1
|
Mesenchymal Stem Cells in Embryo-Maternal Communication under Healthy Conditions or Viral Infections: Lessons from a Bovine Model. Cells 2022; 11:cells11121858. [PMID: 35740987 PMCID: PMC9221285 DOI: 10.3390/cells11121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine mesenchymal stem cells are a relevant cell population found in the maternal reproductive tract that exhibits the immunomodulation capacity required to prevent embryo rejection. The phenotypic plasticity showed by both endometrial mesenchymal stem cells (eMSC) and embryonic trophoblast through mesenchymal to epithelial transition and epithelial to mesenchymal transition, respectively, is essential for embryo implantation. Embryonic trophoblast maintains active crosstalk via EVs and soluble proteins with eMSC and peripheral blood MSC (pbMSC) to ensure the retention of eMSC in case of pregnancy and induce the chemotaxis of pbMSC, critical for successful implantation. Early pregnancy-related proteins and angiogenic markers are detected as cargo in EVs and the soluble fraction of the embryonic trophectoderm secretome. The pattern of protein secretion in trophectoderm-EVs changes depending on their epithelial or mesenchymal phenotype and due to the uptake of MSC EVs. However, the changes in this EV-mediated communication between maternal and embryonic MSC populations infected by viruses that cause abortions in cattle are poorly understood. They are critical in the investigation of reproductive viral pathologies.
Collapse
|
2
|
Lv H, Yan C, Deng L, Peng Z, Yang D, Hu W, Ding X, Tong C, Wang X. Role of MicroRNAs in Protective Effects of Forsythoside A Against Lipopolysaccharide-Induced Inflammation in Bovine Endometrial Stromal Cells. Front Vet Sci 2021; 8:642913. [PMID: 33718475 PMCID: PMC7943879 DOI: 10.3389/fvets.2021.642913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Bovine endometrial stromal cells (bESCs) are exposed to a complex environment of bacteria and viruses due to the rupture of epithelial cells after delivery. Inflammatory responses are elicited by the activation of host pattern recognition receptors through pathogen-related molecules such as lipopolysaccharides (LPS) on the cell membrane. Forsythoside A (FTA) is a major active constituent of Forsythia suspensa (Thunb.) Vahl. is a flowering plant widely employed as a traditional Chinese herbal medicine to treat various inflammatory diseases such as nephritis, eye swelling, scabies, ulcers, and mastitis; however, the molecular mechanisms underlying its therapeutic effects on bovine endometritis are still unclear. The aim of this study was to explore the role of miRNA and the mechanisms underlying the protective activity of FTA on the inflammation of bovine endometrial stromal cells induced by LPS. Based on previous research, we isolated and cultured bESCs in vitro and categorized them into LPS and LPS+FTA groups with three replicates. Upon reaching 80% confluence, the bESCs were treated with 0.5 μg/mL of LPS or 0.5 μg/mL of LPS + 100 μg/mL of FTA. We, then, performed high-throughput sequencing (RNA-Seq) to investigate the effects of FTA on LPS-stimulated primary bESCs and their underlying mechanisms. We identified 167 miRNAs differentially expressed in the LPS groups; 72 miRNAs were up-regulated, and 95 were down-regulated. Gene ontology enrichment analysis revealed that differentially expressed microRNA (DEGs) were most enriched during the cellular metabolic process; they were mostly located intracellularly and participated in protein, enzyme, and ion binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were most enriched in the mitogen-activated protein kinase, tumor necrosis factor, and Interleukin-17 signaling pathways. These results reveal the complex molecular mechanism involved in the FTA and provide a basis for future studies of bovine endometritis treatment with traditional Chinese medicine monomer.
Collapse
Affiliation(s)
- Haimiao Lv
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lixin Deng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhan Peng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenjv Hu
- College of Agricultural Medicine, Henan Radio and Television University, Zhengzhou, China
| | - Xuefen Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Wushu Overseas Students Pioneer Park, Wuhu, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Romeo F, Louge Uriarte E, Delgado SG, González-Altamiranda E, Pereyra S, Morán P, Odeón A, Pérez S, Verna A. Effect of bovine viral diarrhea virus on subsequent infectivity of bovine gammaherpesvirus 4 in endometrial cells in primary culture: An in vitro model of viral co-infection. J Virol Methods 2021; 291:114097. [PMID: 33600847 DOI: 10.1016/j.jviromet.2021.114097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
Bovine viral diarrhea virus (BVDV) and bovine gammaherpesvirus 4 (BoHV-4) infect the uterus of cattle, being responsible for huge economic losses. Most of the pathogenesis of BoHV-4 in the bovine reproductive tract has been elucidated by conducting tests on primary cultures. Thus, it is important to have optimal in vitro conditions, avoiding the presence of other pathogens that can alter the results. BVDV is one of the most frequent viral contaminants of cell cultures. Considering that non-cytopathic (NCP) BVDV biotype can generate persistently infected (PI) cattle, which are the major source for virus transmission in susceptible herds, it is important to check products derived from cattle that are intended to be used in research laboratories. The aim of this work was to evaluate how the natural infection of bovine endometrial cells (BEC) with a NCP BVDV strain (BEC + BVDV) affects BoHV-4 replication. We have demonstrated a delay in BoHV-4 gene expression and a decrease in viral load in the extracellular environment in BEC + BDVD cells compared to BEC (BVDV-free) cells. These results confirm that replication of BoHV-4 in BEC primary cultures is affected by previous infection with BVDV. This finding highlights the importance of ruling out BVDV infection in bovine primary cell cultures to avoid biological interference or misinterpretation of results at the time of performing in vitro studies with BoHV-4.
Collapse
Affiliation(s)
- F Romeo
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Godoy Cruz 2370, C1425FQD, Buenos Aires, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina
| | - E Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA). Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - S G Delgado
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina
| | - E González-Altamiranda
- Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA). Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - S Pereyra
- Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA). Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - P Morán
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)/CIVETAN, Sede Tandil, Buenos Aires, Argentina
| | - A Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina
| | - S Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)/CIVETAN, Sede Tandil, Buenos Aires, Argentina
| | - A Verna
- Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA). Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Gene expression and in vitro replication of bovine gammaherpesvirus type 4. Arch Virol 2021; 166:535-544. [PMID: 33403475 DOI: 10.1007/s00705-020-04898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/11/2020] [Indexed: 10/22/2022]
Abstract
In vitro cell cultures are widely used models for dissecting cellular and molecular mechanisms that lead to certain physiological conditions and diseases. The pathogenesis of BoHV-4 in the bovine reproductive tract has been studied by conducting tests on primary cultures. However, many questions remain to be answered about the role of BoHV-4 in endometrial cells. The aim of this study was to compare the replication and gene expression of BoHV-4 in cell lines and bovine reproductive tract primary cells as an in vitro model for the study of this virus. We demonstrated that BoHV-4 strains differ in their in vitro growth kinetics and gene expression but have the same cell type preference. Our results demonstrate that BoHV-4 replicates preferentially in bovine endometrial cells (BEC). However, its replication capacity extends to various cell types, since all cells that were tested were permissive to BoHV-4 infection. The highest virus titers were obtained in BEC cells. Nevertheless, virus replication efficiency could not be fully predicted from the mRNA expression profiles. This implies that there are multiple cell-type-dependent factors and strain properties that determine the level of BoHV-4 replication. The results of this study provide relevant information about the in vitro behavior of two field isolates of BoHV-4 in different cell cultures. These findings may be useful for the design of future in vitro experiments to obtain reliable results not only about the pathogenic role of BoHV-4 in the bovine female reproductive tract but also in the development of efficient antiviral strategies.
Collapse
|
5
|
Dağalp SB, Babaoglu AR, Doğan F, Farzani TA, Alkan F. An assessment of bovine herpes virus 4 as a causative agent in abortions and neonatal death. ACTA ACUST UNITED AC 2020; 87:e1-e5. [PMID: 32129636 PMCID: PMC7059244 DOI: 10.4102/ojvr.v87i1.1761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
Numerous viruses, including bovine viral diarrhoea virus (BVDV), bovine herpes virus 1 (BoHV-1) and bovine herpes virus 4 (BoHV-4), and other pathogens are the most common causes of reproductive disorders and are responsible for huge economic losses in livestock production. This study investigates the aetiological role of BoHV-4 in fertility problems such as abortions, stillbirth and birth with unviable calves. Retrospective samples from 38 animals, including 17 aborting cows, 17 aborted foetuses, three stillborn calves and one unviable newborn calf were analysed. The BoHV-4 genome was detected in 25 (65.7%) animals by polymerase chain reaction. In 14 of these infected animals, we detected co-infection with BVDV, while the co-presence of BoHV-1 was also detected in one animal. In addition to the high prevalence of BoHV-4 genome in materials related to fertility problems, isolation of BoHV-4 from the brain of one stillborn calf indicated a causal link between BoHV-4 and fertility problems, such as abortion, stillbirths or birth with unviable calves.
Collapse
Affiliation(s)
- Seval B Dağalp
- Department of Virology, Faculty of Veterinary Medicine, Ankara University of Veterinary Medicine, Ankara.
| | | | | | | | | |
Collapse
|
6
|
Florencia R, Julieta M, Sandra P, Enrique LU, Maia M, German C, Leunda MR, Erika GA, Susana P, Maximiliano S, Anselmo O, Leandro J, Verna AE. Characterization of the first bovine gammaherpesvirus 4 strain isolated from an aborted bovine fetus in Argentina. Arch Virol 2020; 165:719-723. [PMID: 31980937 DOI: 10.1007/s00705-019-04507-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Bovine herpesvirus 4 (BoHV-4) is increasingly believed to be responsible for several disorders of the bovine reproductive tract. The first characterization of BoHV-4 in Argentina was from samples from an aborted fetus. Argentinean isolates are highly diverse and are phylogenetically grouped in three genotypes. In this study, we describe the isolation of BoHV-4 from a bovine fetus with a gestational age of 8 months and without macroscopic lesions. Genetic analyses revealed that the isolated strain belongs to genotype 2. This is the first report on the presence of infectious BoHV-4 in tissues from an aborted bovine fetus.
Collapse
Affiliation(s)
- Romeo Florencia
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Godoy Cruz 2370, C1425FQD, Buenos Aires, Argentina.,Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - Manrique Julieta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.,Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina
| | - Perez Sandra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.,Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Sede Tandil, Buenos Aires, Argentina
| | - Louge Uriarte Enrique
- Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - Marín Maia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.,Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - Cantón German
- Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - Maria R Leunda
- Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - González Altamiranda Erika
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.,Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - Pereyra Susana
- Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - Spetter Maximiliano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.,Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - Odeón Anselmo
- Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina
| | - Jones Leandro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.,Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina
| | - Andrea E Verna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina. .,Grupo de Sanidad Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), 7620, Balcarce, Argentina.
| |
Collapse
|
7
|
Díaz JM, Prieto A, López-Lorenzo G, López-Novo C, Iglesias A, Díaz P, Panadero R, Moral J, López C, Díez-Baños P, Morrondo P, Fernández G. Monitoring of the shedding and serological dynamics of Bovine gammaherpesvirus type 4 in a dairy cattle herd. Vet Microbiol 2019; 239:108495. [PMID: 31767098 DOI: 10.1016/j.vetmic.2019.108495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022]
Abstract
Bovine gammaherpesvirus type 4 (BoHV-4) is increasingly related with reproductive disease in cattle, but its epidemiology is not fully understood. We monitored the serological response and shedding of BoHV-4 in a positive dairy cattle farm with metritis. First, we performed an ELISA to detect BoHV-4 antibodies in all the animals (n = 104). Afterwards, ten seronegative heifers introduced in the production lot and sera samples were monthly taken for four months and then 6-10 months after introduction to detect BoHV-4 antibodies by ELISA. Moreover, a vaginal swab was taken after calving to detect BoHV-4 by PCR. Concurrently, a weekly collection of vaginal and nasal swabs and milk was performed during the first month post-partum in multiparous cows with metritis (n = 14), heifers with metritis (n = 4), heifers without metritis but positive to BoHV-4 (ELISA or PCR) (n = 2) and multiparous cows without metritis (n = 3). Seropositivity was higher in older animals and in the production lot. Three heifers which shed BoHV-4 after parturition resulted seronegative at first but eventually seroconverted. In the same vein, most heifers seroconverted after 6-10 months in the production lot (8/10). Multiparous cows shed virus by various routes: 13/14 (93 %) in vaginal secretions, 7/14 (50 %) in nasal exudates and 7/14 (50 %) in milk. However, in the other groups, shedding was only detected in vaginal swabs from the first week post-partum. Our study describes BoHV-4 shedding in field conditions. Seronegative animals may become horizontally infected when moved to a contaminated environment.
Collapse
Affiliation(s)
- José Manuel Díaz
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Alberto Prieto
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Gonzalo López-Lorenzo
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Cynthia López-Novo
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Antonio Iglesias
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Díaz
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Rosario Panadero
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Javier Moral
- Sociedad Veterinaria del Eo SLP, 33770, Vegadeo, Spain
| | - Ceferino López
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Díez-Baños
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Patrocinio Morrondo
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Gonzalo Fernández
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
8
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
9
|
Chanrot M, Blomqvist G, Guo Y, Ullman K, Juremalm M, Bage R, Donofrio G, Valarcher JF, Humblot P. Bovine herpes virus type 4 alters TNF-α and IL-8 profiles and impairs the survival of bovine endometrial epithelial cells. Reprod Biol 2017; 17:225-232. [DOI: 10.1016/j.repbio.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
|
10
|
Franceschi V, Capocefalo A, Jacca S, Rosamilia A, Cavirani S, Xu F, Qiao W, Donofrio G. BoHV-4 immediate early 1 gene is a dispensable gene and its product is not a bone marrow stromal cell antigen 2 counteracting factor. BMC Vet Res 2015; 11:224. [PMID: 26307352 PMCID: PMC4549876 DOI: 10.1186/s12917-015-0540-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus whose genome was cloned as Bacterial Artificial Chromosome (BAC) and exploited as a gene delivery vector for vaccine purposes. Although BoHV-4 genome has been completely sequenced and its open reading frames (ORFs) structurally defined in silico, most of them are not functionally characterized. In BoHV-4 genome two major immediate early genes (IE) are present, IE1 and IE2. IE2 is an essential gene because its removal from the viral genome renders the virus unable to replicate, whereas for IE1 no many functional information are available. RESULTS In this work, IE1 contribution in initiating and maintaining BoHV-4 lytic replication was assessed generating a recombinant BoHV-4 genome lacking of IE1 gene, BoHV-4ΔIE1. In contrast to BoHV-4IE2 deleted mutant, BoHV-4ΔIE1 infectious replicating viral particles (IRVPs) could be reconstituted following viral DNA electroporation in permissive cells. However the titer of BoHV-4ΔIE1 IRVPs produced into the cell supernatant and BoHV-4ΔIE1 plaques size were reduced respect to BoHV-4 undeleted control. Further the impaired BoHV-4ΔIE1 IRVPs produced into the cell supernatant could be rescued by expressing IE1 gene product in trans, confirming the implication of IE1 in BoHV-4 lytic replication. Next, the possible role of BoHV-4IE1 as bone marrow stromal cell antigen 2 (BST-2) counteracting factor, as hypothesized by IE1 amino-terminal gene product homology with Kaposi Sarcoma Associated Herpesvirus (KSHV) K5, was excluded too. CONCLUSIONS Although the real function of BoHV-4IE1 is still elusive, a new BoHV-4 genome gene locus as a target site for the insertion of foreign DNA and resulting in the attenuation of the virus has been revealed. These data can be considered of relevance to improve BoHV-4 gene delivery properties.
Collapse
Affiliation(s)
- Valentina Franceschi
- Department of Medical-Veterinary Science, University of Parma, via del Taglio 10, 43126, Parma, Italy.
| | - Antonio Capocefalo
- Department of Medical-Veterinary Science, University of Parma, via del Taglio 10, 43126, Parma, Italy.
| | - Sarah Jacca
- Department of Medical-Veterinary Science, University of Parma, via del Taglio 10, 43126, Parma, Italy.
| | - Alfonso Rosamilia
- Department of Medical-Veterinary Science, University of Parma, via del Taglio 10, 43126, Parma, Italy.
| | - Sandro Cavirani
- Department of Medical-Veterinary Science, University of Parma, via del Taglio 10, 43126, Parma, Italy.
| | - Fengwen Xu
- Key Laboratory of Molecular Microbiology and Biotechnology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, via del Taglio 10, 43126, Parma, Italy.
| |
Collapse
|
11
|
Franceschi V, Parker S, Jacca S, Crump RW, Doronin K, Hembrador E, Pompilio D, Tebaldi G, Estep RD, Wong SW, Buller MR, Donofrio G. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge. PLoS Negl Trop Dis 2015; 9:e0003850. [PMID: 26086739 PMCID: PMC4473039 DOI: 10.1371/journal.pntd.0003850] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/27/2015] [Indexed: 01/13/2023] Open
Abstract
Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against mortality and morbidity. This work demonstrated the efficacy of BoHV-4 based vectors and the use of BoHV-4 as a vaccine-vector platform.
Collapse
Affiliation(s)
| | - Scott Parker
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Sarah Jacca
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Ryan W. Crump
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Konstantin Doronin
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Edguardo Hembrador
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniela Pompilio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Ryan D. Estep
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Mark R. Buller
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|