330] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype, which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ionel Sandovici
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Miguel Constancia
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
4
|
Sferruzzi-Perri AN, Camm EJ. The Programming Power of the Placenta. Front Physiol 2016; 7:33. [PMID: 27014074 PMCID: PMC4789467 DOI: 10.3389/fphys.2016.00033] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
Size at birth is a critical determinant of life expectancy, and is dependent primarily on the placental supply of nutrients. However, the placenta is not just a passive organ for the materno-fetal transfer of nutrients and oxygen. Studies show that the placenta can adapt morphologically and functionally to optimize substrate supply, and thus fetal growth, under adverse intrauterine conditions. These adaptations help meet the fetal drive for growth, and their effectiveness will determine the amount and relative proportions of specific metabolic substrates supplied to the fetus at different stages of development. This flow of nutrients will ultimately program physiological systems at the gene, cell, tissue, organ, and system levels, and inadequacies can cause permanent structural and functional changes that lead to overt disease, particularly with increasing age. This review examines the environmental regulation of the placental phenotype with particular emphasis on the impact of maternal nutritional challenges and oxygen scarcity in mice, rats and guinea pigs. It also focuses on the effects of such conditions on fetal growth and the developmental programming of disease postnatally. A challenge for future research is to link placental structure and function with clinical phenotypes in the offspring.
Collapse
Affiliation(s)
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|
5
|
Zhang X, Huang L, Wu T, Feng Y, Ding Y, Ye P, Yin Z. Transcriptomic Analysis of Ovaries from Pigs with High And Low Litter Size. PLoS One 2015; 10:e0139514. [PMID: 26426260 PMCID: PMC4591126 DOI: 10.1371/journal.pone.0139514] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/13/2015] [Indexed: 01/03/2023] Open
Abstract
Litter size is one of the most important economic traits for pig production as it is directly related to the production efficiency. Litter size is affected by interactions between multiple genes and the environment. While recent studies have identified some genes associated with prolificacy in pigs, transcriptomic studies of specific genes affecting litter size in porcine ovaries are rare. In order to identify candidate genes associated with litter size in swine, we assessed gene expression differences between the ovaries of Yorkshire pigs with extremely high and low litter sizes using the RNA-Seq method. A total of 1 243 differentially expressed genes were identified: 897 genes were upregulated and 346 genes were downregulated in high litter size ovary samples compared with low litter size ovary samples. A large number of these genes related to steroid hormone regulation in animal ovaries, including 59 Gene Ontology terms and 27 Kyoto Encyclopedia of Genes and Genomes pathways involved in steroid biosynthesis and ovarian steroidogenesis. From these differentially expressed genes, we identified a total of 11 genes using a bioinformatics screen that may be associated with high litter size in Yorkshire pigs. These results provide a list of new candidate genes for porcine litter size and prolificacy to be further investigated.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Long Huang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Tao Wu
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Yifang Feng
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Yueyun Ding
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Pengfei Ye
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Zongjun Yin
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
6
|
Sedaghat K, Zahediasl S, Ghasemi A. Intrauterine programming. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:212-20. [PMID: 25945232 PMCID: PMC4414985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/07/2014] [Indexed: 11/04/2022]
Abstract
In mammals, the intrauterine condition has an important role in the development of fetal physiological systems in later life. Suboptimal maternal environment can alter the regulatory pathways that determine the normal development of the fetus in utero, which in post-natal life may render the individual more susceptible to cardiovascular or metabolic adult-life diseases. Changes in the intrauterine availability of nutrients, oxygen and hormones can change the fetal tissue developmental regulatory planning, which occurs genomically and non-genomically and can cause permanent structural and functional changes in the systems, leading to diseases in early years of life and those that particularly become overt in adulthood. In this review we take a brief look at the main elements which program the fetal system development and consequently induce a crucial impact on the cardiovascular, nervous and hormonal systems in adulthood.
Collapse
Affiliation(s)
- Katayoun Sedaghat
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Saleh Zahediasl
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,*Corresponding author: Asghar Ghasemi. Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-22432467; Fax: +98-21-22402463;
| |
Collapse
|
7
|
Chinnathambi V, Yallampalli C, Sathishkumar K. Prenatal testosterone induces sex-specific dysfunction in endothelium-dependent relaxation pathways in adult male and female rats. Biol Reprod 2013; 89:97. [PMID: 23966325 DOI: 10.1095/biolreprod.113.111542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Prenatal testosterone (T) exposure impacts postnatal cardiovascular function, leading to increases in blood pressure with associated decreased endothelium-dependent vascular relaxation in adult females. Endothelial function in males is not known. Furthermore, which of the endothelial pathways contributes to endothelial dysfunction and if there exists sex differences are not known. The objective of this study was to characterize the relative contribution of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) to the impaired endothelium-dependent vasodilation in prenatal T-exposed adult males and females. Offspring of pregnant rats treated with T propionate or its vehicle were examined. Telemetric blood pressure levels and endothelium-dependent vascular reactivity were assessed with wire myography. Levels of nitric oxide synthase (NOS3) and Kcnn3 and Kcnn4 channel expression were examined in mesenteric arteries. Mean arterial pressure was significantly higher in T males and females than in controls. Endothelium-dependent acetylcholine relaxation was significantly lower in both T males and females. EDHF-mediated relaxation was specifically blunted in T males (Emax = 48.64% ± 3.73%) compared to that in control males (Emax = 81.71% ± 3.18%); however, NO-mediated relaxation was specifically impaired in T females (Emax = 36.01% ± 4.29%) compared with that in control females (Emax = 54.56% ± 6.37%). Relaxation to sodium nitroprusside and levcromakalim were unaffected with T-treatment. NOS3 protein was decreased in T females but not in T males. Kcnn3 expression was decreased in both T males and females compared to controls. These findings suggest that prenatal T leads to an increase in blood pressure in the adult offspring, associated with blunting of endothelial cell-associated relaxation and that the effects are sex-specific: EDHF-related in males and NO-related in females.
Collapse
Affiliation(s)
- Vijayakumar Chinnathambi
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | | | | |
Collapse
|
8
|
Chittoor G, Farook VS, Puppala S, Fowler SP, Schneider J, Dyer TD, Cole SA, Lynch JL, Curran JE, Almasy L, Maccluer JW, Comuzzie AG, Hale DE, Ramamurthy RS, Dudley DJ, Moses EK, Arya R, Lehman DM, Jenkinson CP, Bradshaw BS, Defronzo RA, Blangero J, Duggirala R. Localization of a major susceptibility locus influencing preterm birth. Mol Hum Reprod 2013; 19:687-96. [PMID: 23689979 DOI: 10.1093/molehr/gat036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Preterm birth (PTB) is a complex trait, but little is known regarding its major genetic determinants. The objective of this study is to localize genes that influence susceptibility to PTB in Mexican Americans (MAs), a minority population in the USA, using predominantly microfilmed birth certificate-based data obtained from the San Antonio Family Birth Weight Study. Only 1302 singleton births from 288 families with information on PTB and significant covariates were considered for genetic analysis. PTB is defined as a childbirth that occurs at <37 completed weeks of gestation, and the prevalence of PTB in this sample was 6.4%. An ∼10 cM genetic map was used to conduct a genome-wide linkage analysis using the program SOLAR. The heritability of PTB was high (h(2) ± SE: 0.75 ± 0.20) and significant (P = 4.5 × 10(-5)), after adjusting for the significant effects of birthweight and birth order. We found significant evidence for linkage of PTB (LOD = 3.6; nominal P = 2.3 × 10(-5); empirical P = 1.0 × 10(-5)) on chromosome 18q between markers D18S1364 and D18S541. Several other chromosomal regions (2q, 9p, 16q and 20q) were also potentially linked with PTB. A strong positional candidate gene in the 18q linked region is SERPINB2 or PAI-2, a member of the plasminogen activator system that is associated with various reproductive processes. In conclusion, to our knowledge, perhaps for the first time in MAs or US populations, we have localized a major susceptibility locus for PTB on chromosome 18q21.33-q23.
Collapse
Affiliation(s)
- G Chittoor
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|