2
|
Wang LY, Li ZK, Wang LB, Liu C, Sun XH, Feng GH, Wang JQ, Li YF, Qiao LY, Nie H, Jiang LY, Sun H, Xie YL, Ma SN, Wan HF, Lu FL, Li W, Zhou Q. Overcoming Intrinsic H3K27me3 Imprinting Barriers Improves Post-implantation Development after Somatic Cell Nuclear Transfer. Cell Stem Cell 2020; 27:315-325.e5. [PMID: 32559418 DOI: 10.1016/j.stem.2020.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/13/2020] [Accepted: 05/27/2020] [Indexed: 12/27/2022]
Abstract
Successful cloning by somatic cell nuclear transfer (SCNT) requires overcoming significant epigenetic barriers. Genomic imprinting is not generally regarded as such a barrier, although H3K27me3-dependent imprinting is differentially distributed in E6.5 epiblast and extraembryonic tissues. Here we report significant enhancement of SCNT efficiency by deriving somatic donor cells carrying simultaneous monoallelic deletion of four H3K27me3-imprinted genes from haploid mouse embryonic stem cells. Quadruple monoallelic deletion of Sfmbt2, Jade1, Gab1, and Smoc1 normalized H3K27me3-imprinted expression patterns and increased fibroblast cloning efficiency to 14% compared with a 0% birth rate from wild-type fibroblasts while preventing the placental and body overgrowth defects frequently observed in cloned animals. Sfmbt2 deletion was the most effective of the four individual gene deletions in improving SCNT. These results show that lack of H3K27me3 imprinting in somatic cells is an epigenetic barrier that impedes post-implantation development of SCNT embryos and can be overcome by monoallelic imprinting gene deletions in donor cells.
Collapse
Affiliation(s)
- Le-Yun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Kun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Bin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Han Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Hai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Qiang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Fei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lian-Yong Qiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hu Nie
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Yuan Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hao Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Li Xie
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Nan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Feng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Fa-Long Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Hirose M, Hada M, Kamimura S, Matoba S, Honda A, Motomura K, Ogonuki N, Shawki HH, Inoue K, Takahashi S, Ogura A. Aberrant imprinting in mouse trophoblast stem cells established from somatic cell nuclear transfer-derived embryos. Epigenetics 2018; 13:693-703. [PMID: 30079806 DOI: 10.1080/15592294.2018.1507199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although phenotypic abnormalities frequently appear in the placenta following somatic cell nuclear transfer (SCNT), mouse trophoblast stem cells (TSCs) established from SCNT embryos reportedly show no distinct abnormalities compared with those derived from normal fertilization. In this study, we reexamined SCNT-TSCs to identify their imprinting statuses. Placenta-specific maternally imprinted genes (Gab1, Slc38a4, and Sfmbt2) consistently showed biallelic expression in SCNT-TSCs, suggesting their loss of imprinting (LOI). The LOI of Gab1 was associated with decreased DNA methylation, and that of Sfmbt2 was associated with decreased DNA methylation and histone H3K27 trimethylation. The maternal allele of the intergenic differentially methylated region (IG-DMR) was aberrantly hypermethylated following SCNT, even though this region was prone to demethylation in TSCs when established in a serum-free chemically defined medium. These findings indicate that the development of cloned embryos is associated with imprinting abnormalities specifically in the trophoblast lineage from its initial stage, which may affect subsequent placental development.
Collapse
Affiliation(s)
- Michiko Hirose
- a RIKEN BioResource Research Center , Tsukuba , Ibaraki , Japan
| | - Masashi Hada
- a RIKEN BioResource Research Center , Tsukuba , Ibaraki , Japan
| | | | - Shogo Matoba
- a RIKEN BioResource Research Center , Tsukuba , Ibaraki , Japan
| | - Arata Honda
- a RIKEN BioResource Research Center , Tsukuba , Ibaraki , Japan.,b Institute of Laboratory Animals, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Kaori Motomura
- a RIKEN BioResource Research Center , Tsukuba , Ibaraki , Japan
| | - Narumi Ogonuki
- a RIKEN BioResource Research Center , Tsukuba , Ibaraki , Japan
| | - Hossam H Shawki
- c Department of Anatomy and Embryology , University of Tsukuba , Ibaraki , Japan.,d Department of Animal Genetic Resources , National Gene Bank, Giza , Egypt
| | - Kimiko Inoue
- a RIKEN BioResource Research Center , Tsukuba , Ibaraki , Japan.,e Graduate School of Life and Environmental Sciences , University of Tsukuba , Ibaraki , Japan
| | - Satoru Takahashi
- c Department of Anatomy and Embryology , University of Tsukuba , Ibaraki , Japan
| | - Atsuo Ogura
- a RIKEN BioResource Research Center , Tsukuba , Ibaraki , Japan.,e Graduate School of Life and Environmental Sciences , University of Tsukuba , Ibaraki , Japan.,f RIKEN Cluster for Pioneering Research , Saitama , Japan
| |
Collapse
|
7
|
Kong P, Yin M, Chen D, Li S, Li Y, Xing F, Jiang M, Fang Z, Lyu Q, Chen X. Effects of the histone deacetylase inhibitor 'Scriptaid' on the developmental competence of mouse embryos generated through round spermatid injection. Hum Reprod 2016; 32:76-87. [PMID: 27864358 DOI: 10.1093/humrep/dew290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/18/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Can the histone deacetylase inhibitor Scriptaid improve the efficiency of the development of round spermatid injection (ROSI)-fertilized embryos in a mouse model? SUMMARY ANSWER Treatment of ROSI mouse zygotes with Scriptaid increased the expression levels of several development-related genes at the blastocyst stage, resulting in more efficient in vitro development of the blastocyst and an increased birth rate of ROSI-derived embryos. WHAT IS KNOWN ALREADY The full-term development of embryos derived through ROSI is significantly lower than that following ICSI in humans and other species. STUDY DESIGN, SIZE, DURATION Oocytes, spermatozoa and round spermatids were collected from BDF1 (C57BL/6 × DBA/2) mice. For in vitro development experiments, mouse ROSI-derived zygotes were treated with Scriptaid at different concentrations (0, 125, 250, 500 and 1000 nM) and for different exposure times (0, 6, 10, 16 or 24 h). Next, blastocysts of the optimal Scriptaid-treated group and the non-treated ROSI group were separately transferred into surrogate ICR mice to compare in vivo development with the ICSI group (control). Each experiment was repeated at least three times. PARTICIPANTS/MATERIALS, SETTING, METHODS Metaphase II (MII) oocytes, spermatozoa and round spermatids were obtained from sexually mature BDF1 female or male mice. The developmental potential of embryos among the three groups (the ICSI, ROSI and optimal Scriptaid-treated ROSI groups) was assessed based on the rates of obtaining zygotes, two-cell stage embryos, four-cell stage embryos, blastocysts and full-term offspring. In addition, the expression levels of development-related genes (Oct4, Nanog, Klf4 and Sox2) were analysed using real-time PCR, and the methylation states of imprinted genes (H19 and Snrpn) in these three groups were detected using methylation-specific PCR (MS-PCR) sequencing following bisulfite treatment. MAIN RESULTS AND THE ROLE OF CHANCE The in vitro experiments revealed that treating ROSI-derived zygotes with 250 nM Scriptaid for 10 h significantly improved the blastocyst formation rate (59%) compared with the non-treated group (38%) and further increased the birth rates of ROSI-derived embryos from 21% to 40% in vivo. Moreover, in ROSI-derived embryos, the expression of the Oct4, Nanog and Sox2 genes at the blastocyst stage was decreased, but the optimal Scriptaid treatment restored expression to a level similar to their ICSI counterparts. In addition, Scriptaid treatment moderately repaired the abnormal DNA methylation pattern in the imprinting control regions (ICRs) of H19 and Snrpn. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION: Because of the ethics regarding the use of human gametes for ROSI studies, the mouse model was used as an approach to explore the effects of Scriptaid on the developmental potential of ROSI-derived embryos. However, to determine whether these findings can be applied to humans, further investigation will be required. WIDER IMPLICATIONS OF THE FINDINGS Scriptaid treatment provides a new means of improving the efficiency and safety of clinical human ROSI. STUDY FUNDING/COMPETING INTERESTS The study was financially supported through grants from the National Key Research Program of China (No. 2016YFC1304800); the National Natural Science Foundation of China (Nos: 81170756, 81571486); the Natural Science Foundation of Shanghai (Nos: 15140901700, 15ZR1424900) and the Programme for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Pengcheng Kong
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China.,Center of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 West Gaoke, 200040 Shanghai, China
| | - Mingru Yin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju road, 200011 Shanghai, China
| | - Dongbao Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Shangang Li
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Fengying Xing
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Manxi Jiang
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Zhenfu Fang
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju road, 200011 Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| |
Collapse
|
9
|
Liao HF, Mo CF, Wu SC, Cheng DH, Yu CY, Chang KW, Kao TH, Lu CW, Pinskaya M, Morillon A, Lin SS, Cheng WTK, Bourc'his D, Bestor T, Sung LY, Lin SP. Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction 2015; 150:245-56. [PMID: 26159833 DOI: 10.1530/rep-15-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022]
Abstract
Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chu-Fan Mo
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shinn-Chih Wu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Dai-Han Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chih-Yun Yu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Kai-Wei Chang
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Tzu-Hao Kao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chia-Wei Lu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Marina Pinskaya
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Antonin Morillon
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shih-Shun Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| | - Winston T K Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Déborah Bourc'his
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Timothy Bestor
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Li-Ying Sung
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| |
Collapse
|