1
|
Weston WC, Hales KH, Hales DB. Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria. Curr Issues Mol Biol 2024; 46:12322-12342. [PMID: 39590326 PMCID: PMC11592616 DOI: 10.3390/cimb46110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This review provides an integrative framework for understanding flaxseed (Linum utassitissimum) as an antimicrobial alternative for poultry production. We begin by familiarizing the reader with the global legislation of antibiotics in animal husbandry; highlighting gaps and current issues for Salmonella enterica (S. enterica) and Eimeria (coccidiosis-inducing). We then discuss the natural, symbiotic characteristics of the Galliformes order (chicken-like birds) and Linum (the flaxes). The key immunological themes in this review include: (i) flaxseed's regulation of innate and adaptive immunity in chickens, (ii) flaxseed's ability to accelerate chicken recovery from infection with S. enterica and Eimeria, and (iii) flaxseed's strengthening of immunity via vitamin B6 antagonism. Research indicates that whole flaxseed increases adaptive immune capacity by augmenting cecal Bacteroides and short-chain fatty acids while also attenuating the heterophil to lymphocyte ratio in chickens. Moreover, flaxseed accelerates chicken recovery from infection with Salmonella Enteritidis or Eimeria tenella; however, future work is needed to better understand (i) defatted flaxseed's superior performance against Eimeria species and (ii) Eimeria maxima's resilience against whole flaxseed. In the context of vitamin B6 antagonism, we propose that 15% whole flaxseed overcomes S. enterica's insult to estrogen synthesis by sustaining the activity of phosphatidylethanolamine methyltransferase (PEMT) in liver. We also propose that 10% defatted flaxseed (as a metformin homologue) strengthens chicken immunity by safeguarding gonadal physiology and by increasing plasma thymidine bioavailability. The concepts in this review can be used as a template for conducting advanced immunological studies in poultry science.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
2
|
Han X, Li Y, Zong Y, Zhao Y, Jiang L, Ni A, Yang H, Yuan J, Ma H, Ma L, Chen J, Ma T, Sun Y. Key miRNAs of chicken seminal plasma extracellular vesicles related with sperm motility regulation. Int J Biol Macromol 2024; 277:134022. [PMID: 39038569 DOI: 10.1016/j.ijbiomac.2024.134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
MicroRNAs (miRNAs) are bio-active elements cargoed by seminal plasma extracellular vesicles extracellular vesicles (SPEVs) which are crucial for sperm function and fertility modulation. This study aimed to isolate, characterize, and identify the miRNA expression profiles in the SPEVs from high (HSM) and low sperm motility (LSM) groups that could serve as fertility biomarkers and explain the underlying mechanisms. The isolated SPEVs were round spherical structures of approximately 50-200 nm in diameter expressing molecular markers. A total of 1006 and 1084 miRNAs were detected in HSM and LSM, respectively, with 34 being differentially expressed. Their targeted genes involved in SNARE interactions in vesicular transport, Metabolic pathways, and Apelin signaling pathway, etc. The joint analysis with mRNAs of sperm and sperm storage tubules cells highlighted the cellular communication mediated by SPEVs miRNAs, where they may rule fertility by affecting sperm maturation and amino acid metabolism. SPEVs as additives could improve fertility of fresh and frozen sperm, while the knockdown of one of the differentially expressed miRNAs, miR-24-3p, diminished this effect, indicating its crucial roles. This study expands our understanding of SPEVs miRNAs mediated sperm maturation and fertility modulation, and may help to develop new therapeutic strategies for infertility and sperm storage.
Collapse
Affiliation(s)
- Xintong Han
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yi Zhao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Lijun Jiang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hanhan Yang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Ma
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tenghe Ma
- College of medicine, Hebei University of Engineering, Handan 056000, Hebei, China.
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
4
|
Antonouli S, Di Nisio V, Messini C, Samara M, Salumets A, Daponte A, Anifandis G. Sperm plasma membrane ion transporters and male fertility potential: A perspective under the prism of cryopreservation. Cryobiology 2024; 114:104845. [PMID: 38184269 DOI: 10.1016/j.cryobiol.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Intracellular calcium homeostasis plays a crucial role in spermatozoa by regulating physiological functions associated with sperm quality and male fertility potential. Intracellular calcium fine balance in the sperm cytoplasm is strictly dependent on sperm surface channels including the CatSper channel. CatSpers' role is to ensure the influx of extracellular calcium, while intracellular pH alkalinization serves as a stimulus for the activation of several channels, including CatSper. Overall, the generation of intracellular calcium spikes through CatSper is essential for fertilization-related processes, such as sperm hyperactivation, acrosome reaction, egg chemotaxis, and zona pellucida penetration. Multiple lines of evidence suggest that disruption in the close interaction among ions, pH, and CatSper could impair male fertility potential. In contemporary times, the growing reliance on Medically Assisted Reproduction procedures underscores the impact of cryopreservation on gametes. In fact, a large body of literature raises concerns about the cryo-damages provoked by the freeze-thawing processes, that can affect the plasma membrane integrity, thus the structure of pivotal ion channels, and the fine regulation of both intracellular calcium and pH. This review aims to provide an overview of the importance of the CatSper channel in sperm quality and further fertilization potential. Additionally, it addresses the emerging issue of cryopreservation's impact on the functionality of this sperm channel.
Collapse
Affiliation(s)
- Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden.
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Competence Centre on Health Technologies, Tartu, Estonia.
| | - Alexandros Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| |
Collapse
|
5
|
Li Y, Wang Y, An T, Tang Y, Shi M, Zhang W, Xue M, Wang X, Zhang J. Non-thermal plasma promotes boar sperm quality through increasing AMPK methylation. Int J Biol Macromol 2024; 257:128768. [PMID: 38096931 DOI: 10.1016/j.ijbiomac.2023.128768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Boar sperm quality, as an important indicator of reproductive efficiency, directly affects the efficiency of livestock production. Here, this study was conducted to improve the boar sperm quality by using a non-thermal dielectric barrier discharge (DBD) plasma. Our results showed that DBD plasma exposure at 2.1 W for 15 s could improve boar sperm quality by increasing exon methylation level of adenosine monophosphate-activated protein kinase (AMPK) and thus improving the glycolytic flux, mitochondrial function, and antioxidant capacity without damaging the integrity of sperm DNA and acrosome. In addition, DBD plasma could rescue DNA methyltransferase inhibitor decitabine-caused low sperm quality through reducing the oxidative stress and mitochondrial damage. Therefore, the application of non-thermal plasma provides a new strategy for reducing sperm oxidative damage and improving sperm quality, which shows a great potential in assisted reproduction to solve the problem of male infertility.
Collapse
Affiliation(s)
- Yaqi Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China; Jianyang Municipal People's Government Shiqiao Street Office Comprehensive Convenience Service Center, Jianyang, Sichuan 641400, China
| | - Yusha Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Tianyi An
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yao Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Mei Shi
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Wenyu Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Mengqing Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China.
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
6
|
Zhang X, Guo SM, Zhu DW, Li Y, Wen F, Xian M, Hu ZT, Zou QL, Zhang LK, Chen YL, Hu JH. Metformin improves sheep sperm cryopreservation via vitalizing the AMPK pathway. Theriogenology 2023; 208:60-70. [PMID: 37301167 DOI: 10.1016/j.theriogenology.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a key regulator of sperm function and physiological metabolism. Metformin, an inexpensive and effective antioxidant, is known to play an important role in the activation of AMPK. Therefore metformin has potential to improve sperm cryopreservation. The aim of this study was to investigate the effect of metformin during semen cryopreservation of sheep and to find the most effective concentration in freezing extender. Semen were cryopreserved with extender containing different concentrations of metformin (0, 0.25, 0.5, 1.0, 2.0 and 4.0 mmol/L). Sperm motility, acrosome integrity and plasma membrane integrity were measured after semen freezing and thawing. All results showed that sperm quality was significantly increased in the 1.0 mmol/L metformin-treated group compared with the control group (P < 0.05). In addition, the study showed that metformin effectively reduced the content of malondialdehyde (MDA) and reactive oxygen species (ROS), and increased the activity of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) of freeze-thawed sperm (P < 0.05). The optimal concentration of metformin was 1.0 mmol/L. Moreover, the results showed that AMPK was localized in the acrosome region, junction and midsection of sperm, and p-AMPK was distributed in the post-acrosomal region, junction and midsection. Western blot analysis indicated that 1.0 mmol/L metformin stimulated the phosphorylation of AMPK in sperm. Further results showed that 1.0 mmol/L metformin significantly increased the mitochondrial membrane potential (ΔΨm), ATP content, glucose uptake and lactate efflux of post-thawed sperm through the AMPK pathway, improved sperm quality, and increased the cleavage rate of in vitro fertilization (P < 0.05).
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Song-Mao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Da-Wei Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhang-Tao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian-Long Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li-Kun Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu-Lin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian-Hong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Hu X, Zhu L, Ouyang Q, Wang J, Hu J, Hu B, Hu S, He H, Li L, Liu H, Wang J. Comparative transcriptome analysis identified crucial genes and pathways affecting sperm motility in the reproductive tract of drakes with different libido. Poult Sci 2023; 102:102560. [PMID: 36881978 PMCID: PMC9993030 DOI: 10.1016/j.psj.2023.102560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Libido can affect the semen quality of male, and the sperm motility in semen quality parameters is a reliable index to evaluate the fertility of male. In drakes, the sperm motility is gradually acquired in testis, epididymis, and spermaduct. However, the relationship between libido and sperm motility in drakes has not been reported and the mechanisms of testis, epididymis, and spermaduct regulating the sperm motility of drakes are unclear. Therefore, the purpose of the present study was to compare the semen quality of drakes with libido level 4 (LL4) and libido level 5 (LL5), and tried to identify the mechanisms regulating the sperm motility in drakes by performing RNA-seq in testis, epididymis, and spermaduct. Phenotypically, the sperm motility of drakes (P < 0.01), weight of testis (P < 0.05), and organ index of epididymis (P < 0.05) in the LL5 group were significantly better than those in LL4 group. Moreover, compared with the LL4 group, the ductal square of seminiferous tubule (ST) in testis was significantly bigger in the LL5 group (P < 0.05), and the seminiferous epithelial thickness (P < 0.01) of ST in testis and lumenal diameter (P < 0.05) of ductuli conjugentes/dutus epididymidis in epididymis were significantly longer in the LL5 group. In transcriptional regulation, in addition to KEGG pathways related to metabolism and oxidative phosphorylation, lots of KEGG pathways associated with immunity, proliferation, and signaling were also significantly enriched in testis, epididymis, and spermaduct, respectively. Furthermore, through the integrated analysis of coexpression network and protein-protein interaction network, 3 genes (including COL11A1, COL14A1, and C3AR1) involved in protein digestion and absorption pathway and Staphylococcus aureus infection pathway were identified in testis, 2 genes (including BUB1B and ESPL1) involved in cell cycle pathway were identified in epididymis, and 13 genes (including DNAH1, DNAH3, DNAH7, DNAH10, DNAH12, DNAI1, DNAI2, DNALI1, NTF3, ITGA1, TLR2, RELN, and PAK1) involved in Huntington disease pathway and PI3K-Akt signaling pathway were identified in spermaduct. These genes could play crucial roles in the sperm motility of drakes with different libido, and all data the present study obtained will provide new insights into the molecular mechanisms regulating sperm motility of drakes.
Collapse
Affiliation(s)
- Xinyue Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Lipeng Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Junqi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Liu Q, Zhu C, Ma Y, Wang Y, Zheng L, Jin T, He S, Yang F, Dong W. Metformin improves fish sperm quality by regulating glucose uptake capacity during in vitro storage. J Anim Sci 2023; 101:skad152. [PMID: 37191447 PMCID: PMC10237230 DOI: 10.1093/jas/skad152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023] Open
Abstract
A suitable additive for fish sperm storage in vitro is necessary for artificial reproduction. In this study, we evaluated the effects of different concentrations (100, 200, 400, and 800 µmol/L) of metformin (Met) on Schizothorax prenanti and Onychostoma macrolepis sperm under storage in vitro for 72 h. Compared with the control group, 400 µmol/L Met was more effective at improving the quality and fertilization capacity of S. prenanti sperm by increasing the adenosine triphosphate (ATP) content within the sperm. Further study found that Met stabilized the ATP level by enhancing the glucose uptake in S. prenanti sperm, and this effect might be associated with the activation of AMP-activated protein kinase (AMPK) in sperm. In this study, we also found that glucose could be absorbed by the sperm of S. prenanti, which was mainly accumulated in the midpiece of S. prenanti sperm, where mitochondria were located. In addition, Compound C significantly inhibited the beneficial effects of Met on the quality and glucose uptake capacity of S. prenanti sperm by inhibiting AMPK phosphorylation. These results revealed that AMPK played an important role in vitro sperm storage, and Met maintained ATP content and increased the storage time of S. prenanti sperm in vitro for 72 h, possibly due to Met enhanced glucose uptake capacity of sperm by activating AMPK. Similarly, the beneficial effects of Met on S. prenanti sperm were also found in O. macrolepis sperm, suggesting that Met may hold great promise for the practice of storing fish in vitro.
Collapse
Affiliation(s)
- Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Janosikova M, Petricakova K, Ptacek M, Savvulidi FG, Rychtarova J, Fulka J. New approaches for long-term conservation of rooster spermatozoa. Poult Sci 2022; 102:102386. [PMID: 36599200 PMCID: PMC9817176 DOI: 10.1016/j.psj.2022.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In contrast to the livestock industry, sperm cryopreservation has not yet been successfully established in the poultry industry. This is because poultry sperm cells have a unique shape and membrane fluidity, differing from those of livestock sperm. The objective of this review is to discuss the cellular and molecular characteristics of rooster spermatozoa as a cause for their generally low freezability. Furthermore, here, we discuss novel developments in the field of semen extenders, cryoprotectants, and freezing processes, all with the purpose of increasing the potential of rooster sperm cryopreservation. Currently, it is very important to improve cryopreservation of rooster sperm on a global scale for the protection of gene resources due to the incidence of epidemics such as avian influenza.
Collapse
Affiliation(s)
- Martina Janosikova
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic,Corresponding author:
| | - Kristyna Petricakova
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Martin Ptacek
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Filipp Georgijevic Savvulidi
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Jana Rychtarova
- Department of Biology of Reproduction, Institute of Animal Science, 104 00 Praha, Uhříněves, Czech Republic
| | - Josef Fulka
- Department of Biology of Reproduction, Institute of Animal Science, 104 00 Praha, Uhříněves, Czech Republic
| |
Collapse
|
10
|
Partyka A, Niżański W. Advances in storage of poultry semen. Anim Reprod Sci 2022; 246:106921. [PMID: 34996657 DOI: 10.1016/j.anireprosci.2021.106921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022]
Abstract
Semen cryopreservation is a key biotechnological strategy used to preserve and protect genetic resources, which are subject to increasingly serious reductions in some species, and to protect animal biodiversity. Assisted reproductive techniques, however, are still not utilized to the same extent in avian species to the extent that occurs in mammals. The reasons for this situation are described in this review. The content of this paper is focused on current poultry preservation systems, published since 2010, and new strategies that are very promising for preserving avian genetic resources. Two major types of storage technologies which are utilized for avian sperm preservation, liquid storage and cryopreservation, are emphasized. The issues on which there is a focus includes supplementation of avian extenders with various compounds prior to the preservation period, use of cryoprotectants and fertility results when there were in vitro sperm evaluations. Results from recent studies indicate there are opportunities to improve the quality of bird semen after preservation. It is obvious that cryo-diluent composition may be the most important factor for development of efficacious cryopreservation methods for avian semen.
Collapse
Affiliation(s)
- Agnieszka Partyka
- Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, pl. Grunwaldzki 49, 50-366 Wroclaw, Poland.
| | - Wojciech Niżański
- Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| |
Collapse
|
11
|
Zhang R, Guo X, Liang C, Pei J, Bao P, Yin M, Wu F, Chu M, Yan P. Identification and Validation of Yak ( Bos grunniens) Frozen-Thawed Sperm Proteins Associated with Capacitation and the Acrosome Reaction. J Proteome Res 2022; 21:2754-2770. [PMID: 36251486 DOI: 10.1021/acs.jproteome.2c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To achieve fertilization, mammalian spermatozoa must undergo capacitation and the acrosome reaction (AR) within the female reproductive tract. However, the effects of cryopreservation on sperm maturation and fertilizing potential have yet to be established. To gain insight into changes in protein levels within sperm cells prepared for use in the context of fertilization, a comprehensive quantitative proteomic profiling approach was used to analyze frozen-thawed Ashidan yak spermatozoa under three sequential conditions: density gradient centrifugation-based purification, incubation in a capacitation medium, and treatment with the calcium ionophore A23187 to facilitate AR induction. In total, 3280 proteins were detected in these yak sperm samples, of which 3074 were quantified, with 68 and 32 being significantly altered following sperm capacitation and AR induction. Differentially abundant capacitation-related proteins were enriched in the metabolism and PPAR signaling pathways, while differentially abundant AR-related proteins were enriched in the AMPK signaling pathway. These data confirmed a role for superoxide dismutase 1 (SOD1) as a regulator of sperm capacitation while also offering indirect evidence that heat shock protein 90 alpha (HSP90AA1) regulates the AR. Together, these findings offer a means whereby sperm fertility-related marker proteins can be effectively identified. Data are available via Proteome Xchange with identifier PXD035038.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
12
|
Zhang R, Liang C, Guo X, Bao P, Pei J, Wu F, Yin M, Chu M, Yan P. Quantitative phosphoproteomics analyses reveal the regulatory mechanisms related to frozen-thawed sperm capacitation and acrosome reaction in yak (Bos grunniens). Front Physiol 2022; 13:1013082. [PMID: 36277216 PMCID: PMC9583833 DOI: 10.3389/fphys.2022.1013082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian spermatozoa are not mature after ejaculation and must undergo additional functional and structural changes within female reproductive tracts to achieve subsequent fertilization, including both capacitation and acrosome reaction (AR), which are dominated by post-translational modifications (PTMs), especially phosphorylation. However, the mechanism of protein phosphorylation during frozen-thawed sperm capacitation and AR has not been well studied. In this study, the phosphoproteomics approach was employed based on tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy to analyze frozen-thawed sperm in Ashidan yak under three sequential conditions (density gradient centrifugation-based purification, incubation in the capacitation medium and induction of AR processes by the calcium ionophore A23187 treatment). The identification of 1,377 proteins with 5,509 phosphorylation sites revealed changes in phosphorylation levels of sperm-specific proteins involved in regulation of spermatogenesis, sperm motility, energy metabolism, cilium movement, capacitation and AR. Some phosphorylated proteins, such as AKAP3, AKAP4, SPA17, PDMD11, CABYR, PRKAR1A, and PRKAR2A were found to regulate yak sperm capacitation and AR though the cAMP/PKA signaling pathway cascades. Notably, the phosphorylation level of SPA17 at Y156 increased in capacitated sperm, suggesting that it is also a novel functional protein besides AKAPs during sperm capacitation. Furthermore, the results of this study suggested that the phosphorylation of PRKAR1A and PRKAR2A, and the dephosphorylation of CABYR both play key regulatory role in yak sperm AR process. Protein-protein interaction analysis revealed that differentially phosphorylated proteins (AKAP3, AKAP4, FSIP2, PSMD11, CABYR, and TPPP2) related to capacitation and AR process played a key role in protein kinase A binding, sperm motility, reproductive process, cytoskeleton and sperm flagella function. Taken together, these data provide not only a solid foundation for further exploring phosphoproteome of sperm in yak, but an efficient way to identify sperm fertility-related marker phosphorylated proteins.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| |
Collapse
|
13
|
van Losenoord W, Levendal RA, Frost CL. Cannabis and metformin on diabetic male Wistar rat sperm and reproductive organ parameters. J Diabetes Metab Disord 2022. [PMID: 36404868 PMCID: PMC9672239 DOI: 10.1007/s40200-022-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Purpose Cannabis use has reportedly increased in type 2 diabetic users as a possible co-treatment for associated pain and inflammation. Both cannabis and metformin (an anti-diabetic drug) have a limited number of studies completed on their effect on male reproductive parameters in a diabetic model. This study determined if cannabis and metformin administration alter various reproductive parameters in diabetic male rats. Methods Male Wistar rats (n = 35) were fed on a high fat diet and injected with streptozotocin (30 mg/kg rat) to induce a type-2 diabetic model. Treatment groups received cannabis based on Delta-9-Tetrahydrocannabinol (THC) concentrations of 1.25, 2.5 and 5 mg/kg per rat and metformin (50 mg/kg) every alternate day for 10 weeks. Organ weight; serum testosterone levels and sperm count, motility, lipid peroxidation, citrate synthase and lactate dehydrogenase activities were measured. Results Cannabis treatment induced a significant concentration dependent decrease in sperm motility at 5 mg/kg rat THC (P = 0.009) administration. Metformin significantly (P = 0.035) increased sperm counts and lactate dehydrogenase activity (P = 0.002). Both cannabis and metformin negatively affected testosterone concentrations. Conclusions Cannabis needs to be used cautiously as an alternative treatment in diabetic males based on the negative effects observed for the various reproductive parameters in this diabetic rat model.
Collapse
|
14
|
Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration? Cells 2022; 11:cells11111854. [PMID: 35681548 PMCID: PMC9180731 DOI: 10.3390/cells11111854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CAR) has demonstrated striking efficacy for the treatment of several hematological malignancies, including B-cell lymphoma, leukemia, and multiple myeloma. However, many patients still do not respond to this therapy or eventually relapse after an initial remission. In most solid tumors for which CAR T-cell therapy has been tested, efficacy has been very limited. In this context, it is of paramount importance to understand the mechanisms of tumor resistance to CAR T cells. Possible factors contributing to such resistance have been identified, including inherent CAR T-cell dysfunction, the presence of an immunosuppressive tumor microenvironment, and tumor-intrinsic factors. To control tumor growth, CAR T cells have to migrate actively enabling a productive conjugate with their targets. To date, many cells and factors contained within the tumor microenvironment have been reported to negatively control the migration of T cells and their ability to reach cancer cells. Recent evidence suggests that additional determinants, such as immune checkpoint proteins, cellular metabolism, and adhesion molecules, may modulate the motility of CAR T cells in tumors. Here, we review the potential impact of these determinants on CAR T-cell motility, and we discuss possible strategies to restore intratumoral T-cell migration with a special emphasis on approaches targeting these determinants.
Collapse
|
15
|
Lin HLH, Blesbois E, Vitorino Carvalho A. Chicken semen cryopreservation: importance of cryoprotectants. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1998816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hsiu-Lien Herbie Lin
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Physiology Division, Livestock Research Institute (LRI), COA, Tainan, Taiwan
| | | | | |
Collapse
|
16
|
Setiawan R, Priyadarshana C, Miyazaki H, Tajima A, Asano A. Functional difference of ATP-generating pathways in rooster sperm (Gallus gallus domesticus). Anim Reprod Sci 2021; 233:106843. [PMID: 34520995 DOI: 10.1016/j.anireprosci.2021.106843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Adenosine triphosphate (ATP) production via glycolysis and oxidative phosphorylation is essential for the maintenance of flagellar motility in sperm; however, the primary energy production pathways supporting fertilization vary among species. Inconsistency in thought exists regarding which pathways maintain ATP production and sperm motility in poultry. Glycolysis and mitochondrial oxidation contribute to flagellar motion in chicken sperm, but the relative dependence on these pathways for motility and penetrability into the inner perivitelline layer remains unclear. In the present study, there was use of various inhibitors and energy substrates to evaluate the relative contribution of anaerobic glycolysis and mitochondrial oxidation to chicken sperm flagellar motility, ATP production, and penetrating capacity through the perivitelline layer. Although both pathways contributed to these processes to varying extent, glucose was the primary substrate for sperm penetration into the inner perivitelline layer in chickens. Furthermore, results from metabolic stress analyses indicated that there was less perivitelline penetrability in response to pyruvate that was not due to changes in reactive oxygen species or intracellular pH. Overall, results from the present study indicate glycolysis and mitochondrial oxidation pathways have distinct functions in the flagellar motility and penetrability of the perivitelline membrane by rooster sperm. There, therefore, are new insights as a result of findings in the present study into the energy production system of sperm through which there is utilization of extracellular metabolic substrates for maintaining sperm fertilization capacity.
Collapse
Affiliation(s)
- Rangga Setiawan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hitoshi Miyazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
17
|
Estradiol ameliorates metformin-inhibited Sertoli cell proliferation via AMPK/TSC2/mTOR signaling pathway. Theriogenology 2021; 175:7-22. [PMID: 34481229 DOI: 10.1016/j.theriogenology.2021.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/31/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Metformin is a commonly used for treating type 2 diabetes and it acts on a variety of organs including the male reproductive system. 17β-estradiol plays an important role in Sertoli cell (SC) proliferation which determines the germ cell development and spermatogenesis. The aim of this study is to investigate the effect of metformin on immature chicken SC proliferation and the potential mechanisms by which 17β-estradiol regulate this process. Results showed that metformin significantly inhibited SC proliferation, whereas 17β-estradiol weakened the inhibitory effects of metformin on SC viability, cell growth, and cell cycle progression. SC proliferation-inhibiting effect of metformin exposure was regulated by decreasing adenosine triphosphate level and respiratory enzyme activity in the mitochondria; this process was possibly mediated by the adenosine monophosphate-activated protein kinase (AMPK)/tuberous sclerosis complex 2 (TSC2)/mammalian target of rapamycin (mTOR) signaling pathway, which was regulated by the down-expressed miR-1764 and by the decreased antioxidant enzyme activity and excessive reactive oxygen species generation. In addition, SCs transfected with the miR-1764 agomir led to an improvement of proliferation capacity through down-regulating AMPKα2 level, which further decreased TSC2 expression and induced mTOR activation. However, the anti-proliferative effect of miR-1764 antagomir can be alleviated by 17β-estradiol treatment via the up-expression of miR-1764 in transfected SCs. Our findings suggest appropriate dose of exogenous 17β-estradiol treatment can ameliorate the inhibitory effect of metformin on SC proliferation via the regulation of AMPK/TSC2/mTOR signaling pathway, this might reduce the risk of poor male fertility caused by the abuse of anti-diabetic agents.
Collapse
|
18
|
Rezaie FS, Hezavehei M, Sharafi M, Shahverdi A. Improving the post-thaw quality of rooster semen using the extender supplemented with resveratrol. Poult Sci 2021; 100:101290. [PMID: 34311322 PMCID: PMC8325101 DOI: 10.1016/j.psj.2021.101290] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Avian spermatozoa are highly susceptible to reactive oxygen species (ROS) produced during the cryopreservation. The aim of the current study was to investigate the antioxidant effects of resveratrol (RSV) during rooster semen cryopreservation. Changes in expression of AMP-activated protein kinase as a possible mechanism behind the beneficial effects of resveratrol were also evaluated. Semen samples were collected from ten Ross broiler breeders (52-wk) using abdominal massage, then divided into 4 equal aliquots and cryopreserved in Beltsville extender that contained different concentrations (0 µM, 0.01µM, 0.1µM, and 1µM) of RSV. higher percentage (P < 0.05) of total motility and membrane integrity was observed in RSV-0.1 compared to the other frozen groups. Moreover, higher percentage of sperm mitochondrial activity was observed in the RSV-0.01 and RSV-0.1 compared to the frozen control (P < 0.05). The lowest percentage of apoptotic like changes was found in the RSV-0.1 in comparison to the other groups (P < 0.05). RSV-0.01 and RSV-1 groups produced the lowest levels of H2O2 and O2- compared to the other frozen groups, respectively. Malondialdehyde (MDA) concentration, velocity average path (VAP), and linearity (LIN) were not affected by different concentrations of RSV (P > 0.05). We observed a dose-dependent increase in AMP-activated protein kinase expression in groups exposed to RSV. Thus, RSV-1 increased AMP-activated protein kinase phosphorylation but had no positive effects on post thaw sperm parameters. Our findings suggest that RSV-0.1 improve thawed sperm functions, and these effects might be mediated through activation of AMP-activated protein kinase.
Collapse
Affiliation(s)
- Fereshteh Sadat Rezaie
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Abdolhosein Shahverdi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Signorini C, Moretti E, Noto D, Mattioli S, Castellini C, Pascarelli NA, Durand T, Oger C, Galano JM, De Felice C, Lee JCY, Collodel G. F 4-Neuroprostanes: A Role in Sperm Capacitation. Life (Basel) 2021; 11:life11070655. [PMID: 34357027 PMCID: PMC8306804 DOI: 10.3390/life11070655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
F4-neuroprostanes (F4-NeuroPs), derived from the oxidative metabolization of docosahexaenoic acid (DHA), are considered biomarkers of oxidative stress in neurodegenerative diseases. Neurons and spermatozoa display a high DHA content. NeuroPs might possess biological activities. The aim of this in vitro study was to investigate the biological effects of chemically synthetized 4-F4t-NeuroP and 10-F4t-NeuroP in human sperm. Total progressive sperm motility (p < 0.05) and linearity (p = 0.016), evaluated by a computer-assisted sperm analyzer, were significantly increased in samples incubated with 7 ng F4-NeuroPs compared to non-supplemented controls. Sperm capacitation was tested in rabbit and swim-up-selected human sperm by chlortetracycline fluorescence assay. A higher percentage of capacitated sperm (p < 0.01) was observed in samples incubated in F4-NeuroPs than in the controls. However, the percentage of capacitated sperm was not different in F4-NeuroPs and calcium ionophore treatments at 2 h incubation. The phosphorylated form of AMPKα was detected by immunofluorescence analysis; after 2 h F4-NeuroP incubation, a dotted signal appeared in the entire sperm tail, and in controls, sperm were labeled in the mid-piece. A defined level of seminal F4-NeuroPs (7 ng) showed a biological activity in sperm function; its addition in sperm suspensions stimulated capacitation, increasing the number of sperm able to fertilize.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
- Correspondence: ; Tel.: +39-577-233511
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
| | - Simona Mattioli
- Department of Agricultural, Environmental, and Food Science, University of Perugia, Borgo XX Giugno 74, 06123 Perugia, Italy; (S.M.); (C.C.)
| | - Cesare Castellini
- Department of Agricultural, Environmental, and Food Science, University of Perugia, Borgo XX Giugno 74, 06123 Perugia, Italy; (S.M.); (C.C.)
| | - Nicola Antonio Pascarelli
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France; (T.D.); (C.O.); (J.-M.G.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France; (T.D.); (C.O.); (J.-M.G.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34090 Montpellier, France; (T.D.); (C.O.); (J.-M.G.)
| | - Claudio De Felice
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | | | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria Alle Scotte, Viale Bracci 14, 53100 Siena, Italy; (C.S.); (D.N.); (N.A.P.); (G.C.)
| |
Collapse
|
20
|
Li RN, Zhu ZD, Zheng Y, Lv YH, Tian XE, Wu D, Wang YJ, Zeng WX. Metformin improves boar sperm quality via 5'-AMP-activated protein kinase-mediated energy metabolism in vitro. Zool Res 2021; 41:527-538. [PMID: 32738111 PMCID: PMC7475019 DOI: 10.24272/j.issn.2095-8137.2020.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sperm are specialized cells that require adenosine triphosphate (ATP) to support their function. Maintaining sperm energy homeostasis in vitro is vitally important to improve the efficacy of boar sperm preservation. Metformin can activate 5′-AMP-activated protein kinase (AMPK) to improve metabolic flexibility and maintain energy homeostasis. Thus, the aim of the present study was to investigate whether metformin can improve boar sperm quality through AMPK mediation of energy metabolism. Sperm motility parameters, membrane integrity, acrosome integrity, mitochondrial membrane potential (ΔΨm), ATP content, glucose uptake, and lactate efflux were analyzed. Localization and expression levels of AMPK and phospho-Thr172-AMPK (p-AMPK) were also detected by immunofluorescence and western blotting. We found that metformin treatment significantly increased sperm motility parameters, ΔΨm, and ATP content during storage at 17 °C. Moreover, results showed that AMPK was localized at the acrosomal region, connecting piece, and midpiece of sperm and p-AMPK was distributed at the post-acrosomal region, connecting piece, and midpiece. When sperm were incubated with metformin for 4 h at 37 °C, sperm motility parameters, ΔΨm, ATP content, p-AMPK, glucose uptake, and lactate efflux all significantly increased, whereas the addition of Compound C treatment, an inhibitor of AMPK, counteracted these positive effects. Together, our results suggest that metformin promotes AMPK activation, which contributes to the maintenance of energy hemostasis and mitochondrial activity, thereby maintaining boar sperm functionality and improving the efficacy of semen preservation.
Collapse
Affiliation(s)
- Rong-Nan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhen-Dong Zhu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ying-Hua Lv
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiu-E Tian
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611100, China
| | - Yong-Jun Wang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Wen-Xian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
21
|
Setiawan R, Priyadarshana C, Tajima A, Travis AJ, Asano A. Localisation and function of glucose transporter GLUT1 in chicken (Gallus gallus domesticus) spermatozoa: relationship between ATP production pathways and flagellar motility. Reprod Fertil Dev 2021; 32:697-705. [PMID: 32317094 DOI: 10.1071/rd19240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Glucose plays an important role in sperm flagellar motility and fertility via glycolysis and oxidative phosphorylation, although the primary mechanisms for ATP generation vary between species. The glucose transporter 1 (GLUT1) is a high-affinity isoform and a major glucose transporter in mammalian spermatozoa. However, in avian spermatozoa, the glucose metabolic pathways are poorly characterised. This study demonstrates that GLUT1 plays a major role in glucose-mediated motility of chicken spermatozoa. Using specific antibodies and ligand, we found that GLUT1 was specifically localised to the midpiece. Sperm motility analysis showed that glucose supported sperm movement during incubation for 0-80min. However, this was abolished by the addition of a GLUT1 inhibitor, concomitant with a substantial decrease in glucose uptake and ATP production, followed by elevated mitochondrial activity in response to glucose addition. More potent inhibition of ATP production and mitochondrial activity was observed in response to treatment with uncouplers of oxidative phosphorylation. Because mitochondrial inhibition only reduced a subset of sperm movements, we investigated the localisation of the glycolytic pathway and showed glyceraldehyde-3-phosphate dehydrogenase and hexokinase I at the midpiece and principal piece of the flagellum. The results of this study provide new insights into the mechanisms involved in ATP production pathways in avian spermatozoa.
Collapse
Affiliation(s)
- Rangga Setiawan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Alexander J Travis
- Baker Institute for Animal Health, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; and Corresponding author.
| |
Collapse
|
22
|
Membrane-Mediated Regulation of Sperm Fertilization Potential in Poultry. J Poult Sci 2021; 59:114-120. [PMID: 35528376 PMCID: PMC9039145 DOI: 10.2141/jpsa.0210104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
|
23
|
Słowińska M, Paukszto Ł, Paweł Jastrzębski J, Bukowska J, Kozłowski K, Jankowski J, Ciereszko A. Transcriptome analysis of turkey (Meleagris gallopavo) reproductive tract revealed key pathways regulating spermatogenesis and post-testicular sperm maturation. Poult Sci 2020; 99:6094-6118. [PMID: 33142529 PMCID: PMC7647744 DOI: 10.1016/j.psj.2020.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
The application of transcriptomics to the study of the reproductive tract in male turkeys can significantly increase our current knowledge regarding the specifics of bird reproduction. To characterize the complex transcriptomic changes that occur in the testis, epididymis, and ductus deferens, deep sequencing of male turkey RNA samples (n = 6) was performed, using Illumina RNA-Seq. The obtained sequence reads were mapped to the turkey genome, and relative expression values were calculated to analyze differentially expressed genes (DEGs). Statistical analysis revealed 1,682; 2,150; and 340 DEGs in testis/epididymis, testis/ductus deferens, and epididymis/ductus deferens comparisons, respectively. The expression of selected genes was validated using quantitative real-time reverse transcriptase-polymerase chain reaction. Bioinformatics analysis revealed several potential candidate genes involved in spermatogenesis, spermiogenesis and flagellum formation in the testis, and in post-testicular sperm maturation in the epididymis and ductus deferens. In the testis, genes were linked with the mitotic proliferation of spermatogonia and the meiotic division of spermatocytes. Histone ubiquitination and protamine phosphorylation were shown to be regulatory mechanisms for nuclear condensation during spermiogenesis. The characterization of testicular transcripts allowed a better understanding of acrosome formation and development and flagellum formation, including axoneme structures and functions. Spermatozoa motility during post-testicular maturation was linked to the development of flagellar actin filaments and biochemical processes, including Ca2+ influx and protein phosphorylation/dephosphorylation. Spermatozoa quality appeared to be controlled by apoptosis and antioxidant systems in the epididymis and ductus deferens. Finally, genes associated with reproductive system development and morphogenesis were identified. To the best of our knowledge, this is the first genome-wide functional investigation of genes associated with tissue-specific processes in turkey reproductive tract. A catalog of genes worthy of further studies to understand the avian reproductive physiology and regulation was provided.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Joanna Bukowska
- In Vitro and Cell Biotechnology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland
| |
Collapse
|
24
|
Grandhaye J, Partyka A, Ligocka Z, Dudek A, Niżański W, Jeanpierre E, Estienne A, Froment P. Metformin Improves Quality of Post-Thaw Canine Semen. Animals (Basel) 2020; 10:ani10020287. [PMID: 32059492 PMCID: PMC7070956 DOI: 10.3390/ani10020287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cryopreservation of semen is getting easier, however, fertilizing results after insemination with frozen-thawed semen is still not constant in canine species depending on the breed and could be still improved. In this study, we decided to modulate the mitochondrial activity through the addition of metformin in semen extender to increase germ cells’ quality. Metformin presented the absence of toxicity and an improvement in sperm motility after thawing, as well as an increase in the expression of several molecular markers associated with quality. In addition, the oxidative stress and DNA damage were reduced in semen frozen in the presence of metformin. Overall, these data suggest that metformin added in canine semen extender has beneficial effects on canine semen quality and could be associated with different components such as vitamins, to enhance the antioxidants status. Abstract Sperm cryopreservation is an assisted reproductive technique routinely used in canine species for genetic conservation. However, during cryopreservation, the DNA damages are still elevated, limiting the fertilization rate. The present study was conducted to evaluate whether supplementation of canine semen extender with a molecule limiting the metabolic activities can improve the quality of frozen-thawed canine spermatozoa. We used metformin, known to limit the mitochondrial respiratory and limit the oxidative stress. Before and during the freezing procedure, metformin (50 µM and 500 µM) has been added to the extender. After thawing, sperm exposed to metformin conserved the same viability without alteration in the membrane integrity or acrosome reaction. Interestingly, 50 µM metformin improved the sperm motility in comparison to the control, subsequently increasing mitochondrial activity and NAD+ content. In addition, the oxidative stress level was reduced in sperm treated with metformin improving the sperm quality as measured by a different molecular marker. In conclusion, we have shown that metformin is able to improve the quality of frozen-thawed dog semen when it is used during the cryopreservative procedure.
Collapse
Affiliation(s)
- Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (J.G.); (E.J.); (A.E.)
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Agnieszka Partyka
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland; (Z.L.); (A.D.); (W.N.)
- Correspondence: (A.P.); (P.F.); Tel.: +48-7-13-20-53-00 (A.P.); +33-2-47-42-78-24 (P.F.)
| | - Zuzanna Ligocka
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland; (Z.L.); (A.D.); (W.N.)
| | - Agata Dudek
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland; (Z.L.); (A.D.); (W.N.)
| | - Wojciech Niżański
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland; (Z.L.); (A.D.); (W.N.)
| | - Eric Jeanpierre
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (J.G.); (E.J.); (A.E.)
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (J.G.); (E.J.); (A.E.)
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (J.G.); (E.J.); (A.E.)
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, 37380 Nouzilly, France
- Correspondence: (A.P.); (P.F.); Tel.: +48-7-13-20-53-00 (A.P.); +33-2-47-42-78-24 (P.F.)
| |
Collapse
|
25
|
Yang Y, Chen H, Weng S, Pan T, Chen W, Wang F, Luo T, Tang Y. In vitro exposure to metformin activates human spermatozoa at therapeutically relevant concentrations. Andrology 2020; 8:663-670. [PMID: 31944615 DOI: 10.1111/andr.12755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metformin, a drug used to treat type 2 diabetes, has gained attention for its multiple therapeutic applications. However, little is known about its effects on human sperm function at therapeutically relevant concentration. OBJECTIVES The aim of this study was to elucidate the in vitro actions of metformin on human sperm function and explore the underlying mechanism of any effects. MATERIALS AND METHODS Human ejaculated spermatozoa were treated with therapeutically relevant concentrations (0.25, 5, 10, 20, 40, and 80 µM) of metformin in vitro. Fertilization-essential functions of spermatozoa were examined, including viability, motility, capacitation, acrosome reaction, hyperactivation, and penetration ability. The signaling pathways mediated by 5'-AMP-activated protein kinase (AMPK), intracellular calcium concentration ([Ca2+ ]i ), and tyrosine phosphorylation of spermatozoa were also measured. RESULTS Although metformin did not affect sperm viability, motility, and [Ca2+ ]i , it significantly increased the percentages of capacitated spermatozoa, acrosomal-reacted spermatozoa, and hyperactivated spermatozoa as well as penetration ability of human spermatozoa at the concentrations of 40 and 80 µM (P < .05). These concentrations of metformin also elevated the levels of phosphorylated AMPK and tyrosine phosphorylation in human spermatozoa. In addition, activation of AMPK by A769662 (an AMPK activator) had similar effects to metformin on human spermatozoa, while inhibition of AMPK by Compound C (an AMPK inhibitor) suppressed the enhancement of metformin on human spermatozoa. CONCLUSION Our findings indicate that metformin activates human sperm function through an AMPK-related mechanism which increases tyrosine phosphorylation at therapeutically relevant concentrations, thereby suggesting its improvement on human sperm function when treating subfertile males of type 2 diabetes.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Shiqi Weng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Tingting Pan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Wenqiong Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Yuxin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China.,Reproductive Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
26
|
New insights in the AMPK regulation in chicken spermatozoa: Role of direct AMPK activator and relationship between AMPK and PKA pathways. Theriogenology 2019; 140:1-7. [PMID: 31419697 DOI: 10.1016/j.theriogenology.2019.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/15/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Energy balance is an important feature for spermatozoa functions. The 5'-AMP-activated protein kinase (AMPK), a sensor of cell energy, has been implicated as a mediator between spermatozoa functions and energy balance. We recently identified and localized the AMPK protein in chicken spermatozoa and showed that its activation with non-specific activators significantly modified spermatozoa quality. The aim of the present study was to determine more directly the role of AMPK activation induced by the specific activator A-769662 and the interaction between AMPK and another pathway, the protein kinase A (PKA) signaling pathway in bird spermatozoa. The results showed that A-769662 induced at the low dose 50 μM an increase in spermatozoa motility, viability, and acrosome reaction through AMPK activation. Furthermore, phospho-Thr172-AMPK levels were greatly decreased by the PKA inhibitor H89 that also decreased spermatozoa quality. The inhibitory action of H89 was also efficient on A-769662 AMPK phosphorylation. We conclude that AMPK activity in bird spermatozoa is stimulated by low dose of A-769662 with consequent increase in spermatozoa quality, and that AMPK is upstream regulated by PKA pathway in this model.
Collapse
|
27
|
Lee-Estevez M, Herrera L, Díaz R, Beltrán J, Figueroa E, Dumorné K, Ulloa-Rodríguez P, Short S, Risopatrón J, Valdebenito I, Farías J. Effects of cryopreservation on cAMP-dependent protein kinase and AMP-activated protein kinase in Atlantic salmon (Salmo salar) spermatozoa: Relation with post-thaw motility. Anim Reprod Sci 2019; 209:106133. [PMID: 31514940 DOI: 10.1016/j.anireprosci.2019.106133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
Abstract
Sperm motility in fish with external fertilization is critical for reproductive efficiency in aquaculture, especially in salmonids. Gamete preservation techniques, such as cryopreservation, however, reduce sperm motility and fertilizing capacity. Very few studies have addressed cryodamage from energetic and cell signalling approaches. In this study, cAMP-dependent protein kinase (PKA) and AMP-activated kinase (AMPK) activities were quantified in fresh and cryopreserved spermatozoa of Atlantic salmon (Salmo salar); and the relation with motility was analysed. Results indicate there was a decrease in membrane integrity and motility in post-thawed spermatozoa compared to fresh samples, however, there was about 30% of cells with intact plasma membrane but incapable of motility. The PKA and AMPK activities were less after cryopreservation, indicating that loss of motility may be related to alteration of these key enzymes. Furthermore, PKA and AMPK activities were positively correlated with each other and with motility; and inhibition decreased motility, indicating there is a functional relationship between PKA and AMPK. The PKA inhibition also decreased AMPK activity, but results from protein-protein docking analyses indicated AMPK activation directly by PKA is unlikely, thus an indirect mechanism may exist. There have been no previous reports of these kinase actions in fish spermatozoa, making these findings worthy of assessment when there are future studies being planned, and may serve as base knowledge for optimization of cryopreservation procedures and development of biotechnologies to improve reproduction efficiency in the aquaculture industry.
Collapse
Affiliation(s)
- Manuel Lee-Estevez
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile
| | - Rommy Díaz
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Jorge Beltrán
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Elías Figueroa
- School of Aquaculture. Catholic University of Temuco, Av. Rudecindo Ortega 02950, Temuco, Chile; Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Kelly Dumorné
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Patricio Ulloa-Rodríguez
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Stefanía Short
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Jennie Risopatrón
- Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile
| | - Ivan Valdebenito
- School of Aquaculture. Catholic University of Temuco, Av. Rudecindo Ortega 02950, Temuco, Chile
| | - Jorge Farías
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145 Box 54D, Temuco, Chile; Center of Biotechnology of Reproduction (CEBIOR), Bioresources Research Nucleus (BIOREN), Universidad de La Frontera, Montevideo 0870, Temuco, Chile.
| |
Collapse
|
28
|
Zhang JJ, Chandimali N, Kim N, Kang TY, Kim SB, Kim JS, Wang XZ, Kwon T, Jeong DK. Demethylation and microRNA differential expression regulate plasma-induced improvement of chicken sperm quality. Sci Rep 2019; 9:8865. [PMID: 31222092 PMCID: PMC6586908 DOI: 10.1038/s41598-019-45087-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/22/2019] [Indexed: 01/24/2023] Open
Abstract
The sperm quality is a vital economical requisite of poultry production. Our previous study found non-thermal dielectric barrier discharge plasma exposure on fertilized eggs could increase the chicken growth and the male reproduction. However, it is unclear how plasma treatment regulates the reproductive capacity in male chickens. In this study, we used the optimal plasma treatment condition (2.81 W for 2 min) which has been applied on 3.5-day-incubated fertilized eggs in the previous work and investigated the reproductive performance in male chickens aged at 20 and 40 weeks. The results showed that plasma exposure increased sperm count, motility, fertility rate, and fertilization period of male chickens. The sperm quality-promoting effect of plasma treatment was regulated by the significant improvements of adenosine triphosphate production and testosterone level, and by the modulation of reactive oxygen species balance and adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathway in the spermatozoa. Additionally, the plasma effect suggested that DNA demethylation and microRNA differential expression (a total number of 39 microRNAs were up-regulated whereas 53 microRNAs down-regulated in the testis) regulated the increases of adenosine triphosphate synthesis and testosterone level for promoting the chicken sperm quality. This finding might be beneficial to elevate the fertilization rate and embryo quality for the next generation in poultry breeding.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400715, P.R. China
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nameun Kim
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Tae Yoon Kang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seong Bong Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Jeollabuk-Do, 54004, Republic of Korea
| | - Ji Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk, 56216, Republic of Korea
| | - Xian Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400715, P.R. China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
29
|
Thélie A, Rehault-Godbert S, Poirier JC, Govoroun M, Fouchécourt S, Blesbois E. The seminal acrosin-inhibitor ClTI1/SPINK2 is a fertility-associated marker in the chicken. Mol Reprod Dev 2019; 86:762-775. [PMID: 31033055 PMCID: PMC6767445 DOI: 10.1002/mrd.23153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/23/2019] [Accepted: 03/31/2019] [Indexed: 12/11/2022]
Abstract
The seminal plasma is a very complex fluid, which surrounds sperm in semen. It contains numerous proteins including proteases and protease inhibitors that regulate proteolytic processes associated with protein activation and degradation. We previously identified a seminal protein, chicken liver trypsin inhibitor 1 (ClTI-1) over expressed in semen of roosters with high fertility, suggesting a role in male fertility. In the present study, we showed that ClTI-1 gene is actually SPINK2. Using normal healthy adult roosters, we showed that SPINK2 amount in seminal plasma was positively correlated with male fertility in chicken lines with highly contrasted genetic backgrounds (broiler and layer lines). Using affinity chromatography combined to mass spectrometry analysis and kinetic assays, we demonstrated for the first time that two chicken acrosin isoforms (acrosin and acrosin-like proteins) are the physiological serine protease targets of SPINK2 inhibitor. SPINK2 transcript was overexpressed all along the male tract, and the protein was present in the lumen as expected for secreted proteins. Altogether, these data emphasize the role of seminal SPINK2 Kazal-type inhibitor as an important actor of fertility in birds through its inhibitory action on acrosin isoforms proteins.
Collapse
Affiliation(s)
- Aurore Thélie
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | | | | | - Marina Govoroun
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | | | | |
Collapse
|
30
|
Nguyen TMD. Main signaling pathways involved in the control of fowl sperm motility. Poult Sci 2019; 98:1528-1538. [DOI: 10.3382/ps/pey465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022] Open
|
31
|
Ushiyama A, Priyadarshana C, Setiawan R, Miyazaki H, Ishikawa N, Tajima A, Asano A. Membrane raft-mediated regulation of glucose signaling pathway leading to acrosome reaction in chicken sperm†. Biol Reprod 2019; 100:1482-1491. [DOI: 10.1093/biolre/ioz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/21/2018] [Accepted: 02/01/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ai Ushiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Rangga Setiawan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Hitoshi Miyazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Naoto Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| |
Collapse
|
32
|
Role of AMPK in mammals reproduction: Specific controls and whole-body energy sensing. C R Biol 2018; 342:1-6. [PMID: 30580936 DOI: 10.1016/j.crvi.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key enzyme involved in linking the energy sensing to metabolic pathways. As such, it plays a central role at the whole-body level to translate endocrine communications into adapted responses aimed either at saving energy when food is scarce or at allocating it to various functions, particularly reproduction, when food is available. AMPK also plays major roles in the energy individual cells use in order to realize their specific functions. This is of course especially true for all cells involved in the reproductive function (gonads, gametes) or in its control (hypothalamus, pituitary). In the present review, I report a survey of the various roles of AMPK functions in reproduction, either directly in reproductive organs, or indirectly in organs controlling reproduction, particularly at hypothalamus level.
Collapse
|
33
|
Plasma Farming: Non-Thermal Dielectric Barrier Discharge Plasma Technology for Improving the Growth of Soybean Sprouts and Chickens. PLASMA 2018. [DOI: 10.3390/plasma1020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-thermal dielectric barrier discharge (DBD) plasma is an innovative and emerging field combining plasma physics, life science and clinical medicine for a wide-range of biological applications. Plasma techniques are applied in treating surfaces, materials or devices to realize specific qualities for subsequent special medical applications, plant seeds to improve the production and quality of crops, and living cells or tissues to realize therapeutic effects. Several studies that are summarized within this review show that non-thermal DBD plasma technique has potential biological applications in soybean sprout growth, chicken embryonic development and postnatal growth rate, and even male chicken reproductive capacity. The current developments in the non-thermal DBD plasma technique may be beneficial to improve plant and poultry productivity.
Collapse
|
34
|
Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P. Metformin in Reproductive Biology. Front Endocrinol (Lausanne) 2018; 9:675. [PMID: 30524372 PMCID: PMC6262031 DOI: 10.3389/fendo.2018.00675] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Initially produced in Europe in 1958, metformin is still one of the most widely prescribed drugs to treat type II diabetes and other comorbidities associated with insulin resistance. Metformin has been shown to improve fertility outcomes in females with insulin resistance associated with polycystic ovary syndrome (PCOS) and in obese males with reduced fertility. Metformin treatment reinstates menstrual cyclicity, decreases the incidence of cesareans, and limits the number of premature births. Notably, metformin reduces steroid levels in conditions associated with hyperandrogenism (e.g., PCOS and precocious puberty) in females and improves fertility of adult men with metabolic syndrome through increased testosterone production. While the therapeutical use of metformin is considered to be safe, in the last 10 years some epidemiological studies have described phenotypic differences after prenatal exposure to metformin. The goals of this review are to briefly summarize the current knowledge on metformin focusing on its effects on the female and male reproductive organs, safety concerns, including the potential for modulating fetal imprinting via epigenetics.
Collapse
Affiliation(s)
- Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Alice Bongrani
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, Verneuil-en-Halatte, France
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CA, United States
| | - Joelle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| |
Collapse
|
35
|
Insights into leptin signaling and male reproductive health: the missing link between overweight and subfertility? Biochem J 2018; 475:3535-3560. [DOI: 10.1042/bcj20180631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
Obesity stands as one of the greatest healthcare challenges of the 21st century. Obesity in reproductive-age men is ever more frequent and is reaching upsetting levels. At the same time, fertility has taken an inverse direction and is decreasing, leading to an increased demand for fertility treatments. In half of infertile couples, there is a male factor alone or combined with a female factor. Furthermore, male fertility parameters such as sperm count and concentration went on a downward spiral during the last few decades and are now approaching the minimum levels established to achieve successful fertilization. Hence, the hypothesis that obesity and deleterious effects in male reproductive health, as reflected in deterioration of sperm parameters, are somehow related is tempting. Most often, overweight and obese individuals present leptin levels directly proportional to the increased fat mass. Leptin, besides the well-described central hypothalamic effects, also acts in several peripheral organs, including the testes, thus highlighting a possible regulatory role in male reproductive function. In the last years, research focusing on leptin effects in male reproductive function has unveiled additional roles and molecular mechanisms of action for this hormone at the testicular level. Herein, we summarize the novel molecular signals linking metabolism and male reproductive function with a focus on leptin signaling, mitochondria and relevant pathways for the nutritional support of spermatogenesis.
Collapse
|
36
|
Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-Fernandez L, Garcia-Marin L, Bragado MJ. AMPK Function in Mammalian Spermatozoa. Int J Mol Sci 2018; 19:ijms19113293. [PMID: 30360525 PMCID: PMC6275045 DOI: 10.3390/ijms19113293] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
AMP-activated protein kinase AMPK regulates cellular energy by controlling metabolism through the inhibition of anabolic pathways and the simultaneous stimulation of catabolic pathways. Given its central regulator role in cell metabolism, AMPK activity and its regulation have been the focus of relevant investigations, although only a few studies have focused on the AMPK function in the control of spermatozoa's ability to fertilize. This review summarizes the known cellular roles of AMPK that have been identified in mammalian spermatozoa. The involvement of AMPK activity is described in terms of the main physiological functions of mature spermatozoa, particularly in the regulation of suitable sperm motility adapted to the fluctuating extracellular medium, maintenance of the integrity of sperm membranes, and the mitochondrial membrane potential. In addition, the intracellular signaling pathways leading to AMPK activation in mammalian spermatozoa are reviewed. We also discuss the role of AMPK in assisted reproduction techniques, particularly during semen cryopreservation and preservation (at 17 °C). Finally, we reinforce the idea of AMPK as a key signaling kinase in spermatozoa that acts as an essential linker/bridge between metabolism energy and sperm's ability to fertilize.
Collapse
Affiliation(s)
- David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 40050-313 Porto, Portugal.
| | - Ana Hurtado de Llera
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Hormones and Metabolism Research Group, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Violeta Calle-Guisado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Lauro Gonzalez-Fernandez
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Luis Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - M Julia Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
37
|
Calle-Guisado V, de Llera AH, Martin-Hidalgo D, Mijares J, Gil MC, Alvarez IS, Bragado MJ, Garcia-Marin LJ. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility. Asian J Androl 2018; 19:707-714. [PMID: 27678462 PMCID: PMC5676432 DOI: 10.4103/1008-682x.185848] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%–80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.
Collapse
Affiliation(s)
- Violeta Calle-Guisado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| | - Ana Hurtado de Llera
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| | - David Martin-Hidalgo
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| | - Jose Mijares
- Assisted Reproduction Unit at the Minimally Invasive Surgery Center Jesús Usón (CCMIJU) Caceres, Spain.,Norba Clinic, Caceres, Spain
| | - Maria C Gil
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| | - Ignacio S Alvarez
- Research Group of Reproduction and Embryo Development (REDES), University of Extremadura, Badajoz, Spain.,Extremadura Institute of Assisted Reproduction (IERA), Badajoz, Spain
| | - Maria J Bragado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| | - Luis J Garcia-Marin
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| |
Collapse
|
38
|
Zhang JJ, Do HL, Chandimali N, Lee SB, Mok YS, Kim N, Kim SB, Kwon T, Jeong DK. Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels. Sci Rep 2018; 8:7576. [PMID: 29765100 PMCID: PMC5953930 DOI: 10.1038/s41598-018-26049-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
The quality of avian semen is an important economic trait in poultry production. The present study examines the in vitro effects of non-thermal dielectric barrier discharge plasma on chicken sperm to determine the plasma conditions that can produce the optimum sperm quality. Exposure to 11.7 kV of plasma for 20 s is found to produce maximum sperm motility by controlling the homeostasis of reactive oxygen species and boosting the release of adenosine triphosphate and respiratory enzyme activity in the mitochondria. However, prolonged exposure or further increase in plasma potential impairs the sperm quality in a time- and dose-dependent manner. Optimal plasma treatment of sperm results in upregulated mRNA and protein expression of antioxidant defense-related and energetic metabolism-related genes by increasing their demethylation levels. However, 27.6 kV of plasma exerts significant adverse effects. Thus, our findings indicate that appropriate plasma exposure conditions improve chicken sperm motility by regulating demethylation levels of genes involved in antioxidant defense and energetic metabolism.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Huynh Luong Do
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang Baek Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nameun Kim
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seong Bong Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Jeollabuk-Do, 54004, Republic of Korea
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea. .,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
39
|
Iaffaldano N, Di Iorio M, Mannina L, Paventi G, Rosato MP, Cerolini S, Sobolev AP. Age-dependent changes in metabolic profile of turkey spermatozoa as assessed by NMR analysis. PLoS One 2018; 13:e0194219. [PMID: 29534088 PMCID: PMC5849324 DOI: 10.1371/journal.pone.0194219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/27/2018] [Indexed: 11/18/2022] Open
Abstract
Metabolic profile of fresh turkey spermatozoa at three different reproductive period ages, namely 32, 44 and 56 weeks, was monitored by Nuclear Magnetic Resonance (NMR) spectroscopy and correlated to sperm quality parameters. The age-related decrease in sperm quality as indicated by reduction of sperm concentration, sperm mobility and osmotic tolerance was associated to variation in the level of specific water-soluble and liposoluble metabolites. In particular, the highest levels of isoleucine, phenylalanine, leucine, tyrosine and valine were found at 32 weeks of age, whereas aspartate, lactate, creatine, carnitine, acetylcarnitine levels increased during the ageing. Lipid composition also changed during the ageing: diunsaturated fatty acids level increased from 32 to 56 weeks of age, whereas a reduction of polyunsaturated fatty acids content was observed at 56 weeks. The untargeted approach attempts to give a wider picture of metabolic changes occurring in ageing suggesting that the reduction of sperm quality could be due to a progressive deficiency in mitochondrial energy producing systems, as also prompted by the negative correlation found between sperm mobility and the increase in certain mitochondrial metabolites.
Collapse
Affiliation(s)
- Nicolaia Iaffaldano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Michele Di Iorio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Luisa Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
- Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica “Annalaura Segre”, CNR, Monterotondo, Rome, Italy
| | - Gianluca Paventi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Maria Pina Rosato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Silvia Cerolini
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Anatoly P. Sobolev
- Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica “Annalaura Segre”, CNR, Monterotondo, Rome, Italy
| |
Collapse
|
40
|
Cooper JC, Phadnis N. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels. Genome Biol Evol 2017; 9:1938-1949. [PMID: 28810709 PMCID: PMC5553355 DOI: 10.1093/gbe/evx131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 01/06/2023] Open
Abstract
Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior.
Collapse
|
41
|
Influences of different dietary energy level on sheep testicular development associated with AMPK/ULK1/autophagy pathway. Theriogenology 2017; 108:362-370. [PMID: 29304491 DOI: 10.1016/j.theriogenology.2017.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
Abstract
Energy balance is an important feature for spermatozoa production in the testis. The 5'-AMP-activated protein kinase (AMPK) is a sensor of cell energy, has been implicated as a mediator between gonadal function and energy balance. Herein, we intended to determine the physiological effects of AMPK on testicular development in feed energy restricted and compensated pre-pubertal rams. Lambs had restricted feeding for 2 months and then provided compensatory feeding for another 3 months. Feed levels were 100%(control), 15% and 30% of energy restriction (ER) diets, respectively. The results showed that lambs fed the 30% ER diet had significantly lower testicular weight (P < .05) and spermatids number in the seminiferous tubules, but there were no differences between control and 15% ER groups. Meanwhile, 15% ER and 30% ER diets induced testis autophagy and apoptosis through activating AMPK-ULK1(ULK1, Unc-51 like autophagy activating kinase) signal pathway with characterization of increased Beclin-1 and Light chain 3-Ⅱ/Light chain 3-Ⅰ (LC3-II/LC3-I) ratio, up-regulated the ratio of pro-apoptotic Bcl-2-associated X protein (BAX) and anti-apoptotic B-cell lymphoma 2 (Bcl-2), as well as activated AMPK, phosphorylated AMPK(p-AMPK) and ULK1. Furthermore, a compensation of these parameters occurred when the lambs were re-fed with normal energy requirement after restriction. Taken together, dietary energy levels influence testicular development through autophagy and apoptosis interplay mediated by AMPK-ULK1 signal pathway, which also indicates the important role of the actions of AMPK in the testis homeostasis.
Collapse
|
42
|
Calle-Guisado V, Hurtado de Llera A, González-Fernández L, Bragado MJ, Garcia-Marin LJ. Human sperm motility is downregulated by the AMPK activator A769662. Andrology 2017; 5:1131-1140. [DOI: 10.1111/andr.12423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- V. Calle-Guisado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
| | - A. Hurtado de Llera
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
| | - L. González-Fernández
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
- CECA/ICETA-Animal Science Centre; ICBAS-University of Porto; Vairão Portugal
| | - M. J. Bragado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
| | - L. J. Garcia-Marin
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
| |
Collapse
|
43
|
Nguyen TMD. Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions. Front Cell Dev Biol 2017; 5:25. [PMID: 28386541 PMCID: PMC5362614 DOI: 10.3389/fcell.2017.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
As we already know, the male reproductive system requires less energetic investment than the female one. Nevertheless, energy balance is an important feature for spermatozoa production in the testis and for spermatozoa properties after ejaculation. The 5'-AMP-activated protein kinase, AMPK, is a sensor of cell energy, that regulates many metabolic pathways and that has been recently shown to control spermatozoa quality and functions. It is indeed involved in the regulation of spermatozoa quality through its action on the proliferation of testicular somatic cells (Sertoli and Leydig), on spermatozoa motility and acrosome reaction. It also favors spermatozoa quality through the management of lipid peroxidation and antioxidant enzymes. I review here the most recent data available on the roles of AMPK in vertebrate spermatozoa functions.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Physiologie de la Reproduction et des Comportements, INRANouzilly, France; Quy Nhon UniversityQuy Nhon, Vietnam
| |
Collapse
|
44
|
Taibi N, Dupont J, Bouguermouh Z, Froment P, Ramé C, Anane A, Amirat Z, Khammar F. Expression of adenosine 5'-monophosphate-Activated protein kinase (AMPK) in ovine testis (Ovis aries): In vivo regulation by nutritional state. Anim Reprod Sci 2017; 178:9-22. [PMID: 28122665 DOI: 10.1016/j.anireprosci.2017.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 12/26/2022]
Abstract
In the present study, we identified AMPK and investigated its potential role in steroidogenesis in vivo in the ovine testis in response to variation in nutritional status (fed control vs. restricted). We performed immunoblotting to show that both active and non-active forms of AMPK exist in ovine testis and liver. In testis, we confirmed these results by immunohistochemistry. We found a correlation between ATP (Adenosine-Triphosphate) levels and the expression of AMPK in liver. Also, low and high caloric diets induce isoform-dependent AMPK expression, with an increase in α2, ß1ß2 and γ1 activity levels. Although the restricted group exhibited an increase in lipid balance, only the triglyceride and HC-VLDL (Cholesterol-Very low density lipoprotein) fractions showed significant differences between groups, suggesting an adaptive mechanism. Moreover, the relatively low rate of non-esterified fatty acid released into the circulation implies re-esterification to compensate for the physiological need. In the fed control group, AMPK activates the production of testosterone in Leydig cells; this is, in turn, associated with an increase in the expression of 3ß-HSD (3 beta hydroxy steroid deshydrogenase), p450scc (Cholesterol side-chain cleavage enzyme) and StAR (Steroidogenic acute regulatory protein) proteins induced by decreased MAPK ERK½ (Extracellular signal-regulated kinase -Mitogen-activated protein kinase) phosphorylation. In contrast, in the restricted group, testosterone secretion was reduced but intracellular cholesterol concentration was not. Furthermore, the combination of high levels of lipoproteins and emergence of the p38 MAP kinase pathway suggest the involvement of pro-inflammatory cytokines, as confirmed by transcriptional repression of the StAR protein. Taken together, these results suggest that AMPK expression is tissue dependent.
Collapse
Affiliation(s)
- N Taibi
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (C.R.A.P.C), BP 384, Zone industrielle de Bou-Ismail, RP 42004 w., Tipaza, Algérie.
| | - J Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | | | - P Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | - C Ramé
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | - A Anane
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| | - Z Amirat
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| | - F Khammar
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| |
Collapse
|
45
|
Asano A, Tajima A. Development and Preservation of Avian Sperm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:59-73. [DOI: 10.1007/978-981-10-3975-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Shabani Nashtaei M, Amidi F, Sedighi Gilani MA, Aleyasin A, Bakhshalizadeh S, Naji M, Nekoonam S. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5’ AMP-activated protein kinase activation. Andrology 2016; 5:313-326. [DOI: 10.1111/andr.12306] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022]
Affiliation(s)
- M. Shabani Nashtaei
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - F. Amidi
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Infertility; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - M. A. Sedighi Gilani
- Department of Urology; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - A. Aleyasin
- Department of Infertility; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - Sh. Bakhshalizadeh
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - M. Naji
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - S. Nekoonam
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
47
|
|
48
|
Nguyen TMD, Froment P, Combarnous Y, Blesbois É. [AMPK, regulator of sperm energy and functions]. Med Sci (Paris) 2016; 32:491-6. [PMID: 27225922 DOI: 10.1051/medsci/20163205016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The 5'-AMP-activated protein kinase, AMPK, is a key protein kinase in the metabolism of the cell that regulates many metabolic pathways. The involvement of cell metabolism in sperm ability to fertilize is well established, but only a few studies have focused on the role of AMPK in the control of male fertility. This article summarizes the known role of AMPK in this area. AMPK is involved in the regulation of sperm quality by its action on the proliferation of Sertoli cells. AMPK also directly controls the quality of sperm by its involvement in the regulation of motility and acrosome reaction. It is also involved in the management of lipid peroxidation and gametes antioxidant enzymes. Thus, AMPK appears as a key signaling protein for sperm and male fertility control.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- INRA, UMR85 CNRS, UMR7247, Physiologie de la reproduction et des comportements, F-37380 Nouzilly, France - Université de Tours François Rabelais, F-37000 Tours, France - Quy Nhon university, VietNam
| | - Pascal Froment
- INRA, UMR85 CNRS, UMR7247, Physiologie de la reproduction et des comportements, F-37380 Nouzilly, France - Université de Tours François Rabelais, F-37000 Tours, France
| | - Yves Combarnous
- INRA, UMR85 CNRS, UMR7247, Physiologie de la reproduction et des comportements, F-37380 Nouzilly, France - Université de Tours François Rabelais, F-37000 Tours, France
| | - Élisabeth Blesbois
- INRA, UMR85 CNRS, UMR7247, Physiologie de la reproduction et des comportements, F-37380 Nouzilly, France - Université de Tours François Rabelais, F-37000 Tours, France
| |
Collapse
|
49
|
Faure M, Guibert E, Alves S, Pain B, Ramé C, Dupont J, Brillard JP, Froment P. The insulin sensitiser metformin regulates chicken Sertoli and germ cell populations. Reproduction 2016; 151:527-38. [DOI: 10.1530/rep-15-0565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/25/2016] [Indexed: 11/08/2022]
Abstract
Abstract
Metformin, an insulin sensitiser from the biguanide family of molecules, is used for the treatment of insulin resistance in type 2 diabetes individuals. It increases peripheral glucose uptake and may reduce food intake. Based on the tight link between metabolism and fertility, we investigated the role of metformin on testicular function using in vitro culture of Sertoli cells and seminiferous tubules, complemented by in vivo data obtained following metformin administration to prepubertal chickens. In vitro, metformin treatment reduced Sertoli cell proliferation without inducing apoptosis and morphological changes. The metabolism of Sertoli cells was affected because lactate secretion by Sertoli cells increased approximately twofold and intracellular free ATP was negatively impacted. Two important pathways regulating proliferation and metabolism in Sertoli cells were assayed. Metformin exposure was not associated with an increased phosphorylation of AKT or ERK. There was a 90% reduction in the proportion of proliferating germ cells after a 96-h exposure of seminiferous tubule cultures to metformin. In vivo, 6-week-old chickens treated with metformin for 3 weeks exhibited reduced testicular weight and a 50% decrease in testosterone levels. The expression of a marker of undifferentiated germ cells was unchanged in contrast to the decrease in expression of ‘protamine’, a marker of differentiated germ cells. In conclusion, these results suggest that metformin affects the testicular energy content and the proliferative ability of Sertoli and germ cells.
Reproduction (2016) 151 527–538
Collapse
|
50
|
Nguyen TMD, Duittoz A, Praud C, Combarnous Y, Blesbois E. Calcium channels in chicken sperm regulate motility and the acrosome reaction. FEBS J 2016; 283:1902-20. [PMID: 26990886 DOI: 10.1111/febs.13710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
Intracellular cytoplasmic calcium ([Ca(2+) ]i ) has an important regulatory role in gamete functions. However, the biochemical components involved in Ca(2+) transport are still unknown in birds, an animal class that has lost functional sperm-specific CatSper channels. Here, we provide evidence for the presence and expression of various Ca(2+) channels in chicken sperm, including high voltage-activated channels (L and R types), the store-operated Ca(2+) channel (SOC) component Orai1, the transient receptor potential channel (TRPC1) and inositol-1,4,5-trisphosphate receptors (IP3 R1). L- and R-type channels were mainly localized in the acrosome and the midpiece, and T-type channels were not detected in chicken sperm. Orai1 was found in all compartments, but with a weak, diffuse signal in the flagellum. TRCP1 was mainly localized in the acrosome and the midpiece, but a weak diffuse signal was also observed in the nucleus and the flagellum. IP3 R1 was mainly detected in the nucleus. The L-type channel inhibitor nifedipine, the R-type channel inhibitor SNX-482 and the SOC inhibitors MRS-1845, 2-APB and YM-58483 decreased [Ca(2+) ]i sperm motility and acrosome reaction capability, with the SOC inhibitors inhibiting these functions most efficiently. Furthermore, we showed that Ca(2+) -mediated induction of AMP-activated protein kinase (AMPK) phosphorylation was blocked by SOC inhibition. Our identification of important regulators of Ca(2+) signaling in avian sperm suggests that SOCs play a predominant role in gamete function, whereas T-type channels may not be involved. In addition, Ca(2+) entry via SOCs appears to be the most likely pathway for AMPK activation and energy-requiring sperm functions such as motility and the acrosome reaction.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,Faculty of Biology-Agricultural Engineering, Quy Nhon University, Quy Nhon, Vietnam
| | - Anne Duittoz
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| | - Christophe Praud
- Institut National de la Recherche Agronomique, UR083 Recherches Avicoles, Nouzilly, France
| | - Yves Combarnous
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| | - Elisabeth Blesbois
- Institut National de la Recherche Agronomique, UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, France.,Université François Rabelais de Tours, Tours, France
| |
Collapse
|