1
|
Bradley F, Stern A, Franzén Boger M, Mousavian Z, Dethlefsen O, Kaldhusdal V, Lajoie J, Omollo K, Bergström S, Månberg A, Nilsson P, Kimani J, Burgener AD, Tjernlund A, Sundling C, Fowke KR, Broliden K. Estradiol-mediated enhancement of the human ectocervical epithelial barrier correlates with desmoglein-1 expression in the follicular menstrual phase. Front Endocrinol (Lausanne) 2024; 15:1454006. [PMID: 39439565 PMCID: PMC11493707 DOI: 10.3389/fendo.2024.1454006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background The cervicovaginal epithelial barrier is crucial for defending the female reproductive tract against sexually transmitted infections. Hormones, specifically estradiol and progesterone, along with their respective receptor expressions, play an important role in modulating this barrier. However, the influence of estradiol and progesterone on gene and protein expression in the ectocervical mucosa of naturally cycling women is not well understood. Methods Mucosal and blood samples were collected from Kenyan female sex workers at high risk of sexually transmitted infections. All samples were obtained at two time points, separated by two weeks, aiming for the follicular and luteal phases of the menstrual cycle. Ectocervical tissue biopsies were analyzed by RNA-sequencing and in situ immunofluorescence staining, cervicovaginal lavage samples (CVL) were evaluated using protein profiling, and plasma samples were analyzed for hormone levels. Results Unsupervised clustering of RNA-sequencing data was performed using Weighted gene co-expression network analysis (WGCNA). In the follicular phase, estradiol levels positively correlated with a gene module representing epithelial structure and function, and negatively correlated with a gene module representing cell cycle regulation. These correlations were confirmed using regression analysis including adjustment for bacterial vaginosis status. Using WGCNA, no gene module correlated with progesterone levels in the follicular phase. In the luteal phase, no gene module correlated with either estradiol or progesterone levels. Protein profiling on CVL revealed that higher levels of estradiol during the follicular phase correlated with increased expression of epithelial barrier integrity markers, including DSG1. This contrasted to the limited correlations of protein expression with estradiol levels in the luteal phase. In situ imaging analysis confirmed that higher estradiol levels during the follicular phase correlated with increased DSG1 expression. Conclusion We demonstrate that estradiol levels positively correlate with specific markers of ectocervical epithelial structure and function, particularly DSG1, during the follicular phase of the menstrual cycle. Neither progesterone levels during the follicular phase nor estradiol and progesterone levels during the luteal phase correlated with any specific sets of gene markers. These findings align with the expression of estradiol and progesterone receptors in the ectocervical epithelium during these menstrual phases.
Collapse
Affiliation(s)
- Frideborg Bradley
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Alexandra Stern
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Mathias Franzén Boger
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Zaynab Mousavian
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kenneth Omollo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Adam D. Burgener
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Annelie Tjernlund
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
2
|
Pathare ADS, Saare M, Meltsov A, Lawarde A, Modhukur V, Kalinina A, Sekavin A, Kukushkina V, Karro H, Salumets A, Peters M. The cervical transcriptome changes during the menstrual cycle but does not predict the window of implantation. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1224919. [PMID: 37519341 PMCID: PMC10375708 DOI: 10.3389/frph.2023.1224919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The expression of genes in female reproductive organs is influenced by the cyclic changes in hormone levels during the menstrual cycle. While the molecular changes in the endometrium that facilitate embryo implantation have been extensively studied, there is limited knowledge about the impact of the menstrual cycle on cervical cells. Cervical cells can be easily and routinely collected using a cytobrush during gynecological examination, offering a standardized approach for diagnostic testing. In this study we investigated how the transcriptome of cervical cells changes during the menstrual cycle and assessed the utility of these cells to determine endometrial receptivity. Methods Endocervical cells were collected with cytobrushes from 16 healthy women at different menstrual cycle phases in natural cycles and from four women undergoing hormonal replacement cycles. RNA sequencing was applied to gain insight into the transcriptome of cervical cells. Results Transcriptome analysis identified four differentially expressed genes (DEGs) between early- and mid-secretory samples, suggesting that the transcriptome of cervical cells does not change significantly during the opening of the implantation window. The most differences appeared during the transition to the late secretory phase (2136 DEGs) before the onset of menstruation. Cervical cells collected during hormonal replacement cycles showed 1899 DEGs enriched in immune system processes. Conclusions The results of our study suggested that cervical cells undergo moderate transcriptomic changes throughout the menstrual cycle; however, these changes do not reflect the gene expression pattern of endometrial tissue and offer little or no potential for endometrial receptivity diagnostics.
Collapse
Affiliation(s)
- Amruta D. S. Pathare
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Alvin Meltsov
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ankita Lawarde
- Competence Centre on Health Technologies, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Aire Sekavin
- Women’s Clinic, Tartu University Hospital, Tartu, Estonia
| | | | - Helle Karro
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Women’s Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Maire Peters
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
3
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production and modification in rhesus macaque endocervical cells under hormonal regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541362. [PMID: 37292621 PMCID: PMC10245652 DOI: 10.1101/2023.05.18.541362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the Rhesus Macaque (Macaca mulatta). Design Experimental. Setting Translational science laboratory. Intervention We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus producing and modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. Main Outcome Measures We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using qPCR. Results Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control, and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. Conclusion Our study is the first to use an in vitro culture system to create an epithelial-cell specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways that are altered by sex-steroids in cervical mucus production.
Collapse
|
4
|
Abril-Parreño L, Krogenæs AK, Druart X, Cormican P, Fair S, Meade KG. Cervical immune activation during the luteal phase may compromise subsequent trans-cervical ram sperm transport. Biol Reprod 2022; 107:967-976. [PMID: 35766421 PMCID: PMC9562110 DOI: 10.1093/biolre/ioac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide, cervical artificial insemination using frozen–thawed semen yields low pregnancy rates. The only exception to this is in Norway, where vaginal insemination with frozen–thawed semen yields pregnancy rates in excess of 60% and which has been attributed to the specific ewe breed used. Our previous work demonstrated differences in cervical gene expression at the follicular phase of the estrous cycle in ewe breeds with known differences in pregnancy rates. In this study, we characterized the cervical transcriptome of the same ewe breeds [Suffolk, Belclare, Fur, and Norwegian White Sheep (NWS)] during the luteal phase, as an optimal environment at the luteal phase could better prepare the cervix for sperm migration through the cervix at the subsequent follicular phase. High-quality RNA extracted from postmortem cervical tissue was analyzed by RNA sequencing. After stringent filtering, 1051, 1924, and 611 differentially expressed genes (DEGs) were detected in the low-fertility Suffolk breed compared with Belclare, Fur, and NWS, respectively. Gene ontology analysis identified increased humoral adaptive immune response pathways in Suffolk. Increased expression of multiple immune genes supports the presence of an active immune response in the cervix of Suffolk ewes, which differentiates them significantly from the other three ewe breeds. Inflammatory pathways were upregulated in the Suffolk, resulting in higher expression of the potent pro-inflammatory cytokines. Therefore, higher levels of pro-inflammatory cytokines indicate unresolved inflammation in the cervix of the low-fertility Suffolk breed that could contribute to reduced cervical sperm transport in the next follicular phase.
Collapse
Affiliation(s)
- Laura Abril-Parreño
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering. University of Limerick, V94 T9PX, Limerick, Ireland
| | - Anette Kristine Krogenæs
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 1432, Ås, Norway
| | - Xavier Druart
- UMR-PRC, INRA-85, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380, Nouzilly, France
| | - Paul Cormican
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, C15 PW93, Grange, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering. University of Limerick, V94 T9PX, Limerick, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6, Dublin 4, Ireland
| |
Collapse
|
5
|
Zhu M, Yan X, Zhao Y, Xue H, Wang Z, Wu B, Li X, Shen Y. lncRNA LINC00284 promotes nucleus pulposus cell proliferation and ECM synthesis via regulation of the miR‑205‑3p/Wnt/β‑catenin axis. Mol Med Rep 2022; 25:179. [PMID: 35322864 PMCID: PMC8972274 DOI: 10.3892/mmr.2022.12695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a leading cause of degenerative spinal disease. Long non-coding RNA (lncRNA) LINC00284 is overexpressed in multiple types of cancer and promotes cancer cell proliferation and inhibits apoptosis; however, its role in human IDD and nucleus pulposus (NP) remain unclear. In the present study, intervertebral disc (IVD) tissues were collected from IDD patients for detection of LINC00284 expression using reverse transcription-quantitative PCR, the binding effect between miR-205-3p and LINC00284 was validated by dual-luciferase reporter assay. miR-205-3p and small interfering RNA (siRNA) was used for LINC00240 knockdown to investigate the proliferation, apoptosis of cells in the NP cells measured by Cell Counting Kit (CCK)-8 assay and Annexin V-FITC/Propidium Iodide (PI) staining with flow cytometry receptivity. IDD animal models were constructed for in vivo study of the role LINC00284 in IDD improvement. The results showed that LINC00284 expression was upregulated in IDD tissue and IL-1β-induced NP cells. LINC00284 knockdown resulted in an increase in IL-1β-induced NP cell proliferation, a decrease in apoptosis and matrix metalloproteinase-3 expression and an increase in expression of extracellular matrix (ECM) markers aggrecan and collagen II. In vivo experiments and histomorphometric analysis confirmed the protective effect of LINC00284 knockdown in IDD. LINC00284 was also shown to be a target of microRNA (miR)-205-3p, and there was a negative correlation between LINC00284 and miR-205-3p levels in IDD tissue. Additionally, LINC00284 knockdown or miR-205-3p upregulation resulted in inhibition of Wnt/β-catenin signaling and subsequent degradation of the ECM. The present study demonstrated that LINC00284 activated the Wnt/β-catenin signaling via sponging miR-205-3p, resulting in inhibition of NP cell proliferation and ECM synthesis. These results suggested that targeting LINC00284 to rescue miR-205-3p expression may be a potential method for IDD management.
Collapse
Affiliation(s)
- Min Zhu
- Department of Spine Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaoling Yan
- Chemotherapy Department, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yin Zhao
- Department of Spine Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Huawei Xue
- Department of Spine Surgery, Nantong Third People's Hospital, Nantong, Jiangsu 226006, P.R. China
| | - Zhen Wang
- Department of Spine Surgery, Nantong Third People's Hospital, Nantong, Jiangsu 226006, P.R. China
| | - Bo Wu
- Department of Spine Surgery, Nantong Third People's Hospital, Nantong, Jiangsu 226006, P.R. China
| | - Xiangyang Li
- Department of Spine Surgery, Nantong Third People's Hospital, Nantong, Jiangsu 226006, P.R. China
| | - Yixin Shen
- Department of Spine Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
6
|
Hughes SM, Pandey U, Johnston C, Marrazzo J, Hladik F, Micks E. Impact of the menstrual cycle and ethinyl estradiol/etonogestrel contraceptive vaginal ring on granulysin and other mucosal immune mediators. Am J Reprod Immunol 2021; 86:e13412. [PMID: 33641250 DOI: 10.1111/aji.13412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Changes in sex hormones during the menstrual cycle and contraceptive vaginal ring (CVR) use influence immunity within the female genital tract, but the magnitude of these effects and their anatomical location are unclear. METHOD OF STUDY In a prospective study, 29 women were assessed at three-time points: follicular phase, luteal phase, and one month after initiation of the ethinyl estradiol/etonogestrel CVR (NuvaRing®, Merck). We performed microarrays on endocervical cytobrushes and measured immune mediators in cervicovaginal fluid, adjusting for bacterial vaginosis and the presence of blood. We compared these results to public gene expression data from the fallopian tubes, endometrium, endo- and ectocervix, and vagina. RESULTS Immune-related gene expression in the endocervix and immune mediators in cervicovaginal fluid increased during CVR use versus both menstrual phases, and in the follicular versus luteal phase. The antimicrobial protein granulysin was high during CVR use, intermediate in the follicular phase, and nearly absent from the luteal phase. Re-analysis of public gene expression data confirmed increased immune-related gene expression in the endocervix during the follicular phase. However, in the fallopian tube, endometrium, and vagina, the follicular phase showed immunosuppression. CONCLUSIONS Immune-related genes in the cervicovaginal tract were highest during CVR use, intermediate in the follicular phase, and lowest in the luteal phase. Granulysin is a potential biomarker of menstrual phase: Frequently detected in follicular samples, but rare in luteal. Lastly, immunological differences between the follicular and luteal phases vary throughout the female genital tract.
Collapse
Affiliation(s)
- Sean M Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Urvashi Pandey
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeanne Marrazzo
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Micks
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Ruan Z, Zhao D. Long intergenic noncoding RNA LINC00284 knockdown reduces angiogenesis in ovarian cancer cells via up-regulation of MEST through NF-κB1. FASEB J 2019; 33:12047-12059. [PMID: 31574234 DOI: 10.1096/fj.201900101rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is one of the major causes of cancer-related mortality in women worldwide. Long noncoding RNAs might play a role as oncogenes or tumor suppressors. Therefore, we investigated the effect and underlying mechanisms of long intergenic noncoding RNA (LINC00) 284 on angiogenesis in OC cells. Expression of LINC00284 in OC tissues and cells was determined. Next, the interaction between LINC00284 and mesoderm-specific transcript (MEST) was evaluated. Subsequently, OC cells were transfected with overexpressed (oe)-LINC00284, silenced (si)-LINC00284, si-NF-κB1, oe-MEST, or si-MEST plasmids to investigate the underlying mechanism of LINC00284 in OC. Afterwards, the expression of matrix metalloproteinase (MMP)-2, MMP-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated protein x (Bax), VEGF, and CD31 was determined to assess the effect of LINC00284 on OC cell proliferation, invasion, migration angiogenesis, and apoptosis. Finally, the effect of LINC00284 on tumorigenesis was investigated in nude mice models of OC. LINC00284 was highly expressed in OC. si-LINC00284 increased expression of MEST. si-LINC00284 or si-NF-κB1 led to the reduction in cell proliferation, migration, invasion, tube formation, angiogenesis, and tumorigenic ability and promoted apoptosis in OC by down-regulating MMP-2, MMP-9, Bcl-2, VEGF, and CD31 and up-regulating Bax. These effects were all reversed following the si-MEST. In vivo experiments found the same results, confirming the aforementioned findings. Taken together, LINC00284 is involved in angiogenesis during OC development by recruiting NF-κB1 and down-regulating MEST.-Ruan, Z., Zhao, D. Long intergenic noncoding RNA LINC00284 knockdown reduces angiogenesis in ovarian cancer cells via up-regulation of MEST through NF-κB1.
Collapse
Affiliation(s)
- Zhengyi Ruan
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
Comparative transcriptome analysis of the human endocervix and ectocervix during the proliferative and secretory phases of the menstrual cycle. Sci Rep 2019; 9:13494. [PMID: 31530865 PMCID: PMC6749057 DOI: 10.1038/s41598-019-49647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Despite extensive studies suggesting increased susceptibility to HIV during the secretory phase of the menstrual cycle, the molecular mechanisms involved remain unclear. Our goal was to analyze transcriptomes of the endocervix and ectocervix during the proliferative and secretory phases using RNA sequencing to explore potential molecular signatures of susceptibility to HIV. We identified 202 differentially expressed genes (DEGs) between the proliferative and secretory phases of the cycle in the endocervix (adjusted p < 0.05). The biofunctions and pathways analysis of DEGs revealed that cellular assembly and epithelial barrier function in the proliferative phase and inflammatory response/cellular movement in the secretory phase were among the top biofunctions and pathways. The gene set enrichment analysis of ranked DEGs (score = log fold change/p value) in the endocervix and ectocervix revealed that (i) unstimulated/not activated immune cells gene sets positively correlated with the proliferative phase and negatively correlated with the secretory phase in both tissues, (ii) IFNγ and IFNα response gene sets positively correlated with the proliferative phase in the ectocervix, (iii) HIV restrictive Wnt/β-catenin signaling pathway negatively correlated with the secretory phase in the endocervix. Our data show menstrual cycle phase-associated changes in both endocervix and ectocervix, which may modulate susceptibility to HIV.
Collapse
|
9
|
Kalo D, Vitorino Carvalho A, Archilla C, Duranthon V, Moroldo M, Levin Y, Kupervaser M, Smith Y, Roth Z. Mono(2-ethylhexyl) phthalate (MEHP) induces transcriptomic alterations in oocytes and their derived blastocysts. Toxicology 2019; 421:59-73. [DOI: 10.1016/j.tox.2019.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
|
10
|
Dupont HA, Lam J, Woods MW, Zahoor MA, Kaushic C. Hormonal influence on HIV-1 transmission in the female genital tract: New insights from systems biology. Am J Reprod Immunol 2018; 80:e13019. [PMID: 30014538 DOI: 10.1111/aji.13019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Although anti-retroviral treatments have significantly slowed down the spread of the HIV-1 pandemic, approximately 2 million new infections occur every year. The majority of new infections are in sub-Saharan Africa where rates of infection are much higher in women than men. Young women are disproportionately affected and have higher susceptibility to HIV-1. The complex interactions between HIV-1 and the female genital tract (FGT) and the mechanisms regulating susceptibility in women remain incompletely understood. In this review, we focus on the current understanding of the acute events that occur in the FGT following HIV-1 exposure with a particular focus on the effect of endogenous and exogenous sex hormones on HIV-1 susceptibility. We highlight the contribution of the recent transcriptomic and proteomic studies in providing new insights.
Collapse
Affiliation(s)
- Haley A Dupont
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeff Lam
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew W Woods
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Mohammed A Zahoor
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Bradley F, Birse K, Hasselrot K, Noël-Romas L, Introini A, Wefer H, Seifert M, Engstrand L, Tjernlund A, Broliden K, Burgener AD. The vaginal microbiome amplifies sex hormone-associated cyclic changes in cervicovaginal inflammation and epithelial barrier disruption. Am J Reprod Immunol 2018; 80:e12863. [PMID: 29709092 DOI: 10.1111/aji.12863] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Susceptibility to HIV is associated with the menstrual cycle and vaginal microbiome, but their collective impact on vaginal inflammation remains unclear. Here, we characterized the cervicovaginal proteome, inflammation, and microbiome community structure and function during the menstrual cycle. METHOD OF STUDY Cervicovaginal secretions were collected from regularly cycling women (n = 16) at median day 10, 16, and 24 of each menstrual cycle and analyzed by mass spectrometry, 16S rRNA gene sequencing, and a multiplex bead array immunoassay. Follicular, ovulatory, and luteal phases were defined by serum sex hormone levels. RESULTS Ovulation showed the largest mucosal proteome changes, where 30% and 19% of the 406 human proteins identified differed compared to the luteal and follicular phases, respectively. Neutrophil/leukocyte migration pathways were lowest during ovulation and peaked in the luteal phase, while antimicrobial and epithelial barrier promoting proteins were highest during ovulation. Vaginal microbial community structure and function did not vary significantly during the menstrual cycle, with the majority consistently Lactobacillus-dominant (63%) or non-Lactobacillus-dominant (25%). Fluctuations in the epithelial barrier protein RPTN between the ovulatory and luteal phase were amplified in women with Gardnerella vaginalis and anaerobic bacteria and reduced when Lactobacillus was dominant. CONCLUSION This small study demonstrates that sex hormones modulate neutrophil/leukocyte inflammation, barrier function, and antimicrobial pathways in the female genital tract with the strongest changes occurring during ovulation. The data further suggest a microbiome context for hormone-driven changes in vaginal immunity which may have implications for HIV susceptibility.
Collapse
Affiliation(s)
- Frideborg Bradley
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Kenzie Birse
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Klara Hasselrot
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden.,Department of Gynaecology, Danderyds Hospital, Stockholm, Sweden
| | - Laura Noël-Romas
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Andrea Introini
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Hugo Wefer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Maike Seifert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Adam D Burgener
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|