1
|
Shen Z, Gao Y, Sun X, Chen M, Cen C, Wang M, Wang N, Liu B, Li J, Cui X, Hou J, Shi Y, Gao F. Inactivation of JNK signalling results in polarity loss and cell senescence of Sertoli cell. Cell Prolif 2024:e13760. [PMID: 39329440 DOI: 10.1111/cpr.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
As major somatic cells in the testis, Sertoli cell development is precisely regulated by numerous factors, and aberrant development of these cells is associated with male reproductive diseases. JNK signalling is evolutionarily conserved and involved in multiple critical biological processes. Here, we found that the double knockout of Jnk1 and Jnk2 resulted in aberrant localisation of Sertoli cells at early developmental stages, with most Sertoli cells being lost at later stages. Further studies revealed that the inactivation of JNK signalling caused polarity loss in Sertoli cells. In vitro-cultured Jnk1/2-DKO Sertoli cells exhibited a senescence-associated phenotype. Mechanistic studies demonstrate that JNK signalling is likely involved in establishing Sertoli cell polarity by regulating the expression of TGF-β2, mediated by c-Jun. The senescence of Sertoli cells in JNKs-deficient mice is caused by aberrant proteolysis of P27KIP1, mediated by c-Myc. This study demonstrates the role of JNK signalling in Sertoli cell development and functional maintenance, which may also represent an aetiology of male infertility in humans.
Collapse
Affiliation(s)
- Zhiming Shen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yang Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuedong Sun
- Eastern Department of Neurology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuhua Shi
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Mo S, Shu G, Cao C, Wang M, Yang J, Ye J, Gui Y, Yuan S, Ma Q. Sertoli cells require hnRNPC to support normal spermatogenesis and male fertility in mice†. Biol Reprod 2024; 111:227-241. [PMID: 38590182 DOI: 10.1093/biolre/ioae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Sertoli cells act as highly polarized testicular cells that nutritionally support multiple stages of germ cell development. However, the gene regulation network in Sertoli cells for modulating germ cell development has yet to be fully understood. In this study, we report that heterogeneous nuclear ribonucleoproteins C in Sertoli cells are essential for germ cell development and male fertility. Conditional knockout of heterogeneous nuclear ribonucleoprotein C in mouse Sertoli cells leads to aberrant Sertoli cells proliferation, disrupted cytoskeleton of Sertoli cells, and compromised blood-testis barrier function, resulting in loss of supportive cell function and, ultimately, defective spermiogenesis in mice. Further ribonucleic acid-sequencing analyses revealed these phenotypes are likely caused by the dysregulated genes in heterogeneous nuclear ribonucleoprotein C-deficient Sertoli cells related to cell adhesion, cell proliferation, and apoptotic process. In conclusion, this study demonstrates that heterogeneous nuclear ribonucleoprotein C plays a critical role in Sertoli cells for maintaining the function of Sertoli cells and sustaining steady-state spermatogenesis in mice.
Collapse
Affiliation(s)
- Shaomei Mo
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Ge Shu
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Congcong Cao
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Mingxia Wang
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Jie Yang
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Jing Ye
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Yaoting Gui
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Ma
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Yang X, He L, Li X, Wang L, Bu T, Yun D, Lu X, Gao S, Huang Q, Li J, Zheng B, Yu J, Sun F. Triptolide exposure triggers testicular vacuolization injury by disrupting the Sertoli cell junction and cytoskeletal organization via the AKT/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116502. [PMID: 38788563 DOI: 10.1016/j.ecoenv.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Despite the known reproductive toxicity induced by triptolide (TP) exposure, the regulatory mechanism underlying testicular vacuolization injury caused by TP remains largely obscure. METHODS Male mice were subjected to TP at doses of 15, 30, and 60 μg/kg for 35 consecutive days. Primary Sertoli cells were isolated from 20-day-old rat testes and exposed to TP at concentrations of 0, 40, 80, 160, 320, and 640 nM. A Biotin tracer assay was conducted to assess the integrity of the blood-testis barrier (BTB). Transepithelial electrical resistance (TER) assays were employed to investigate BTB function in primary Sertoli cells. Histological structures of the testes and epididymides were stained with hematoxylin and eosin (H&E). The expression and localization of relevant proteins or pathways were assessed through Western blotting or immunofluorescence staining. RESULTS TP exposure led to dose-dependent testicular injuries, characterized by a decreased organ coefficient, reduced sperm concentration, and the formation of vacuolization damage. Furthermore, TP exposure disrupted BTB integrity by reducing the expression levels of tight junction (TJ) proteins in the testes without affecting basal ectoplasmic specialization (basal ES) proteins. Through the TER assay, we identified that a TP concentration of 160 nM was optimal for elucidating BTB function in primary Sertoli cells, correlating with reductions in TJ protein expression. Moreover, TP exposure induced changes in the distribution of the BTB and cytoskeleton-associated proteins in primary Sertoli cells. By activating the AKT/mTOR signaling pathway, TP exposure disturbed the balance between mTORC1 and mTORC2, ultimately compromising BTB integrity in Sertoli cells. CONCLUSION This investigation sheds light on the impacts of TP exposure on testes, elucidating the mechanism by which TP exposure leads to testicular vacuolization injury and offering valuable insights into comprehending the toxic effects of TP exposure on testes.
Collapse
Affiliation(s)
- Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Lei He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Tiao Bu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinran Lu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Sheng Gao
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou 215002, China.
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Fei Sun
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Song Y, Ma J, Liu Q, Mabrouk I, Zhou Y, Yu J, Liu F, Wang J, Yu Z, Hu J, Sun Y. Protein profile analysis of Jilin white goose testicles at different stages of the laying cycle by DIA strategy. BMC Genomics 2024; 25:326. [PMID: 38561689 PMCID: PMC10986116 DOI: 10.1186/s12864-024-10166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors. Proteomics is generally applied to identify and quantify proteins in cells and tissues in order to understand the physiological or pathological changes that occur in tissues or cells under specific conditions. Currently, the female poultry reproductive system has been extensively studied, while few related studies focusing on the regulatory mechanism of the reproductive system of male poultry have been conducted. RESULTS A total of 1753 differentially expressed proteins (DEPs) were generated in which there were 594, 391 and 768 different proteins showing differential expression in three stages, Initial of Laying Cycle (ILC), Peak of Laying Cycle (PLC) and End of Laying Cycle (ELC). Furthermore, bioinformatics was used to analyze the DEPs. Gene ontology (GO) enrichment, Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis were adopted. All DEPs were found to be implicated in multiple biological processes and pathways associated with testicular development, such as renin secretion, Lysosomes, SNARE interactions in vesicle trafficking, the p53 signaling pathway and pathways related to metabolism. Additionally, the reliability of transcriptome results was verified by real-time quantitative PCR by selecting the transcript abundance of 6 selected DEPs at the three stages of the laying cycle. CONCLUSIONS The funding in this study will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of testicles in Jilin white goose.
Collapse
Affiliation(s)
- Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Fengshuo Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Zhiye Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
- Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, 130118, Changchun, China.
| |
Collapse
|
5
|
Wang K, Kong F, Qiu Y, Chen T, Fu J, Jin X, Su Y, Gu Y, Hu Z, Li J. Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). Autophagy 2023; 19:2934-2957. [PMID: 37450577 PMCID: PMC10549198 DOI: 10.1080/15548627.2023.2235195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.
Collapse
Affiliation(s)
- Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Center of Reproductive Medicine, Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Li ZF, Qi HY, Wang JM, Zhao Z, Tan FQ, Yang WX. mTORC1/rpS6 and mTORC2/PKC regulate spermatogenesis through Arp3-mediated actin microfilament organization in Eriocheir sinensis. Cell Tissue Res 2023; 393:559-575. [PMID: 37328709 DOI: 10.1007/s00441-023-03795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a crucial signaling protein regulating a range of cellular events. Numerous studies have reported that the mTOR pathway is related to spermatogenesis in mammals. However, its functions and underlying mechanisms in crustaceans remain largely unknown. mTOR exists as two multimeric functional complexes termed mTOR complex 1 (mTORC1) and mTORC2. Herein, we first cloned ribosomal protein S6 (rpS6, a downstream molecule of mTORC1) and protein kinase C (PKC, a downstream effector of mTORC2) from the testis of Eriocheir sinensis. The dynamic localization of rpS6 and PKC suggested that both proteins may be essential for spermatogenesis. rpS6/PKC knockdown and Torin1 treatment led to defects in spermatogenesis, including germ cell loss, retention of mature sperm and empty lumen formation. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was disrupted in the rpS6/PKC knockdown and Torin1 treatment groups, accompanied by changing in expression and distribution of junction proteins. Further study demonstrated that these findings may result from the disorganization of filamentous actin (F-actin) networks, which were mediated by the expression of actin-related protein 3 (Arp3) rather than epidermal growth factor receptor pathway substrate 8 (Eps8). In summary, our study illustrated that mTORC1/rpS6 and mTORC2/PKC regulated spermatogenesis via Arp3-mediated actin microfilament organization in E. sinensis.
Collapse
Affiliation(s)
- Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Yu Qi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Li S, Zhang K, Wen J, Zeng Y, Deng Y, Hu Q, Weng Q. Molecular Mechanism of Male Sterility Induced by 60Co γ-Rays on Plutella xylostella (Linnaeus). Molecules 2023; 28:5727. [PMID: 37570697 PMCID: PMC10420029 DOI: 10.3390/molecules28155727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Plutella xylostella (Linnaeus) is one of the notorious pests causing substantial loses to numerous cruciferous vegetables across many nations. The sterile insect technique (SIT) is a safe and effective pest control method, which does not pollute the environment and does not produce drug resistance. We used proteomics technology and bioinformatics analysis to investigate the molecular mechanisms responsible for the effects of different doses of radiation treatment on the reproductive ability of male P. xylostella. A total of 606 differentially expressed proteins (DEPs) were identified in the 200 Gy/CK group, 1843 DEPs were identified in the 400 Gy/CK group, and 2057 DEPs were identified in the 400 Gy/200 Gy group. The results showed that after 200 Gy irradiation, the testes resisted radiation damage by increasing energy supply, amino acid metabolism and transport, and protein synthesis, while transcription-related pathways were inhibited. After 400 Gy irradiation, the mitochondria and DNA in the testis tissue of P. xylostella were damaged, which caused cell autophagy and apoptosis, affected the normal life activities of sperm cells, and greatly weakened sperm motility and insemination ability. Meanwhile, Western blotting showed that irradiation affects tyrosine phosphorylation levels, which gradually decrease with increasing irradiation dose.
Collapse
Affiliation(s)
- Shifan Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (S.L.); (K.Z.); (J.W.); (Y.Z.); (Y.D.)
| | - Ke Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (S.L.); (K.Z.); (J.W.); (Y.Z.); (Y.D.)
| | - Jiaqi Wen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (S.L.); (K.Z.); (J.W.); (Y.Z.); (Y.D.)
| | - Yuhao Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (S.L.); (K.Z.); (J.W.); (Y.Z.); (Y.D.)
| | - Yukun Deng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (S.L.); (K.Z.); (J.W.); (Y.Z.); (Y.D.)
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (S.L.); (K.Z.); (J.W.); (Y.Z.); (Y.D.)
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Qunfang Weng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (S.L.); (K.Z.); (J.W.); (Y.Z.); (Y.D.)
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Kirat D, Alahwany AM, Arisha AH, Abdelkhalek A, Miyasho T. Role of Macroautophagy in Mammalian Male Reproductive Physiology. Cells 2023; 12:cells12091322. [PMID: 37174722 PMCID: PMC10177121 DOI: 10.3390/cells12091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Physiologically, autophagy is an evolutionarily conserved and self-degradative process in cells. Autophagy carries out normal physiological roles throughout mammalian life. Accumulating evidence shows autophagy as a mechanism for cellular growth, development, differentiation, survival, and homeostasis. In male reproductive systems, normal spermatogenesis and steroidogenesis need a balance between degradation and energy supply to preserve cellular metabolic homeostasis. The main process of autophagy includes the formation and maturation of the phagophore, autophagosome, and autolysosome. Autophagy is controlled by a group of autophagy-related genes that form the core machinery of autophagy. Three types of autophagy mechanisms have been discovered in mammalian cells: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy is classified as non-selective or selective. Non-selective macroautophagy randomly engulfs the cytoplasmic components in autophagosomes that are degraded by lysosomal enzymes. While selective macroautophagy precisely identifies and degrades a specific element, current findings have shown the novel functional roles of autophagy in male reproduction. It has been recognized that dysfunction in the autophagy process can be associated with male infertility. Overall, this review provides an overview of the cellular and molecular basics of autophagy and summarizes the latest findings on the key role of autophagy in mammalian male reproductive physiology.
Collapse
Affiliation(s)
- Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
9
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
10
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
11
|
Chen KQ, Wei BH, Hao SL, Yang WX. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol Histopathol 2022; 37:621-636. [PMID: 35388905 DOI: 10.14670/hh-18-457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.
Collapse
Affiliation(s)
- Kuang-Qi Chen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Liu R, Cai D, Li X, Liu B, Chen J, Jiang X, Li H, Li Z, Teerds K, Sun J, Bai W, Jin Y. Effects of Bisphenol A on reproductive toxicity and gut microbiota dysbiosis in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113623. [PMID: 35567931 DOI: 10.1016/j.ecoenv.2022.113623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is an environmental endocrine disruptor. Recent studies have shown an association between decreased spermatogenesis and gut microbiota alteration. However, the potential associations and mechanisms of BPA exposure on spermatogenesis, hormone production, and gut microbiota remain unknown. This study aims to investigate BPA-induced male reproductive toxicity and the potential link with gut microbiota dysbiosis. Male Sprague Dawley rats were exposed to BPA at different doses by oral gavage for thirty consecutive days. The extent of testicular damage was evaluated by basic parameters of body weight and hematoxylin-eosin (H&E) staining. Next, we determined the mRNA levels and protein levels of apoptosis, histone-related factors, and mammalian target of rapamycin (mTOR) pathway in testes. Finally, 16 S rDNA sequencing was used to analyze gut microbiota composition after BPA exposure. BPA exposure damaged testicular histology, significantly decreased sperm count, and increased sperm abnormalities. In addition, BPA exposure caused oxidative stress and cell apoptosis in testes. The levels of histone (H2A, H3) were significantly increased, while ubiquitin histone H2A (ub-H2A) and ubiquitin histone H2B (ub-H2B) were markedly reduced. Furthermore, BPA activated the PI3K and AKT expression, but the protein expressions of mTOR and 4EBP1 in testes were inhibited significantly. Additionally, the relative abundance of class Gammaproteobacteria, and order Betaproteobacteriales was significantly higher when treated with a high dose of BPA compared to the control group, which was negatively correlated with testosterone level. This study highlights the relationship between BPA-induced reproductive toxicity and gut microbiota disorder and provides new insights into the prevention and treatment of BPA-induced reproductive damage.
Collapse
Affiliation(s)
- Ruijing Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Boping Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, PR China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Zhenhua Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519070, PR China
| | - Katja Teerds
- Department of Animal Sciences, Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| | - Yulong Jin
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, PR China.
| |
Collapse
|
13
|
Wang W, Li X, Zhang Y, Zhang J, Jia L. Mycelium polysaccharides of Macrolepiota procera alleviate reproductive impairments induced by nonylphenol. Food Funct 2022; 13:5794-5806. [PMID: 35543179 DOI: 10.1039/d2fo00680d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nonylphenol (NP) exposure has become a crucial inducement of male reproductive disorders in the world. Therefore, it is urgent to seek solutions to alleviate the toxicity of NP. This study was oriented toward studying the protective effects of Macrolepiota procera mycelium polysaccharides (MMP) on NP-induced reproductive impairments. After NP administration, declined sperm amounts and testis index, increased the deformity rate of sperms, aberrant hormone secretion and testicular pathological injury were observed, corporately leading to reproductive capacity attenuation. Importantly, MMP significantly reversed the foregoing changes in NP-treated mice. Notably, it has been observed that the MMP therapy remarkably improved oxidative stress, apoptosis, autophagy and inflammatory responses, and suppressed the Akt/mTOR signaling pathway in testicular tissues. These results manifested that MMP might be a promising treatment strategy for ameliorating the biotoxicity of NP.
Collapse
Affiliation(s)
- Wenshuai Wang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Xiaoxu Li
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Yaohan Zhang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| |
Collapse
|
14
|
Xie M, Hu X, Li L, Xiong Z, Zhang H, Zhuang Y, Huang Z, Liu J, Lian J, Huang C, Xie Q, Kang X, Fan Y, Bai X, Chen Z. Loss of Raptor induces Sertoli cells into an undifferentiated state in mice. Biol Reprod 2022; 107:1125-1138. [PMID: 35594452 PMCID: PMC9562113 DOI: 10.1093/biolre/ioac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
In mammals, testis development is triggered by the expression of the sex-determining Y-chromosome gene SRY to commit the Sertoli cell (SC) fate at gonadal sex determination in the fetus. Several genes have been identified to be required to promote the testis pathway following SRY activation (i.e., SRY box 9 (SOX9)) in an embryo; however, it largely remains unknown about the genes and the mechanisms involved in stabilizing the testis pathway after birth and throughout adulthood. Herein, we report postnatal males with SC-specific deletion of Raptor demonstrated the absence of SC unique identity and adversely acquired granulosa cell-like characteristics, along with loss of tubular architecture and scattered distribution of SCs and germ cells. Subsequent genome-wide analysis by RNA sequencing revealed a profound decrease in the transcripts of testis genes (i.e., Sox9, Sox8, and anti-Mullerian hormone (Amh)) and, conversely, an increase in ovary genes (i.e., LIM/Homeobox gene 9 (Lhx9), Forkhead box L2 (Foxl2) and Follistatin (Fst)); these changes were further confirmed by immunofluorescence and quantitative reverse-transcription polymerase chain reaction. Importantly, co-immunofluorescence demonstrated that Raptor deficiency induced SCs dedifferentiation into a progenitor state; the Raptor-mutant gonads showed some ovarian somatic cell features, accompanied by enhanced female steroidogenesis and elevated estrogen levels, yet the zona pellucida 3 (ZP3)-positive terminally feminized oocytes were not observed. In vitro experiments with primary SCs suggested that Raptor is likely involved in the fibroblast growth factor 9 (FGF9)-induced formation of cell junctions among SCs. Our results established that Raptor is required to maintain SC identity, stabilize the male pathway, and promote testis development.
Collapse
Affiliation(s)
| | | | | | - Zhi Xiong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Hanbin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuge Zhuang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zicong Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinsheng Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyao Lian
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyu Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Xie
- Center for Reproduction, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, China
| | - Xiangjin Kang
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Yong Fan
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Xiaochun Bai
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Zhenguo Chen
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| |
Collapse
|
15
|
Lalonde-Larue A, Boyer A, Dos Santos EC, Boerboom D, Bernard DJ, Zamberlam G. The Hippo Pathway Effectors YAP and TAZ Regulate LH Release by Pituitary Gonadotrope Cells in Mice. Endocrinology 2022; 163:bqab238. [PMID: 34905605 PMCID: PMC8670590 DOI: 10.1210/endocr/bqab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/08/2023]
Abstract
The Hippo transcriptional coactivators YAP and TAZ exert critical roles in morphogenesis, organ size determination and tumorigenesis in many tissues. Although Hippo kinase cascade activity was recently reported in the anterior pituitary gland in mice, the role of the Hippo effectors in regulating gonadotropin production remains unknown. The objective of this study was therefore to characterize the roles of YAP and TAZ in gonadotropin synthesis and secretion. Using a conditional gene targeting approach (cKO), we found that gonadotrope-specific inactivation of Yap and Taz resulted in increased circulating levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in adult male mice, along with increased testosterone levels and testis weight. Female cKO mice had increased circulating LH (but not FSH) levels, which were associated with a hyperfertility phenotype characterized by higher ovulation rates and larger litter sizes. Unexpectedly, the loss of YAP/TAZ did not appear to affect the expression of gonadotropin subunit genes, yet both basal and GnRH-induced LH secretion were increased in cultured pituitary cells from cKO mice. Likewise, pharmacologic inhibition of YAP binding to the TEAD family of transcription factors increased both basal and GnRH-induced LH secretion in LβT2 gonadotrope-like cells in vitro without affecting Lhb expression. Conversely, mRNA levels of ChgA and SgII, which encode key secretory granule cargo proteins, were decreased following pharmacologic inhibition of YAP/TAZ, suggesting a mechanism whereby YAP/TAZ regulate the LH secretion machinery in gonadotrope cells. Together, these findings represent the first evidence that Hippo signaling may play a role in regulating pituitary LH secretion.
Collapse
Affiliation(s)
- Ariane Lalonde-Larue
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Alexandre Boyer
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Esdras Corrêa Dos Santos
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Derek Boerboom
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gustavo Zamberlam
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| |
Collapse
|
16
|
Wang M, Zeng L, Su P, Ma L, Zhang M, Zhang YZ. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update 2021; 28:200-231. [PMID: 34967891 PMCID: PMC8889000 DOI: 10.1093/humupd/dmab043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular catabolic process of degrading and recycling proteins and organelles to modulate various physiological and pathological events, including cell differentiation and development. Emerging data indicate that autophagy is closely associated with male reproduction, especially the biosynthetic and catabolic processes of sperm. Throughout the fate of sperm, a series of highly specialized cellular events occur, involving pre-testicular, testicular and post-testicular events. Nonetheless, the most fundamental question of whether autophagy plays a protective or harmful role in male reproduction, especially in sperm, remains unclear. OBJECTIVE AND RATIONALE We summarize the functional roles of autophagy in the pre-testicular (hypothalamic–pituitary–testis (HPG) axis), testicular (spermatocytogenesis, spermatidogenesis, spermiogenesis, spermiation) and post-testicular (sperm maturation and fertilization) processes according to the timeline of sperm fate. Additionally, critical mechanisms of the action and clinical impacts of autophagy on sperm are identified, laying the foundation for the treatment of male infertility. SEARCH METHODS In this narrative review, the PubMed database was used to search peer-reviewed publications for summarizing the functional roles of autophagy in the fate of sperm using the following terms: ‘autophagy’, ‘sperm’, ‘hypothalamic–pituitary–testis axis’, ‘spermatogenesis’, ‘spermatocytogenesis’, ‘spermatidogenesis’, ‘spermiogenesis’, ‘spermiation’, ‘sperm maturation’, ‘fertilization’, ‘capacitation’ and ‘acrosome’ in combination with autophagy-related proteins. We also performed a bibliographic search for the clinical impact of the autophagy process using the keywords of autophagy inhibitors such as ‘bafilomycin A1’, ‘chloroquine’, ‘hydroxychloroquine’, ‘3-Methyl Adenine (3-MA)’, ‘lucanthone’, ‘wortmannin’ and autophagy activators such as ‘rapamycin’, ‘perifosine’, ‘metformin’ in combination with ‘disease’, ‘treatment’, ‘therapy’, ‘male infertility’ and equivalent terms. In addition, reference lists of primary and review articles were reviewed for additional relevant publications. All relevant publications until August 2021 were critically evaluated and discussed on the basis of relevance, quality and timelines. OUTCOMES (i) In pre-testicular processes, autophagy-related genes are involved in the regulation of the HPG axis; and (ii) in testicular processes, mTORC1, the main gate to autophagy, is crucial for spermatogonia stem cell (SCCs) proliferation, differentiation, meiotic progression, inactivation of sex chromosomes and spermiogenesis. During spermatidogenesis, autophagy maintains haploid round spermatid chromatoid body homeostasis for differentiation. During spermiogenesis, autophagy participates in acrosome biogenesis, flagella assembly, head shaping and the removal of cytoplasm from elongating spermatid. After spermatogenesis, through PDLIM1, autophagy orchestrates apical ectoplasmic specialization and basal ectoplasmic specialization to handle cytoskeleton assembly, governing spermatid movement and release during spermiation. In post-testicular processes, there is no direct evidence that autophagy participates in the process of capacitation. However, autophagy modulates the acrosome reaction, paternal mitochondria elimination and clearance of membranous organelles during fertilization. WIDER IMPLICATIONS Deciphering the roles of autophagy in the entire fate of sperm will provide valuable insights into therapies for diseases, especially male infertility.
Collapse
Affiliation(s)
- Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Harvard Reproductive Endocrine Science Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Yuan Zhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| |
Collapse
|
17
|
Song WP, Gu SJ, Tan XH, Gu YY, Song WD, Zeng JY, Xin ZC, Guan RL. Proteomic analysis and miRNA profiling of human testicular endothelial cell-derived exosomes: the potential effects on spermatogenesis. Asian J Androl 2021; 24:478-486. [PMID: 34916478 PMCID: PMC9491036 DOI: 10.4103/aja202190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Testicular endothelial cells have been found to play an important role in spermatogenesis and fertility, but their mechanism is obscure. Exosomes released by various cells are recognized as cell–cell communication mediators during the initiation and progression of many diseases. Therefore, the current study aimed to investigate the protein and miRNA components of human testicular endothelial cell-derived exosomes (HTEC-Exos) and to explore their potential effects on spermatogenesis. In this study, HTEC-Exos were first isolated by the ultracentrifugation method, and then identified by nanoparticle tracking analysis, transmission electron microscopy (TEM), and western blotting. The characteristics of HTEC-Exos were examined by liquid chromatography–mass spectrometry and microRNA (miRNA) chip analysis. Bioinformatics analysis was performed to explore the potential role of the exosomal content on spermatogenesis. A total of 945 proteins were identified, 11 of which were closely related to spermatogenesis. A total of 2578 miRNAs were identified. Among them, 30 miRNAs demonstrated potential associations with male reproductive disorders, such as azoospermia, and spermatogenesis disorders. In particular, 11 out of these 30 miRNAs have been proven to be involved in spermatogenesis based on available evidence. This study provides a global view of the proteins and miRNAs from HTEC-Exos, suggesting that HTEC-Exos may function as potential effectors during the process of spermatogenesis.
Collapse
Affiliation(s)
- Wen-Peng Song
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.,Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Sheng-Ji Gu
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Xiao-Hui Tan
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Yang-Yang Gu
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Dong Song
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Jian-Yu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhong-Cheng Xin
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Rui-Li Guan
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| |
Collapse
|
18
|
Djari C, Sahut-Barnola I, Septier A, Plotton I, Montanier N, Dufour D, Levasseur A, Wilmouth J, Pointud JC, Faucz FR, Kamilaris C, Lopez AG, Guillou F, Swain A, Vainio SJ, Tauveron I, Val P, Lefebvre H, Stratakis CA, Martinez A, Lefrançois-Martinez AM. Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex. J Clin Invest 2021; 131:146910. [PMID: 34850745 DOI: 10.1172/jci146910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Large-cell calcifying Sertoli cell tumors (LCCSCTs) are among the most frequent lesions occurring in male Carney complex (CNC) patients. Although they constitute a key diagnostic criterion for this rare multiple neoplasia syndrome resulting from inactivating mutations of the tumor suppressor PRKAR1A, leading to unrepressed PKA activity, LCCSCT pathogenesis and origin remain elusive. Mouse models targeting Prkar1a inactivation in all somatic populations or separately in each cell type were generated to decipher the molecular and paracrine networks involved in the induction of CNC testis lesions. We demonstrate that the Prkar1a mutation was required in both stromal and Sertoli cells for the occurrence of LCCSCTs. Integrative analyses comparing transcriptomic, immunohistological data and phenotype of mutant mouse combinations led to the understanding of human LCCSCT pathogenesis and demonstrated PKA-induced paracrine molecular circuits in which the aberrant WNT4 signal production is a limiting step in shaping intratubular lesions and tumor expansion both in a mouse model and in human CNC testes.
Collapse
Affiliation(s)
- Cyril Djari
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Amandine Septier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Ingrid Plotton
- UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Hospices Civils de Lyon, Bron, France
| | - Nathanaëlle Montanier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Dufour
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Adrien Levasseur
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - James Wilmouth
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Crystal Kamilaris
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine-Guy Lopez
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Igor Tauveron
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Val
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Hervé Lefebvre
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine Martinez
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | |
Collapse
|
19
|
Wang L, Sun J, Han J, Ma Z, Pan M, Du Z. MiR-181a Promotes Spermatogenesis by Targeting the S6K1 Pathway. Int J Stem Cells 2021; 14:341-350. [PMID: 33906981 PMCID: PMC8429941 DOI: 10.15283/ijsc21001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/11/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Approximately 15% of couples suffer from infertility worldwide, and male factors contribute to about 30% of total sterility cases. However, there is little progress in treatments due to the obscured understanding of underlying mechanisms. Recently microRNAs have emerged as a key player in the process of spermatogenesis. Expression profiling of miR-181a was carried out in murine testes and spermatocyte culture system. In vitro cellular and biochemical assays were used to examine the effect of miR-181a and identify its target S6K1, as well as elucidate the function with chemical inhibitor of S6K1. Human testis samples analysis was employed to validate the findings. miR-181a level was upregulated during mouse spermatogenesis and knockdown of miR-181a attenuated the cell proliferation and G1/S arrest and increased the level of S6K1, which was identified as a downstream target of miR-181a. Overexpression of S6K1 also led to growth arrest of spermatocytes while inhibitor of S6K1 rescued the miR-181a knockdown-mediated cell proliferation defect. In human testis samples of azoospermia patients, low level of miR-181a was correlated with defects in the spermatogenic process. miR-181a is identified as a new regulator and high level of miR-181a contributes to spermatogenesis via targeting S6K1.
Collapse
Affiliation(s)
- Lei Wang
- Reproductive Medical Center, Zaozhuang Maternal and Child Health Hospital, Zaozhuang, China
| | - Juan Sun
- Department of Gynaecology, Zaozhuang Maternal and Child Health Hospital, Zaozhuang, China
| | - Jin Han
- Reproductive Medical Center, Zaozhuang Maternal and Child Health Hospital, Zaozhuang, China
| | - Zhaowen Ma
- Reproductive Medical Center, Zaozhuang Maternal and Child Health Hospital, Zaozhuang, China
| | - Meiling Pan
- Reproductive Medical Center, Zaozhuang Maternal and Child Health Hospital, Zaozhuang, China
| | - Zhaojin Du
- Reproductive Medical Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103670. [PMID: 33964400 PMCID: PMC8316325 DOI: 10.1016/j.etap.2021.103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/29/2023]
Abstract
Exposure to anthropogenic environmental chemical mixtures could be contributing to the decline in male reproductive health. This study used the biosolid treated pasture (BTP) sheep model to assess the effects of exposure to low-dose chemical mixtures. Maternal BTP exposure was associated with lower plasma testosterone concentrations, a greater proportion of Sertoli cell-only seminiferous tubules, and fewer gonocytes in the testes of neonatal offspring. Transcriptome analysis highlighted changes in testicular mTOR signalling, including lower expression of two mTOR complex components. Transcriptomic hierarchical analysis relative to the phenotypic severity demonstrated distinct differential responses to maternal BTP exposure during pregnancy. Transcriptome analysis between phenotypically normal and abnormal BTP lambs demonstrated separate responses within the cAMP and PI3K signalling pathways towards CREB. Together, the results provide a potential mechanistic explanation for adverse effects. Exposure could lower gonocyte numbers through mTOR mediated autophagy, but CREB mediated survival factors may act to increase germ cell survival.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
21
|
Gallardi D, Xue X, Mercier E, Mills T, Lefebvre F, Rise ML, Murray HM. RNA-seq analysis of the mantle transcriptome from Mytilus edulis during a seasonal spawning event in deep and shallow water culture sites on the northeast coast of Newfoundland, Canada. Mar Genomics 2021; 60:100865. [PMID: 33933383 DOI: 10.1016/j.margen.2021.100865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
The blue mussel (Mytilus edulis) has global commercial and ecological importance both in wild and cultured conditions. However there is a qualitative and quantitative lack of knowledge of the molecular mechanisms associated with its reproductive physiology, especially with reference to environmental interactions. Here we initiated a transcriptomic analysis (RNA-sequencing (RNA-seq)) of the mantle from both sexes sampled during a seasonal spawning event and from two culture depths (shallow-5 m; deep- 15 m). Mantle libraries were produced from 3 males and 3 females sampled from each of two shallow sites and two deep sites for a total of 12 replicate male and 12 replicate female libraries (24 total libraries). Overall a total of 2.3 billion raw 100 base reads with an average of 96.5 million reads/library were obtained and assembled into 296,118 transcripts with an average length of 568 bp. Overall, 315 transcripts from male libraries and 25 from female libraries were found to be upregulated in deep water as compared to shallow (edgeR adjusted p value ≤ 0.05). Conversely, 126 transcripts from male libraries and 135 from female libraries were found to be significantly downregulated at the same depth. Thirteen transcripts were selected for qPCR validation based on importance in reproduction, antimicrobial defense and metabolism. Of these, 9 RNA-seq identified transcripts were shown by qPCR to be differentially expressed between groups: 2 were upregulated in deep compared with shallow water (dhx38, mt-co1), 2 were upregulated for female compared with male mantle (pias2, mapkap1) and 6 genes (fndc3a, acbd3, klhl10, ccnb3, armc4, mt-co1) showed to be upregulated in males compared to females. The majority of qPCR studied transcripts were identified as involved in gamete development based on the UniProt database. This study further characterizes the importance of the mantle transcriptome during reproductive activities of M. edulis.
Collapse
Affiliation(s)
- Daria Gallardi
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Eloi Mercier
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Terry Mills
- Norlantic Processors Limited, P.O. Box 381, Botwood, NL A0H 1E0, Canada
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Harry M Murray
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada
| |
Collapse
|
22
|
Wang L, Li L, Wu X, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. Semin Cell Dev Biol 2021; 121:53-62. [PMID: 33867214 DOI: 10.1016/j.semcdb.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China; The Population Council, Center for Biomedical Research, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
23
|
Long C, Zhou Y, Shen L, Yu Y, Hu D, Liu X, Lin T, He D, Xu T, Zhang D, Zhu J, Wei G. Retinoic acid can improve autophagy through depression of the PI3K-Akt-mTOR signaling pathway via RARα to restore spermatogenesis in cryptorchid infertile rats. Genes Dis 2021; 9:1368-1377. [PMID: 35873030 PMCID: PMC9293722 DOI: 10.1016/j.gendis.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Cryptorchidism-caused adult infertility is a common component of idiopathic reasons for male infertility. Retinoic acid (RA) has a vital effect on the spermatogenesis process. Here, we found that the expression of c-Kit, Stra8, and Sycp3 could be up-regulated via the activation of retinoic acid receptor α (RARα) after RA supplementation in neonatal cryptorchid infertile rats. We also demonstrated that the protein expression of PI3K, p-Akt/pan-Akt, and p-mTOR/mTOR was higher in cryptorchid than in normal testes, and could be suppressed with RA in vivo. After RA treatment in infertile cryptorchid testis in vivo, the levels of the autophagy proteins LC3 and Beclin1 increased and those of P62 decreased. Biotin tracer indicated that the permeability of blood-testis barrier (BTB) in cryptorchid rats decreased after RA administration. Additionally, after blocking the RARα with AR7 (an RARα antagonist) in testicle culture in vitro, we observed that compared with normal testes, the PI3K-Akt-mTOR signaling pathway and the autophagy pathway was increased and decreased, respectively, which were coincident with cryptorchisd testes in vivo. Additionally, the appropriate concentrations of RA treatment could depress the PI3K-Akt-mTOR signaling pathway and improve the autophagy pathway. The results confirmed that RA can rehabilitate BTB function and drive key protein levels in spermatogonial differentiation through depressing the PI3K-Akt-mTOR signaling pathway via RARα.
Collapse
Affiliation(s)
- Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yu Zhou
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yihang Yu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Dong Hu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xing Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Tao Lin
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Dawei He
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Tao Xu
- Bio-manufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Deying Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jing Zhu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| |
Collapse
|
24
|
Wu H, Wei Y, Zhou Y, Long C, Hong Y, Fu Y, Zhao T, Wang J, Wu Y, Wu S, Shen L, Wei G. Bisphenol S perturbs Sertoli cell junctions in male rats via alterations in cytoskeletal organization mediated by an imbalance between mTORC1 and mTORC2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144059. [PMID: 33360459 DOI: 10.1016/j.scitotenv.2020.144059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol S (BPS) is now used as an alternative of bisphenol A (BPA), but has been implicated in male reproductive dysfunction-including diminished sperm number and quality and altered hormonal concentrations. However, the mechanisms of action subserving these effects remains unclear. In the present study, BPS at doses of 50 mg/kg bw and 100 mg/kg bw caused defects in the integrity of the blood-testis barrier (BTB) and apical ectoplasmic specialization (ES), and we also delineated an underlying molecular mechanism of action. BPS induced F-actin and α-tubulin disorganization in seminiferous tubules, which in turn led to the truncation of actin filaments and microtubules. Additionally, BPS was found to perturb the expression of the actin-binding proteins Arp3 and Eps8, which are critical for the organization of the actin filaments. mTORC1 and mTORC2 manifest opposing roles in Sertoli cell junctional function, and we demonstrated that mTORC1/rpS6/Akt/MMP9 signaling was increased and that mTORC2/rictor activity was also attenuated. In summary, we showed that BPS-induced disruption of the BTB and apical ES perturbed normal spermatogenic function that was mediated by mTORC1 and mTORC2. The imbalance in mTORC1 and mTORC2, in turn, altered the expression of actin-binding proteins, resulting in the impairment of F-actin and MT organization, and inhibited the expression of junctional proteins at the BTB and apical ES.
Collapse
Affiliation(s)
- Huan Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Tianxin Zhao
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
25
|
Ham J, Lim W, Song G. Flufenoxuron suppresses the proliferation of testicular cells by targeting mitochondria in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104773. [PMID: 33771252 DOI: 10.1016/j.pestbp.2021.104773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Flufenoxuron is a benzoylurea pesticide that is used to eradicate insects and acarids in the farmland. Even though it specifically works on target animals, the possibilities of its bioaccumulation and harmful effects on non-target animals cannot be denied. As the usage and application of pesticides increases, exposure to them also increases through ingestion of food residues, inhalation, or dermal contact. Pesticides could also be considered as endocrine disruptor chemicals; however, the reproductive toxicity and cellular mechanisms of flufenoxuron have not been identified. Our results indicate that flufenoxuron inhibits cellular proliferation and hampers calcium homeostasis, especially by targeting mitochondria. We also confirmed the induction of endoplasmic reticulum (ER) stress and ER-mitochondrial contact signaling. Using pharmacological inhibitors, we also observed that the mitogen-activated protein kinase and Akt signaling pathways were upregulated by flufenoxuron. Further, by oral administration of flufenoxuron (100 mg/kg/bw) to C57BL/6 male mice, we observed transcriptional changes in the testis-related genes. Collectively, we demonstrated that flufenoxuron inhibits cell proliferation and alters gene expression in mouse testis cells and induces testicular dysfunction in mice. These results indicate that flufenoxuron may be harmful to male reproduction and fertility in the early stages of pregnancy.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
26
|
Maekura K, Tsukamoto S, Hamada-Kanazawa M, Takano M. Rimklb mutation causes male infertility in mice. Sci Rep 2021; 11:4604. [PMID: 33633267 PMCID: PMC7907349 DOI: 10.1038/s41598-021-84105-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Rimklb is a mammalian homologue of the E. coli enzyme RimK, which catalyzes addition of glutamic acid to the ribosomal protein S6. To date, no previous studies have shown any physiological role for Rimklb in mammals. In this study, using Western blotting, we found that Rimklb is distributed and expressed in mouse testis and heart. Rimklb was subsequently localized to the testicular Leydig cells using immunohistochemistry with an anti-Rimklb antibody. We generated a Rimklb mutant mouse in which a three-base deletion results in deletion of Ala 29 and substitution of Leu 30 with Val, which we named the RimklbA29del, L30V mutant mouse. RimklbA29del, L30V mutant mice show a decrease in testicular size and weight, and in vitro fertilization demonstrates complete male infertility. Furthermore, we found that a key factor in the mammalian target of the rapamycin/ribosomal protein S6 transcriptional pathway is hyperphosphorylated in the seminiferous tubules of the mutant testis. We conclude that Rimklb has important roles that include spermatogenesis in seminiferous tubules. In summary, male RimklbA29del, L30V mice are infertile.
Collapse
Affiliation(s)
- Koji Maekura
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Michiko Hamada-Kanazawa
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
27
|
Wang L, Yan M, Li H, Wu S, Ge R, Wong CKC, Silvestrini B, Sun F, Cheng CY. The Non-hormonal Male Contraceptive Adjudin Exerts its Effects via MAPs and Signaling Proteins mTORC1/rpS6 and FAK-Y407. Endocrinology 2021; 162:5936120. [PMID: 33094326 PMCID: PMC8244566 DOI: 10.1210/endocr/bqaa196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (formerly called AF-2364), is a nonhormonal male contraceptive, since it effectively induces reversible male infertility without perturbing the serum concentrations of follicle stimulating hormone (FSH), testosterone, and inhibin B based on studies in rats and rabbits. Adjudin was shown to exert its effects preferentially by perturbing the testis-specific actin-rich adherens junction (AJ) at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES), thereby effectively inducing spermatid exfoliation. Adjudin did not perturb germ cell development nor germ cell function. Also, it had no effects on Sertoli cell-cell AJ called basal ectoplasmic specialization (basal ES), which, together with tight junction constitute the blood-testis barrier (BTB), unless an acute dose of adjudin was used. Adjudin also did not perturb the population of spermatogonial stem cells nor Sertoli cells in the testis. However, the downstream signaling protein(s) utilized by adjudin to induce transient male infertility remains unexplored. Herein, using adult rats treated with adjudin and monitored changes in the phenotypes across the seminiferous epithelium between 6 and 96 h in parallel with the steady-state protein levels of an array of signaling and cytoskeletal regulatory proteins, recently shown to be involved in apical ES, basal ES and BTB function. It was shown that adjudin exerts its contraceptive effects through changes in microtubule associated proteins (MAPs) and signaling proteins mTORC1/rpS6 and p-FAK-Y407. These findings are important to not only study adjudin-mediated male infertility but also the biology of spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
- Correspondence: C. Yan Cheng, PhD, Senior Scientist, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065. E-mail:
| |
Collapse
|
28
|
Gao S, Wu X, Wang L, Bu T, Perrotta A, Guaglianone G, Silvestrini B, Sun F, Cheng CY. Signaling Proteins That Regulate Spermatogenesis Are the Emerging Target of Toxicant-Induced Male Reproductive Dysfunction. Front Endocrinol (Lausanne) 2021; 12:800327. [PMID: 35002976 PMCID: PMC8739942 DOI: 10.3389/fendo.2021.800327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 12/05/2022] Open
Abstract
There is emerging evidence that environmental toxicants, in particular endocrine disrupting chemicals (EDCs) such as cadmium and perfluorooctanesulfonate (PFOS), induce Sertoli cell and testis injury, thereby perturbing spermatogenesis in humans, rodents and also widelife. Recent studies have shown that cadmium (e.g., cadmium chloride, CdCl2) and PFOS exert their disruptive effects through putative signaling proteins and signaling cascade similar to other pharmaceuticals, such as the non-hormonal male contraceptive drug adjudin. More important, these signaling proteins were also shown to be involved in modulating testis function based on studies in rodents. Collectively, these findings suggest that toxicants are using similar mechanisms that used to support spermatogenesis under physiological conditions to perturb Sertoli and testis function. These observations are physiologically significant, since a manipulation on the expression of these signaling proteins can possibly be used to manage the toxicant-induced male reproductive dysfunction. In this review, we highlight some of these findings and critically evaluate the possibility of using this approach to manage toxicant-induced defects in spermatrogenesis based on recent studies in animal models.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Guaglianone
- Department of Hospital Pharmacy, “Azienda Sanitaria Locale (ASL) Roma 4”, Civitavecchia, Italy
| | - Bruno Silvestrini
- Institute of Pharmacology and Pharmacognosy, Sapienza University of Rome, Rome, Italy
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: C. Yan Cheng, ; Fei Sun,
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
- *Correspondence: C. Yan Cheng, ; Fei Sun,
| |
Collapse
|
29
|
Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol 2020; 36:249-265. [PMID: 33174615 DOI: 10.14670/hh-18-279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The microtubule (MT) cytoskeleton in Sertoli cells, a crucial cellular structure in the seminiferous epithelium of adult mammalian testes that supports spermatogenesis, was studied morphologically decades ago. However, its biology, in particular the involving regulatory biomolecules and the underlying mechanism(s) in modulating MT dynamics, are only beginning to be revealed in recent years. This lack of studies in delineating the biology of MT cytoskeletal dynamics undermines other studies in the field, in particular the plausible therapeutic treatment and management of male infertility and fertility since studies have shown that the MT cytoskeleton is one of the prime targets of toxicants. Interestingly, much of the information regarding the function of actin-, MT- and intermediate filament-based cytoskeletons come from studies using toxicant models including some genetic models. During the past several years, there have been some advances in studying the biology of MT cytoskeleton in the testis, and many of these studies were based on the use of pharmaceutical/toxicant models. In this review, we summarize the results of these findings, illustrating the importance of toxicant/pharmaceutical models in unravelling the biology of MT dynamics, in particular the role of microtubule-associated proteins (MAPs), a family of regulatory proteins that modulate MT dynamics but also actin- and intermediate filament-based cytoskeletons. We also provide a timely hypothetical model which can serve as a guide to design functional experiments to study how the MT cytoskeleton is regulated during spermatogenesis through the use of toxicants and/or pharmaceutical agents.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
30
|
Modulating the Blood–Testis Barrier Towards Increasing Drug Delivery. Trends Pharmacol Sci 2020; 41:690-700. [DOI: 10.1016/j.tips.2020.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
|
31
|
Lei JH, Yan W, Luo CH, Guo YM, Zhang YY, Wang XH, Su XJ. Cytotoxicity of nonylphenol on spermatogonial stem cells via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway. World J Stem Cells 2020; 12:500-513. [PMID: 32742567 PMCID: PMC7360990 DOI: 10.4252/wjsc.v12.i6.500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With continuous advancement of industrial society, environmental pollution has become more and more serious. There has been an increase in infertility caused by environmental factors. Nonylphenol (NP) is a stable degradation product widely used in daily life and production and has been proven to affect male fertility. However, the underlying mechanisms therein are unclear. Thus, it is necessary to study the effect and mechanism of NP on spermatogonial stem cells (SSCs).
AIM To investigate the cytotoxic effect of NP on SSCs via the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway.
METHODS SSCs were treated with NP at 0, 10, 20 or 30 µmol. MTT assay was performed to evaluate the effect of NP on the proliferation of SSCs. Flow cytometry was conducted to measure SSC apoptosis. The expression of Bad, Bcl-2, cytochrome-c, pro-Caspase 9, SOX-2, OCT-4, Nanog, Nanos3, Stra8, Scp3, GFRα1, CD90, VASA, Nanos2, KIT, PLZF and PI3K/AKT/mTOR-related proteins was observed by western blot, and the mRNA expression of SOX-2, OCT-4 and Nanog was detected by quantitative reverse transcription polymerase chain reaction.
RESULTS Compared with untreated cells (0 μmol NP), SSCs treated with NP at all concentrations showed a decrease in cell proliferation and expression of Bcl-2, Nanog, OCT-4, SOX-2, Nanos3, Stra8, Scp3, GFRα1, CD90, VASA, Nanos2, KIT, and PLZF (P < 0.05), whereas the expression of Bad, cytochrome-c, and pro-Caspase 9 increased significantly (P < 0.05). We further examined the PI3K/AKT/mTOR pathway and found that the phosphorylation of PI3K, AKT, mTORC1, and S6K was significantly decreased by NP at all concentrations compared to that in untreated SSCs (P < 0.05). NP exerted the greatest effect at 30 μmol among all NP concentrations.
CONCLUSION NP attenuated the proliferation, differentiation and stemness maintenance of SSCs while promoting apoptosis and oxidative stress. The associated mechanism may be related to the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jun-Hao Lei
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wen Yan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chun-Hua Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yang-Yang Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
- Center for Evidence-based and Translational Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xin-Jun Su
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
32
|
Li LX, Wu SW, Yan M, Lian QQ, Ge RS, Cheng CY. Regulation of blood-testis barrier dynamics by the mTORC1/rpS6 signaling complex: An in vitro study. Asian J Androl 2020; 21:365-375. [PMID: 30829292 PMCID: PMC6628733 DOI: 10.4103/aja.aja_126_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During spermatogenesis, developing germ cells that lack the cellular ultrastructures of filopodia and lamellipodia generally found in migrating cells, such as macrophages and fibroblasts, rely on Sertoli cells to support their transport across the seminiferous epithelium. These include the transport of preleptotene spermatocytes across the blood-testis barrier (BTB), but also the transport of germ cells, in particular developing haploid spermatids, across the seminiferous epithelium, that is to and away from the tubule lumen, depending on the stages of the epithelial cycle. On the other hand, cell junctions at the Sertoli cell–cell and Sertoli–germ cell interface also undergo rapid remodeling, involving disassembly and reassembly of cell junctions, which, in turn, are supported by actin- and microtubule-based cytoskeletal remodeling. Interestingly, the underlying mechanism(s) and the involving biomolecule(s) that regulate or support cytoskeletal remodeling remain largely unknown. Herein, we used an in vitro model of primary Sertoli cell cultures that mimicked the Sertoli BTB in vivo overexpressed with the ribosomal protein S6 (rpS6, the downstream signaling protein of mammalian target of rapamycin complex 1 [mTORC1]) cloned into the mammalian expression vector pCI-neo, namely, quadruple phosphomimetic and constitutively active mutant of rpS6 (pCI-neo/p-rpS6-MT) versus pCI-neo/rpS6-WT (wild-type) and empty vector (pCI-neo/Ctrl) for studies. These findings provide compelling evidence that the mTORC1/rpS6 signal pathway exerted its effects to promote Sertoli cell BTB remodeling. This was mediated through changes in the organization of actin- and microtubule-based cytoskeletons, involving changes in the distribution and/or spatial expression of actin- and microtubule-regulatory proteins.
Collapse
Affiliation(s)
- Lin-Xi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Si-Wen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Ming Yan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qing-Quan Lian
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| |
Collapse
|
33
|
Yang T, Yang WX. The dynamics and regulation of microfilament during spermatogenesis. Gene 2020; 744:144635. [PMID: 32244053 DOI: 10.1016/j.gene.2020.144635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is a highly complex physiological process which contains spermatogonia proliferation, spermatocyte meiosis and spermatid morphogenesis. In the past decade, actin binding proteins and signaling pathways which are critical for regulating the actin cytoskeleton in testis had been found. In this review, we summarized 5 actin-binding proteins that have been proven to play important roles in the seminiferous epithelium. Lack of them perturbs spermatids polarity and the transport of spermatids. The loss of Arp2/3 complex, Formin1, Eps8, Palladin and Plastin3 cause sperm release failure suggesting their irreplaceable role in spermatogenesis. Actin regulation relies on multiple signal pathways. The PI3K/Akt signaling pathway positively regulate the mTOR pathway to promote actin reorganization in seminiferous epithelium. Conversely, TSC1/TSC2 complex, the upstream of mTOR, is activated by the LKB1/AMPK pathway to inhibit cell proliferation, differentiation and migration. The increasing researches focus on the function of actin binding proteins (ABPs), however, their collaborative regulation of actin patterns and potential regulatory signaling networks remains unclear. We reviewed ABPs that play important roles in mammalian spermatogenesis and signal pathways involved in the regulation of microfilaments. We suggest that more relevant studies should be performed in the future.
Collapse
Affiliation(s)
- Tong Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Li F, Huang D, Yang W, Liu X, Nie S, Xie M. Polysaccharide from the seeds of Plantago asiatica L. alleviates nonylphenol induced reproductive system injury of male rats via PI3K/Akt/mTOR pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
35
|
Yang X, Zhao Y, Sun Q, Yang Y, Gao Y, Ge W, Liu J, Xu X, Zhang J. Adenosine accumulation causes metabolic disorders in testes and associates with lower testosterone level in obese mice. Mol Reprod Dev 2020; 87:241-250. [PMID: 32026564 DOI: 10.1002/mrd.23321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022]
Abstract
Overweight and obese men face numerous health problems, including type 2 diabetes, subfertility, and even infertility. However, few studies have focused on the effects of nutritional status and obesity-related regulatory signals on fertility deficiency. Our previous observations have shown that the elevation of plasma 5'-adenosine monophosphate (5'-AMP) and the accumulation of adenosine in liver and muscle of obese diabetic db/db mice are related to insulin resistance. Here, we found that adenosine accumulation in testis is a common marker of both genetic obesity and high-fat-diet induced obese mice. An messenger RNA sequencing analysis indicated that 78 upregulated genes and 155 downregulated genes in the testis of 5'-AMP-treated mice overlapped with the same genes in the testis of ob/ob mice, and these genes belonged to the clusters of steroid metabolic process and regulation of hormone levels, respectively. Serum testosterone was reduced in ob/ob and 5'-AMP-treated mice. Metabolomic analysis based on 1 H nuclear magnetic resonance showed that the testicular metabolic profiles of ob/ob mice were similar to those of 5'-AMP treated mice. Exogenous 5'-AMP inhibited the phosphorylation of AKT and mammalian target of rapamycin signal transduction and reduced the proliferating cell nuclear antigen expressions in testes. Our results suggest that the accumulation of adenosine causes metabolic disorders in testes and associates lower testosterone level in obese mice.
Collapse
Affiliation(s)
- Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
36
|
Gross N, Strillacci MG, Peñagaricano F, Khatib H. Characterization and functional roles of paternal RNAs in 2-4 cell bovine embryos. Sci Rep 2019; 9:20347. [PMID: 31889064 PMCID: PMC6937301 DOI: 10.1038/s41598-019-55868-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Embryos utilize oocyte-donated RNAs until they become capable of producing RNAs through embryonic genome activation (EGA). The sperm's influence over pre-EGA RNA content of embryos remains unknown. Recent studies have revealed that sperm donate non-genomic components upon fertilization. Thus, sperm may also contribute to RNA presence in pre-EGA embryos. The first objective of this study was to investigate whether male fertility status is associated with the RNAs present in the bovine embryo prior to EGA. A total of 65 RNAs were found to be differentially expressed between 2-4 cell bovine embryos derived from high and low fertility sires. Expression patterns were confirmed for protein phosphatase 1 regulatory subunit 36 (PPP1R36) and ataxin 2 like (ATXN2L) in three new biological replicates. The knockdown of ATXN2L led to a 22.9% increase in blastocyst development. The second objective of this study was to characterize the parental origin of RNAs present in pre-EGA embryos. Results revealed 472 sperm-derived RNAs, 2575 oocyte-derived RNAs, 2675 RNAs derived from both sperm and oocytes, and 663 embryo-exclusive RNAs. This study uncovers an association of male fertility with developmentally impactful RNAs in 2-4 cell embryos. This study also provides an initial characterization of paternally-contributed RNAs to pre-EGA embryos. Furthermore, a subset of 2-4 cell embryo-specific RNAs was identified.
Collapse
Affiliation(s)
- Nicole Gross
- University of Wisconsin, Department of Animal Sciences, Madison, WI, 53706, USA
| | | | | | - Hasan Khatib
- University of Wisconsin, Department of Animal Sciences, Madison, WI, 53706, USA.
| |
Collapse
|
37
|
Zhou Y, Zhang D, Liu B, Hu D, Shen L, Long C, Yu Y, Lin T, Liu X, He D, Wei G. Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism. Genes Dis 2019; 6:431-440. [PMID: 31832523 PMCID: PMC6889044 DOI: 10.1016/j.gendis.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
This study aims to determine key genes and pathways that could play important roles in the spermatogenic process of patients with cryptorchidism. The gene expression profile data of GSE25518 was obtained from the Gene Expression Omnibus (GEO) database. Microarray data were analyzed using BRB-Array Tools to identify differentially expressed genes (DEGs) between high azoospermia risk (HAZR) patients and controls. In addition, other analytical methods were deployed, including hierarchical clustering analysis, class comparison between patients with HAZR and the normal control group, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the construction of a protein–protein interaction (PPI) network. In total, 1015 upregulated genes and 1650 downregulated genes were identified. GO and KEGG analysis revealed enrichment in terms of changes in the endoplasmic reticulum cellular component and the endoplasmic reticulum protein synthetic process in the HAZR group. Furthermore, the arachidonic acid pathway and mTOR pathway were also identified as important pathways, while RICTOR and GPX8 were indentified as key genes involved in the spermatogenic process of patients with cryptorchidism. In present study, we found that changes in the synthesis of endoplasmic reticulum proteins, arachidonic acid and the mTOR pathway are important in the incidence and spermatogenic process of cryptorchidism. GPX8 and RICTOR were also identified as key genes associated with cryptorchidism. Collectively, these data may provide novel clues with which to explore the precise etiology and mechanism underlying cryptorchidism and cryptorchidism-induced human infertility.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Bo Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Dong Hu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
38
|
Su W, Cheng CY. Cdc42 is involved in NC1 peptide-regulated BTB dynamics through actin and microtubule cytoskeletal reorganization. FASEB J 2019; 33:14461-14478. [PMID: 31682474 PMCID: PMC6894087 DOI: 10.1096/fj.201900991r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Noncollagenous domain 1 (NC1)-peptide is a biologically active peptide derived from the C-terminal region of collagen α3(IV) chain, a structural constituent protein at the basement membrane in the rat testis, likely via proteolytic cleavage of matrix metalloproteinase 9. Studies have shown that this NC1 peptide regulates testis function by inducing Sertoli cell blood-testis barrier (BTB) remodeling and is also capable of inducing elongate spermatid exfoliation through its disruptive effects on the organization of actin- and microtubule (MT)-based cytoskeletons at these cell adhesion sites. However, the underlying molecular mechanism remains unknown. NC1 peptide was found to exert its biologic effects through an activation of small GTPase cell division control protein 42 homolog (Cdc42) because cooverexpression of the dominant negative mutant of Cdc42 [namely, Cdc42-T17N (via a single mutation of amino acid residue 17 from the N terminus from Thr to Asn by site-directed mutagenesis, making it constitutively inactive)] and NC1 peptide was able to block the NC1 peptide-induced Sertoli cell tight junction-permeability barrier disruption. Their cooverexpression also blocked the NC1 peptide-induced misdistribution of BTB-associated proteins at the cell-cell interface and also disruptive cytoskeletal organization of F-actin and MTs through changes in spatial expression of the corresponding actin and MT regulatory proteins. Interestingly, NC1 peptide was also found to induce an up-regulation of phosphorylated (p)-ribosomal protein S6 (rpS6) (namely, p-rpS6-S235/S236) and a concomitant down-regulation of p-Akt1/2 (namely, p-Akt1-S473 and p-Akt2-S474), but these changes could not be blocked by overexpression of Cdc42-T17N. More importantly, NC1 peptide-induced Cdc42 activation was effectively blocked by treatment of Sertoli cell epithelium with a p-Akt1/2 activator SC79, which is also capable of blocking NC1 peptide-induced down-regulation of p-Akt1-S473 and p-Akt2/S474, but not p-rpS6-S235/S236 up-regulation. In summary, these findings illustrate that Cdc42 is working downstream of the mammalian target of rapamycin complex 1/rpS6/Akt1/2 signaling pathway to support NC1 peptide-mediated effects on Sertoli cell function in the testis using the rat as an animal model.-Su, W., Cheng, C. Y. Cdc42 is involved in NC1 peptide-regulated BTB dynamics through actin and microtubule cytoskeletal reorganization.
Collapse
Affiliation(s)
- Wenhui Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, Rockefeller University, New York, New York, USA
| | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, Rockefeller University, New York, New York, USA
| |
Collapse
|
39
|
Huang W, Cao Z, Zhang J, Ji Q, Li Y. Aflatoxin B 1 promotes autophagy associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113317. [PMID: 31610502 DOI: 10.1016/j.envpol.2019.113317] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 (AFB1) is a hazard environmental pollutants and the most toxic one of all the aflatoxins. AFB1 can cause a serious impairment to testicular development and spermatogenesis, yet the underlying mechanisms remain inconclusive. Oxidative stress acts as a master mechanism of AFB1 toxicity, and can promote autophagy. Abnormal autophagy resulted in testicular damage and spermatogenesis disorders. The objective of this study was to explore the effect of AFB1 on autophagy in mice testis and its potential mechanisms. In this study, male mice were intragastrically administered with 0, 0.375, 0.75 or 1.5 mg/kg body weight AFB1 for 30 days. We found that AFB1 induced testicular damage, reduced serum testosterone level and impaired sperm quality accompanied with the elevation of oxidative stress and germ cell apoptosis. Interestingly, we observed increasing numbers of autophagosomes in AFB1-exposed mice testis. Meanwhile, AFB1 caused testis abnormal autophagy with the characterization of increased expressions of LC3, Beclin-1, Atg5 and p62. Furthermore, AFB1 downregulated the expressions of PI3K, p-AKT and p-mTOR in mice testis. Taken together, our data indicated AFB1 induced testicular damage and promoted autophagy, which were associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Ji
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
40
|
Wu S, Yan M, Ge R, Cheng CY. Crosstalk between Sertoli and Germ Cells in Male Fertility. Trends Mol Med 2019; 26:215-231. [PMID: 31727542 DOI: 10.1016/j.molmed.2019.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is supported by intricate crosstalk between Sertoli cells and germ cells including spermatogonia, spermatocytes, haploid spermatids, and spermatozoa, which takes place in the epithelium of seminiferous tubules. Sertoli cells, also known as 'mother' or 'nurse' cells, provide nutrients, paracrine factors, cytokines, and other biomolecules to support germ cell development. Sertoli cells facilitate the generation of several biologically active peptides, which include F5-, noncollagenous 1 (NC1)-, and laminin globular (LG)3/4/5-peptide, to modulate cellular events across the epithelium. Here, we critically evaluate the involvement of these peptides in facilitating crosstalk between Sertoli and germ cells to support spermatogenesis and thus fertility. Modulating or mimicking the activity of F5-, NC1-, and LG3/4/5-peptide could be used to enhance the transport across the blood-testis barrier (BTB) of contraceptive drugs or to treat male infertility.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
41
|
Wu S, Yan M, Li L, Mao B, Wong CKC, Ge R, Lian Q, Cheng CY. mTORC1/rpS6 and spermatogenic function in the testis-insights from the adjudin model. Reprod Toxicol 2019; 89:54-66. [PMID: 31278979 PMCID: PMC6825331 DOI: 10.1016/j.reprotox.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/12/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
mTORC1/rpS6 signaling complex promoted Sertoli blood-testis barrier (BTB) remodeling by perturbing Sertoli cell-cell adhesion site known as the basal ectoplasmic specialization (ES). mTORC1/rpS6 complex also promoted disruption of spermatid adhesion at the Sertoli-spermatid interface called the apical ES. Herein, we performed analyses using the adjudin (a non-hormonal male contraceptive drug under development) model, wherein adjudin was known to perturb apical and basal ES function when used at high dose. Through direct administration of adjudin to the testis, adjudin at doses that failed to perturb BTB integrity per se, overexpression of an rpS6 phosphomimetic (i.e., constitutively active) mutant (i.e., p-rpS6-MT) that modified BTB function considerably potentiated adjudin efficacy. This led to disorderly spatial expression of proteins necessary to maintain the proper cytoskeletal organization of F-actin and microtubules (MTs) across the seminiferous epithelium, leading to germ cell exfoliation and aspermatogenesis. These findings yielded important insights regarding the role of mTORC1/rpS6 signaling complex in regulating BTB homeostasis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Ming Yan
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Baiping Mao
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States.
| |
Collapse
|
42
|
Maruska KP, Sohn YC, Fernald RD. Mechanistic target of rapamycin (mTOR) implicated in plasticity of the reproductive axis during social status transitions. Gen Comp Endocrinol 2019; 282:113209. [PMID: 31226256 PMCID: PMC6718321 DOI: 10.1016/j.ygcen.2019.113209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/04/2023]
Abstract
The highly conserved brain-pituitary-gonadal (BPG) axis controls reproduction in all vertebrates, so analyzing the regulation of this signaling cascade is important for understanding reproductive competence. The protein kinase mechanistic target of rapamycin (mTOR) functions as a conserved regulator of cellular growth and metabolism in all eukaryotes, and also regulates the reproductive axis in mammals. However, whether mTOR might also regulate the BPG axis in non-mammalian vertebrates remains unexplored. We used complementary experimental approaches in an African cichlid fish, Astatotilapia burtoni, to demonstrate that mTOR is involved in regulation of the brain, pituitary, and testes when males rise in rank to social dominance. mTOR or downstream components of its signaling pathway (p-p70S6K) were detected in gonadotropin-releasing hormone (GnRH1) neurons, the pituitary, and testes. Transcript levels of mtor in the pituitary and testes also varied when reproductively-suppressed subordinate males rose in social rank to become dominant reproductively-active males, a transition similar to puberty in mammals. Intracerebroventricular injection of the mTORC1 inhibitor, rapamycin, revealed a role for mTOR in the socially-induced hypertrophy of GnRH1 neurons. Rapamycin treatment also had effects at the pituitary and testes, suggesting involvement of the mTORC1 complex at multiple levels of the reproductive axis. Thus, we show that mTOR regulation of BPG function is conserved to fishes, likely playing important roles in regulating reproduction and fertility across all male vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Young Chang Sohn
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
43
|
Abou Nader N, Levasseur A, Zhang X, Boerboom D, Nagano MC, Boyer A. Yes-associated protein expression in germ cells is dispensable for spermatogenesis in mice. Genesis 2019; 57:e23330. [PMID: 31386299 DOI: 10.1002/dvg.23330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022]
Abstract
Yes-associated protein (YAP), a key effector of the Hippo signaling pathway, is expressed in the nucleus of spermatogonia in mice, suggesting a potential role in spermatogenesis. Here, we report the generation of a conditional knockout mouse model (Yapflox/flox ; Ddx4cre/+ ) that specifically inactivates Yap in the germ cells. The inactivation of Yap in spermatogonia was found to be highly efficient in this model. The loss of Yap in the germ cells had no observable effect on spermatogenesis in vivo. Histological examination of the testes showed no structural differences between mutant animals and age-matched Yapflox/flox controls, nor was any differences detected in gonadosomatic index, expression of germ cell markers or sperm counts. Cluster-forming assay using undifferentiated spermatogonia, including spermatogonial stem cells (SSCs), also showed that YAP is dispensable for SSC cluster formation in vitro. However, an increase in the expression of spermatogenesis and oogenesis basic helix-loop-helix 1 (Sohlh1) and neurogenin 3 (Ngn3) was observed in clusters derived from Yapflox/flox ; Ddx4cre/+ animals. Taken together, these results suggest that YAP fine-tunes the expression of genes associated with spermatogonial fate commitment, but that its loss is not sufficient to alter spermatogenesis in vivo.
Collapse
Affiliation(s)
- Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Adrien Levasseur
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Xiangfan Zhang
- Department of Obstetrics and Gynecology, Division of Reproductive Biology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Makoto C Nagano
- Department of Obstetrics and Gynecology, Division of Reproductive Biology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
44
|
Mao B, Li L, Yan M, Wong CKC, Silvestrini B, Li C, Ge R, Lian Q, Cheng CY. F5-Peptide and mTORC1/rpS6 Effectively Enhance BTB Transport Function in the Testis-Lesson From the Adjudin Model. Endocrinology 2019; 160:1832-1853. [PMID: 31157869 PMCID: PMC6637795 DOI: 10.1210/en.2019-00308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/26/2019] [Indexed: 01/04/2023]
Abstract
During spermatogenesis, the blood-testis barrier (BTB) undergoes cyclic remodeling that is crucial to support the transport of preleptotene spermatocytes across the immunological barrier at stage VIII to IX of the epithelial cycle. Studies have shown that this timely remodeling of the BTB is supported by several endogenously produced barrier modifiers across the seminiferous epithelium, which include the F5-peptide and the ribosomal protein S6 [rpS6; a downstream signaling molecule of the mammalian target of rapamycin complex 1 (mTORC1)] signaling protein. Herein, F5-peptide and a quadruple phosphomimetic (and constitutively active) mutant of rpS6 [i.e., phosphorylated (p-)rpS6-MT] that are capable of inducing reversible immunological barrier remodeling, by making the barrier "leaky" transiently, were used for their overexpression in the testis to induce BTB opening. We sought to examine whether this facilitated the crossing of the nonhormonal male contraceptive adjudin at the BTB when administered by oral gavage, thereby effectively improving its BTB transport to induce germ cell adhesion and aspermatogenesis. Indeed, it was shown that combined overexpression of F5-peptide and p-rpS6-MT and a low dose of adjudin, which by itself had no noticeable effects on spermatogenesis, was capable of perturbing the organization of actin- and microtubule (MT)-based cytoskeletons through changes in the spatial expression of actin- and MT-binding/regulatory proteins to the corresponding cytoskeleton. These findings thus illustrate the possibility of delivering drugs to any target organ behind a blood-tissue barrier by modifying the tight junction permeability barrier using endogenously produced barrier modifiers based on findings from this adjudin animal model.
Collapse
Affiliation(s)
- Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Yan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Chao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence: C. Yan Cheng, PhD, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065. E-mail:
| |
Collapse
|
45
|
Gurel C, Kuscu GC, Buhur A, Dagdeviren M, Oltulu F, Karabay Yavasoglu NU, Yavasoglu A. Fluvastatin attenuates doxorubicin-induced testicular toxicity in rats by reducing oxidative stress and regulating the blood–testis barrier via mTOR signaling pathway. Hum Exp Toxicol 2019; 38:1329-1343. [DOI: 10.1177/0960327119862006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOX) is an anthracycline derivative antibiotic that still frequently used in the treatment of solid tumors and hematological malignancies. The clinical use of DOX is largely restricted due to acute and chronic renal, cardiac, hematological, and testicular toxicities. Previous studies have indicated that oxidative stress, lipid peroxidation, and apoptosis in germ cells are the main factors in DOX-induced testicular toxicity, but the entire molecular mechanisms that responsible for DOX-induced testicular damage are not yet fully understood. Fluvastatin is a cholesterol-lowering agent that acts by inhibiting hydroxylmethyl glutaryl coenzyme A, the key enzyme for cholesterol biosynthesis. In addition to its cholesterol-lowering effect, fluvastatin showed an antioxidant effect by cleaning hydroxyl and superoxide radicals and this drug could have a protective effect by acting on the mammalian target of rapamycin (mTOR) signal pathway in testicular damage caused by obesity. This study aimed to investigate the possible protective and therapeutic effects of fluvastatin on the DOX-induced testicular toxicity model by histochemical, immunohistochemical, biochemical, and real-time polymerase chain reaction analyses. The present study indicates that fluvastatin may have a protective and therapeutic effect by removing reactive oxygen species and by regulating the mTOR, connexin 43, and matrix metalloproteinase 9 protein and messenger ribonucleic acid expressions, which play an important role in regulating the blood–testis barrier. On the other hand, the use of fluvastatin as a protective/prophylactic agent was found to be more effective than the use of this drug for treatment. In light of this information, fluvastatin may be a candidate agent that can be used to prevent testicular toxicity observed in men receiving DOX treatment.
Collapse
Affiliation(s)
- Cevik Gurel
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gokce Ceren Kuscu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Aylin Buhur
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Melih Dagdeviren
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Altug Yavasoglu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
46
|
Yan M, Li L, Mao B, Li H, Li SYT, Mruk D, Silvestrini B, Lian Q, Ge R, Cheng CY. mTORC1/rpS6 signaling complex modifies BTB transport function: an in vivo study using the adjudin model. Am J Physiol Endocrinol Metab 2019; 317:E121-E138. [PMID: 31112404 PMCID: PMC6689739 DOI: 10.1152/ajpendo.00553.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Studies have shown that the mTORC1/rpS6 signaling cascade regulates Sertoli cell blood-testis barrier (BTB) dynamics. For instance, specific inhibition of mTORC1 by treating Sertoli cells with rapamycin promotes the Sertoli cell barrier, making it "tighter." However, activation of mTORC1 by overexpressing a full-length rpS6 cDNA clone (i.e., rpS6-WT, wild type) in Sertoli cells promotes BTB remodeling, making the barrier "leaky." Also, there is an increase in rpS6 and p-rpS6 (phosphorylated and activated rpS6) expression at the BTB in testes at stages VIII-IX of the epithelial cycle, and it coincides with BTB remodeling to support the transport of preleptotene spermatocytes across the barrier, illustrating that rpS6 is a BTB-modifying signaling protein. Herein, we used a constitutively active, quadruple phosphomimetic mutant of rpS6, namely p-rpS6-MT of p-rpS6-S235E/S236E/S240E/S244E, wherein Ser (S) was converted to Glu (E) at amino acid residues 235, 236, 240, and 244 from the NH2 terminus by site-directed mutagenesis, for its overexpression in rat testes in vivo using the Polyplus in vivo jet-PEI transfection reagent with high transfection efficiency. Overexpression of this p-rpS6-MT was capable of inducing BTB remodeling, making the barrier "leaky." This thus promoted the entry of the nonhormonal male contraceptive adjudin into the adluminal compartment in the seminiferous epithelium to induce germ cell exfoliation. Combined overexpression of p-rpS6-MT with a male contraceptive (e.g., adjudin) potentiated the drug bioavailability by modifying the BTB. This approach thus lowers intrinsic drug toxicity due to a reduced drug dose, further characterizing the biology of BTB transport function.
Collapse
Affiliation(s)
- Ming Yan
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Linxi Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Baiping Mao
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Huitao Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Stephen Y T Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Dolores Mruk
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | | | - Qingquan Lian
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Renshan Ge
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - C Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| |
Collapse
|
47
|
Zhang JJ, Chandimali N, Kim N, Kang TY, Kim SB, Kim JS, Wang XZ, Kwon T, Jeong DK. Demethylation and microRNA differential expression regulate plasma-induced improvement of chicken sperm quality. Sci Rep 2019; 9:8865. [PMID: 31222092 PMCID: PMC6586908 DOI: 10.1038/s41598-019-45087-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/22/2019] [Indexed: 01/24/2023] Open
Abstract
The sperm quality is a vital economical requisite of poultry production. Our previous study found non-thermal dielectric barrier discharge plasma exposure on fertilized eggs could increase the chicken growth and the male reproduction. However, it is unclear how plasma treatment regulates the reproductive capacity in male chickens. In this study, we used the optimal plasma treatment condition (2.81 W for 2 min) which has been applied on 3.5-day-incubated fertilized eggs in the previous work and investigated the reproductive performance in male chickens aged at 20 and 40 weeks. The results showed that plasma exposure increased sperm count, motility, fertility rate, and fertilization period of male chickens. The sperm quality-promoting effect of plasma treatment was regulated by the significant improvements of adenosine triphosphate production and testosterone level, and by the modulation of reactive oxygen species balance and adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathway in the spermatozoa. Additionally, the plasma effect suggested that DNA demethylation and microRNA differential expression (a total number of 39 microRNAs were up-regulated whereas 53 microRNAs down-regulated in the testis) regulated the increases of adenosine triphosphate synthesis and testosterone level for promoting the chicken sperm quality. This finding might be beneficial to elevate the fertilization rate and embryo quality for the next generation in poultry breeding.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400715, P.R. China
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nameun Kim
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Tae Yoon Kang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seong Bong Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Jeollabuk-Do, 54004, Republic of Korea
| | - Ji Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk, 56216, Republic of Korea
| | - Xian Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400715, P.R. China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
48
|
Insights into leptin signaling and male reproductive health: the missing link between overweight and subfertility? Biochem J 2018; 475:3535-3560. [DOI: 10.1042/bcj20180631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
Obesity stands as one of the greatest healthcare challenges of the 21st century. Obesity in reproductive-age men is ever more frequent and is reaching upsetting levels. At the same time, fertility has taken an inverse direction and is decreasing, leading to an increased demand for fertility treatments. In half of infertile couples, there is a male factor alone or combined with a female factor. Furthermore, male fertility parameters such as sperm count and concentration went on a downward spiral during the last few decades and are now approaching the minimum levels established to achieve successful fertilization. Hence, the hypothesis that obesity and deleterious effects in male reproductive health, as reflected in deterioration of sperm parameters, are somehow related is tempting. Most often, overweight and obese individuals present leptin levels directly proportional to the increased fat mass. Leptin, besides the well-described central hypothalamic effects, also acts in several peripheral organs, including the testes, thus highlighting a possible regulatory role in male reproductive function. In the last years, research focusing on leptin effects in male reproductive function has unveiled additional roles and molecular mechanisms of action for this hormone at the testicular level. Herein, we summarize the novel molecular signals linking metabolism and male reproductive function with a focus on leptin signaling, mitochondria and relevant pathways for the nutritional support of spermatogenesis.
Collapse
|
49
|
Mao B, Mruk D, Lian Q, Ge R, Li C, Silvestrini B, Cheng CY. Mechanistic Insights into PFOS-Mediated Sertoli Cell Injury. Trends Mol Med 2018; 24:781-793. [PMID: 30056046 PMCID: PMC6114095 DOI: 10.1016/j.molmed.2018.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023]
Abstract
Studies have proven that per- and polyfluoroalkyl substances are harmful to humans, most notably perfluorooctanesulfonate (PFOS). PFOS induces rapid disorganization of actin- and microtubule (MT)-based cytoskeletons in primary cultures of rodent and human Sertoli cells, perturbing Sertoli cell gap junction communication, thereby prohibiting Sertoli cells from maintaining cellular homeostasis in the seminiferous epithelium to support spermatogenesis. PFOS perturbs several signaling proteins/pathways, such as FAK and mTORC1/rpS6/Akt1/2. The use of either an activator of Akt1/2 or overexpression of a phosphomimetic (and constitutively active) mutant of FAK or connexin 43 has demonstrated that such treatment blocks PFOS-induced Sertoli cell injury by preventing actin- and MT-based cytoskeletal disorganization. These findings thus illustrate an approach to manage PFOS-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Qingquan Lian
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
50
|
Zhang JJ, Do HL, Chandimali N, Lee SB, Mok YS, Kim N, Kim SB, Kwon T, Jeong DK. Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels. Sci Rep 2018; 8:7576. [PMID: 29765100 PMCID: PMC5953930 DOI: 10.1038/s41598-018-26049-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
The quality of avian semen is an important economic trait in poultry production. The present study examines the in vitro effects of non-thermal dielectric barrier discharge plasma on chicken sperm to determine the plasma conditions that can produce the optimum sperm quality. Exposure to 11.7 kV of plasma for 20 s is found to produce maximum sperm motility by controlling the homeostasis of reactive oxygen species and boosting the release of adenosine triphosphate and respiratory enzyme activity in the mitochondria. However, prolonged exposure or further increase in plasma potential impairs the sperm quality in a time- and dose-dependent manner. Optimal plasma treatment of sperm results in upregulated mRNA and protein expression of antioxidant defense-related and energetic metabolism-related genes by increasing their demethylation levels. However, 27.6 kV of plasma exerts significant adverse effects. Thus, our findings indicate that appropriate plasma exposure conditions improve chicken sperm motility by regulating demethylation levels of genes involved in antioxidant defense and energetic metabolism.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Huynh Luong Do
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang Baek Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nameun Kim
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seong Bong Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Jeollabuk-Do, 54004, Republic of Korea
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea. .,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|