1
|
Fuentes F, Aguila L, Pérez F, Muñoz E, Arias ME, Felmer R. Comparative analysis of Piezo-ICSI and conventional ICSI in bovine embryo development. Theriogenology 2025; 232:46-55. [PMID: 39509911 DOI: 10.1016/j.theriogenology.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique (ART) mainly used to overcome severe male factor infertility problems in humans and animals. However, in cattle, one of the most demanded species for its meat and milk, the efficiency of this technique is low. The present study compared the effect of the piezoelectric and conventional injection systems on the preimplantational development and quality of bovine embryos generated by ICSI. Evaluations of the conditions for performing the Piezo-ICSI procedure showed that the application of a strong pulse (I4S7) was more effective in damaging the sperm plasma and acrosomal membranes prior to injection, compared to a soft pulse (I2S2, P < 0.05). In addition, Piezo-ICSI embryos without the application of exogenous activators achieved similar levels of development as Piezo-ICSI embryos activated with ionomycin and anisomycin (P > 0.05). When comparing conventional and piezoelectric injection systems, no significant differences in embryo development were observed (P > 0.05). However, embryos generated by Piezo-ICSI showed a higher embryo quality in terms of total cell number (P < 0.05). In addition, Piezo-ICSI embryos showed an expression profile of genes essential for embryonic development similar to IVF embryos (P > 0.05), in contrast to conventional ICSI-derived embryos, which presented overexpression of CASP3 and IFNT2 (P < 0.05). In conclusion, we confirmed that Piezo-ICSI is a more convenient approach than traditional ICSI, since does not require exogenous activation and generate embryos of better quality, regarding the total number of blastomeres and the pattern of gene expression observed.
Collapse
Affiliation(s)
- Fernanda Fuentes
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Felipe Pérez
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Erwin Muñoz
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Maria Elena Arias
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Lv X, Zhang H, Wu L. Advances in PIWI-piRNA function in female reproduction in mammals. Acta Biochim Biophys Sin (Shanghai) 2024; 57:148-156. [PMID: 39544003 PMCID: PMC11802344 DOI: 10.3724/abbs.2024195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs), which associate with PIWI clade Argonaute proteins to form piRNA-induced silencing complexes (piRISCs) in germline cells, are responsible for maintaining genomic integrity and reproductive function through transcriptional or post-transcriptional suppression of transposable elements and regulation of protein-coding genes. Recent discoveries of crucial PIWI-piRNA functions in oogenesis and embryogenesis in golden hamsters suggest an indispensable role in female fertility that has been obscured in the predominant mouse model of PIWI-piRNA pathway regulation. In particular, studies of piRNA expression dynamics, functional redundancies, and compositional variations across mammal species have advanced our understanding of piRNA functions in male and, especially, female reproduction. These findings further support the use of hamsters as a more representative model of piRNA biology in mammals. In addition to discussing these new perspectives, the current review also covers emerging directions for piRNA research, its implications for female fertility, and our fundamental understanding of reproductive mechanisms.
Collapse
Affiliation(s)
- Xiaolong Lv
- />Key Laboratory of RNA Science and EngineeringShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Hongdao Zhang
- />Key Laboratory of RNA Science and EngineeringShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Ligang Wu
- />Key Laboratory of RNA Science and EngineeringShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
3
|
Thompson JG, McLennan HJ, Heinrich SL, Inge MP, Gardner DK, Harvey AJ. A brief history of technical developments in intracytoplasmic sperm injection (ICSI). Dedicated to the memory of J.M. Cummins. Reprod Fertil Dev 2024; 36:RD24047. [PMID: 38902908 DOI: 10.1071/rd24047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technology for treatment of severe male infertility introduced into clinical practice in 1992. This review provides a brief history of the development of ICSI by acknowledging major developments in the field. The review addresses key developments in pre-clinical and early studies, how ICSI compares with in vitro fertilisation, long-term consequences, how the mechanistic approach to ICSI has changed in both manual and semi-automated approaches, and how sperm selection procedures are integrated into ICSI. From the beginnings using animal models in the 1960-1970s, the development of ICSI is a remarkable and transformative success story. Indeed, its broad use (70% of cycles globally) exceeds the need required for treating infertile males, and this remains a controversial issue. There remain questions around the long-term health impacts of ICSI. Furthermore, advances in automation of the ICSI procedure are occurring. An estimated 6million children have been born from the ICSI procedure. With further automation of sperm selection technologies, coupled with automation of the injection procedure, it is likely that the proportion of children born from ICSI will further increase.
Collapse
Affiliation(s)
- J G Thompson
- Fertilis Pty Ltd, Frome Road, Helen Mayo South, The University of Adelaide, Adelaide, SA 5005, Australia; and Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; and ART Lab Solutions Pty Ltd, 10 Pulteney Street, Adelaide, SA 5005, Australia
| | - H J McLennan
- Fertilis Pty Ltd, Frome Road, Helen Mayo South, The University of Adelaide, Adelaide, SA 5005, Australia
| | - S L Heinrich
- Fertilis Pty Ltd, Frome Road, Helen Mayo South, The University of Adelaide, Adelaide, SA 5005, Australia
| | - M P Inge
- Fertilis Pty Ltd, Frome Road, Helen Mayo South, The University of Adelaide, Adelaide, SA 5005, Australia
| | - D K Gardner
- Melbourne IVF, East Melbourne, Vic 3002, Australia; and School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia
| | - A J Harvey
- Melbourne IVF, East Melbourne, Vic 3002, Australia; and School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia
| |
Collapse
|
4
|
Bellido-Quispe DK, Mujica Lengua FR, Contreras Huamani M, Palomino JM. Effect of chemical activators after intracytoplasmic sperm injection (ICSI) on embryo development in alpacas. Anim Reprod Sci 2024; 263:107432. [PMID: 38401395 DOI: 10.1016/j.anireprosci.2024.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Low motility and low sperm concentration are characteristics of alpaca semen. Thus, the intracytoplasmic sperm injection (ICSI) technique represents an alternative to improve the reproductive capacity of the male. However, the effect of post-ICSI activation in alpaca is not yet known. The aim of the present study was to compare the effect of chemical activators on alpaca embryo development after ICSI. Alpaca ovaries were collected from a local slaughterhouse and transported to the laboratory. Category I, II and III oocytes were matured for 30 h at 38.5 °C. After ICSI, injected oocytes were randomly divided and activated as follows: i) 5 μM ionomycin for 5 min, ii) 7% ethanol for 4 min, iii) 5 μM ionomycin for 5 min, window period 3 h plus 7% ethanol for 4 min, iv) 5 μM ionomycin for 5 min, window period 3 h, a second ionomycin treatment for 5 min, followed by 1.9 mM 6-DMAP for 3 h, v) 10 mM SrCl2 for 3 h. Culture was carried out for 5 days in SOFaa at 38.5 °C. The cleavage rate was the lowest in the SrCl2 group, morula development was the lowest in the SrCl2 and without activation groups, and blastocyst stage was not different between groups (P<0.05). The rates with SrCl2 were lower in total embryos produced, whereas in transferable embryos they were lower with 2Io/6-DMAP and with SrCl2 (P<0.05). In conclusion, alpaca oocyte activation is more efficient with ionomycin and ethanol to produce transferable embryos.
Collapse
Affiliation(s)
- Dionet Keny Bellido-Quispe
- Instituto Nacional de Innovación Agraria, Estación Experimental Agraria Canaán, Laboratorio de Biotecnología Reproductiva, Ayacucho, Peru.
| | - Fidel Rodolfo Mujica Lengua
- Universidad Nacional de San Cristóbal de Huamanga, Facultad de Ciencias Biológicas, Laboratorio de Biotecnología, Ayacucho, Peru
| | - Mijaíl Contreras Huamani
- Instituto Nacional de Innovación Agraria, Estación Experimental Agraria Canaán, Laboratorio de Biotecnología Reproductiva, Ayacucho, Peru
| | - J Manuel Palomino
- Universidad Científica del Sur, Carrera de Medicina Veterinaria y Zootecnica, Lima, Peru
| |
Collapse
|
5
|
Huang T. Ryuzo Yanagimachi (1928-2023). Reprod Biomed Online 2024; 48:103798. [PMID: 38266626 DOI: 10.1016/j.rbmo.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
|
6
|
Ward MA, Roberts RM, Ward WS. Ryuzo Yanagimachi: Pioneer in fertilization and assisted reproductive biology technology. Proc Natl Acad Sci U S A 2024; 121:e2320501121. [PMID: 38190518 PMCID: PMC10801875 DOI: 10.1073/pnas.2320501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Affiliation(s)
- Monika A. Ward
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI96822
| | - R. Michael Roberts
- University of Missouri-Columbia - Animal Sciences, 240B Bond Life Sciences Center, Columbia, MO65211
| | - W. Steven Ward
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI96822
- Department of Obstetrics and Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI96822
| |
Collapse
|
7
|
Asada Y. Evolution of intracytoplasmic sperm injection: From initial challenges to wider applications. Reprod Med Biol 2024; 23:e12582. [PMID: 38803410 PMCID: PMC11129627 DOI: 10.1002/rmb2.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background In vitro fertilization (IVF) has revolutionized infertility treatment. Nevertheless, male infertility requires more effective solutions. In 1992, the first-ever case of human birth via intracytoplasmic sperm injection (ICSI) was reported. ICSI involves microscopically injecting a sperm into an ovum. Successful ICSI has become a reliable therapy for couples facing infertility, a significant milestone. However, it has also introduced various challenges. This study also delves into ethical dilemmas arising from widespread ICSI use. Methods This review traces the history of ICSI, presenting pioneering attempts, first successful attempts, and critical reports on account of the initial skepticism toward the technology. The review also focuses on chronological progress until ICSI was recognized as effective and became widely applied. Main findings The review reveals that ICSI, although transformative, presents challenges. Successes include addressing male infertility and aiding fertilization. However, concerns arise regarding optimal sperm and embryo selection, genetic mutations, and long-term health implications. Ethical considerations surrounding ICSI's broad applications also surface. Conclusions Despite its success and effectiveness, ICSI is still evolving as a therapeutic method. By comprehensively evaluating the historical progress and the current status of ICSI and exploring its future prospects, this study highlights the importance of ICSI in infertility treatment.
Collapse
|
8
|
Wakayama T, Ogura A. In memory of Dr. Ryuzo Yanagimachi (Yana) (1928-2023). J Reprod Dev 2024; 70:i-iv. [PMID: 38569840 PMCID: PMC11017095 DOI: 10.1262/jrd.2024-e01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
- RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
9
|
Aponte PM, Gutierrez-Reinoso MA, Garcia-Herreros M. Bridging the Gap: Animal Models in Next-Generation Reproductive Technologies for Male Fertility Preservation. Life (Basel) 2023; 14:17. [PMID: 38276265 PMCID: PMC10820126 DOI: 10.3390/life14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This review aims to explore advanced reproductive technologies for male fertility preservation, underscoring the essential role that animal models have played in shaping these techniques through historical contexts and into modern applications. Rising infertility concerns have become more prevalent in human populations recently. The surge in male fertility issues has prompted advanced reproductive technologies, with animal models playing a pivotal role in their evolution. Historically, animal models have aided our understanding in the field, from early reproductive basic research to developing techniques like artificial insemination, multiple ovulation, and in vitro fertilization. The contemporary landscape of male fertility preservation encompasses techniques such as sperm cryopreservation, testicular sperm extraction, and intracytoplasmic sperm injection, among others. The relevance of animal models will undoubtedly bridge the gap between traditional methods and revolutionary next-generation reproductive techniques, fortifying our collective efforts in enhancing male fertility preservation strategies. While we possess extensive knowledge about spermatogenesis and its regulation, largely thanks to insights from animal models that paved the way for human infertility treatments, a pressing need remains to further understand specific infertility issues unique to humans. The primary aim of this review is to provide a comprehensive analysis of how animal models have influenced the development and refinement of advanced reproductive technologies for male fertility preservation, and to assess their future potential in bridging the gap between current practices and cutting-edge fertility techniques, particularly in addressing unique human male factor infertility.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Instituto de Investigaciones en Biomedicina “One-Health”, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador;
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
10
|
Editing the Genome of the Golden Hamster (Mesocricetus auratus). Methods Mol Biol 2023; 2637:247-254. [PMID: 36773152 DOI: 10.1007/978-1-0716-3016-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The golden (Syrian) hamster (Mesocricetus auratus) is a small rodent belonging to the Cricetidae family. Golden hamsters have several unique characteristics that are advantageous in the study of reproductive and developmental biology: a highly stable 4-day estrous cycle, a high responsiveness to conventional superovulation methods, and a shortest gestation period (16 days) known among eutherian mammals. Besides these advantages, the technical ease of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in this species has contributed much to our understanding of the basic mechanisms of mammalian fertilization. However, the exceptionally strong in vitro developmental block of hamster embryos, especially at the two-cell stage, has hampered the production of genetically modified hamsters, which has resulted in limited use of this species for biomedical research. However, the recently developed in vivo genome editing method (improved genome editing via oviductal nucleic acid delivery, i-GONAD) has overcome this shortcoming and made production of gene-edited hamsters much easier than before. This method has the potential to provide a means of reexamining genes whose functions cannot be identified using mouse models, thus leading to the better understanding of gene functions in mammals. In this chapter, we present our procedure for editing the genome of the golden hamster using i-GONAD.
Collapse
|
11
|
Fatira E, Havelka M, Saito T, Landeira J, Rodina M, Gela D, Pšenička M. Intracytoplasmic sperm injection in sturgeon species: A promising reproductive technology of selected genitors. Front Vet Sci 2022; 9:1054345. [PMID: 36619956 PMCID: PMC9816131 DOI: 10.3389/fvets.2022.1054345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Sturgeons are the most endangered species group and their wild populations continue to decrease. In this study, we apply intracytoplasmic sperm injection (ICSI), an assisted reproductive technology, for the first time in endangered and critically endangered sturgeons. Using various egg-sperm species combinations we performed different ICSI experiments with immobilized pre- or non-activated spermatozoa, single or many, fresh or cryopreserved. Then we evaluated the fertilization success as well as the paternity of the resultant embryos and larvae. Surprisingly, all experimental groups exhibited embryonic development. Normal-shaped feeding larvae produced in all egg-sperm species-combination groups after ICSI using single fresh-stripped non-activated spermatozoa, in one group after ICSI using single fresh-stripped pre-activated spermatozoa, and in one group after ICSI using multiple fresh-stripped spermatozoa. ICSI with single cryopreserved non-activated spermatozoa produced neurula stage embryos. Molecular analysis showed genome integration of both egg- and sperm-donor species in most of the ICSI transplants. Overall, ICSI technology could be used as an assisted reproduction technique for producing sturgeons to rescue valuable paternal genomes.
Collapse
Affiliation(s)
- Effrosyni Fatira
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia,Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain,*Correspondence: Effrosyni Fatira ✉
| | - Miloš Havelka
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Matsuyama, Japan
| | - Taiju Saito
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia,Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Matsuyama, Japan
| | - José Landeira
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marek Rodina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia
| | - David Gela
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia
| | - Martin Pšenička
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia
| |
Collapse
|
12
|
Bovine ICSI: limiting factors, strategies to improve its efficiency and alternative approaches. ZYGOTE 2022; 30:749-767. [PMID: 36082429 DOI: 10.1017/s0967199422000296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique mainly used to overcome severe infertility problems associated with the male factor, but in cattle its efficiency is far from optimal. Artificial activation treatments combining ionomycin (Io) with 6-dimethylaminopurine after piezo-ICSI or anisomycin after conventional ICSI have recently increased the blastocyst rate obtained. Compounds to capacitate bovine spermatozoa, such as heparin and methyl-β-cyclodextrin and compounds to destabilize sperm membranes such as NaOH, lysolecithin and Triton X-100, have been assessed, although they have failed to substantially improve post-ICSI embryonic development. Disulfide bond reducing agents, such as dithiothreitol (DTT), dithiobutylamine and reduced glutathione, have been assessed to decondense the hypercondensed head of bovine spermatozoa, the two latter being more efficient than DTT and less harmful. Although piezo-directed ICSI without external activation has generated high fertilization rates and modest rates of early embryo development, other studies have required exogenous activation to improve the results. This manuscript thoroughly reviews the different strategies used in bovine ICSI to improve its efficiency and proposes some alternative approaches, such as the use of extracellular vesicles (EVs) as 'biological methods of oocyte activation' or the incorporation of EVs in the in vitro maturation and/or culture medium as antioxidant defence agents to improve the competence of the ooplasm, as well as a preincubation of the spermatozoa in estrous oviductal fluid to induce physiological capacitation and acrosome reaction before ICSI, and the use of hyaluronate in the sperm immobilization medium.
Collapse
|
13
|
Yanagimachi R. Mysteries and unsolved problems of mammalian fertilization and related topics. Biol Reprod 2022; 106:644-675. [PMID: 35292804 PMCID: PMC9040664 DOI: 10.1093/biolre/ioac037] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian fertilization is a fascinating process that leads to the formation of a new individual. Eggs and sperm are complex cells that must meet at the appropriate time and position within the female reproductive tract for successful fertilization. I have been studying various aspects of mammalian fertilization over 60 years. In this review, I discuss many different aspects of mammalian fertilization, some of my laboratory's contribution to the field, and discuss enigmas and mysteries that remain to be solved.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii Medical School, Honolulu, HI 96822, USA
| |
Collapse
|
14
|
Morishita N, Ochi M, Horiuchi T. History and prospects of intracytoplasmic sperm injection (ICSI) and the development of golden hamster ICSI embryos. Reprod Med Biol 2021; 20:410-418. [PMID: 34646068 PMCID: PMC8499600 DOI: 10.1002/rmb2.12410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Golden (Syrian) hamsters have many advantages for the study of reproductive biology and developmental biology, including a consistent estrous cycle, a stable superovulation response, and a short gestation period. However, there are serious difficulties in doing in vitro manipulations of hamster embryos, because they are very sensitive to various environmental factors. Thus, biotechnological researches of hamster embryos should be performed with high-level skills of embryo manipulations. METHODS The authors summarized the history of hamster intracytoplasmic sperm injection (ICSI) and introduced key points for hamster ICSI, which were found in our previous studies on the production of embryos by ICSI and offspring by embryo transfer. MAIN FINDINGS The key points for hamster ICSI were in vitro manipulations under the light-controlled environment, injection of acrosome-less sperm heads into oocytes as soon as possible before spontaneous oocyte activation occurs, and determination of the optimal culture conditions. CONCLUSION To our knowledge, there are no available reports on production of offspring from ICSI embryos in hamsters except our reports. Moreover, success rates of hamster ICSI remain very low. For the purpose of spreading hamster ICSI, it is necessary to make further researches to improve manipulation techniques and to resolve experimental problems.
Collapse
Affiliation(s)
- Nami Morishita
- Institute for Advanced Reproductive MedicineOchi Yume Clinic NagoyaNagoyaJapan
| | | | - Toshitaka Horiuchi
- Institute for Advanced Reproductive MedicineOchi Yume Clinic NagoyaNagoyaJapan
- Emeritus Professor of Prefectural University of HiroshimaHiroshimaJapan
| |
Collapse
|
15
|
Wang Y, Yamauchi Y, Wang Z, Zheng H, Yanagimachi R, Ward MA, Yan W. Both Cauda and Caput Epididymal Sperm Are Capable of Supporting Full-Term Development in FVB and CD-1 Mice. Dev Cell 2021; 55:675-676. [PMID: 33352141 DOI: 10.1016/j.devcel.2020.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Yasuhiro Yamauchi
- Insititute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Ryuzo Yanagimachi
- Insititute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Monika A Ward
- Insititute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Ciani F, Maruccio L, Cocchia N, d’Angelo D, Carotenuto D, Avallone L, Namagerdi AA, Tafuri S. Antioxidants in assisted reproductive technologies: An overview on dog, cat, and horse. J Adv Vet Anim Res 2021; 8:173-184. [PMID: 33860028 PMCID: PMC8043350 DOI: 10.5455/javar.2021.h500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 01/24/2023] Open
Abstract
Assisted reproductive technologies (ARTs) are widely used as a tool to improve reproductive performance in both humans and animals. In particular, in the veterinary field, ARTs are used to improve animal genetics, recover endangered animals, and produce offspring in the event of subfertility or infertility in males or females. However, the use of ARTs did not improve the fertilization rate in some animals due to various factors such as the difficulty in reproducing an anatomical and humoral substrate typical of the natural condition or due to the increase in catabolites and their difficult elimination. The in vitro environment allows the production and increase in the concentration of substances, including reactive oxygen species (ROS), which could be harmful to gametes. If produced in high concentration, the ROS becomes deleterious, both in vitro and in vivo systems. It has been seen that the use of antioxidants can help neutralize or counteract the production of ROS. The present study aims to report the latest findings regarding the use of antioxidants in ARTs of some domestic species, such as dogs, cats, and horses, compared to other animal species, such as cattle, in which ARTs have instead developed more widely.
Collapse
Affiliation(s)
- Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- These authors contributed equally
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- These authors contributed equally
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Unnikrishnan V, Kastelic J, Thundathil J. Intracytoplasmic Sperm Injection in Cattle. Genes (Basel) 2021; 12:198. [PMID: 33572865 PMCID: PMC7911995 DOI: 10.3390/genes12020198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 10/30/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) involves the microinjection of sperm into a matured oocyte. Although this reproductive technology is successfully used in humans and many animal species, the efficiency of this procedure is low in the bovine species mainly due to failed oocyte activation following sperm microinjection. This review discusses various reasons for the low efficiency of ICSI in cattle, potential solutions, and future directions for research in this area, emphasizing the contributions of testis-specific isoforms of Na/K-ATPase (ATP1A4) and phospholipase C zeta (PLC ζ). Improving the efficiency of bovine ICSI would benefit the cattle breeding industries by effectively utilizing semen from elite sires at their earliest possible age.
Collapse
Affiliation(s)
| | | | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (V.U.); (J.K.)
| |
Collapse
|
18
|
Lewon M, Wang Y, Peters C, Peterson M, Zheng H, Wang Z, Hayes L, Yan W. Assessment of operant learning and memory in mice born through ICSI. Hum Reprod 2020; 35:2058-2071. [PMID: 32766772 PMCID: PMC7485617 DOI: 10.1093/humrep/deaa167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are there differences in operant learning and memory between mice born through ICSI and naturally conceived control (CTL) mice? SUMMARY ANSWER ICSI females exhibited deficits in the acquisition reward learning relative to CTL females, and ICSI males exhibited deficiencies in discrimination learning and memory relative to CTL males. WHAT IS KNOWN ALREADY Some human outcome studies have suggested that ICSI might be associated with an increased risk of certain cognitive disorders, but only one of two behavioral studies with ICSI mouse models have reported differences between ICSI and CTL females. No studies to date have investigated associative learning in ICSI mice. STUDY DESIGN, SIZE, DURATION Groups of 36 ICSI mice (18 male, 18 female) and 37 CTL mice (19 male, 18 female) aged 3-6 months were compared in a series of operant learning procedures that assessed acquisition of a new behavior, discrimination learning and memory. In total, 16 ICSI mice (9 male, 7 female) and 17 CTL mice (10 male, 7 female) received follow-up discrimination learning and memory assessments at 12 months of age (6 months after the end of initial training) to evaluate retention and reacquisition of learned performances. PARTICIPANTS/MATERIALS, SETTING, METHODS Mice received daily operant learning sessions in experimental chambers in which all stimulus events and the recording of responses were automated. Food rewards were delivered for responding under different conditions of reinforcement, which varied by procedure. Subjects received a successive series of sessions of nose poke acquisition training, discrimination training and the delayed-non-matching-to-position memory procedure. Mixed repeated measures ANOVAs in which the between-subjects factor was group (ICSI vs CTL) and the within-subjects factor was repeated exposures to learning procedures (i.e. sessions) were used to analyze data. MAIN RESULTS AND THE ROLE OF CHANCE In comparisons between all mice (i.e. males and females combined), CTL mice exhibited superior performance relative to ICSI in response acquisition (P = 0.03), discrimination (P = 0.001) and memory (P = 0.007). Sex-specific comparisons between the groups yielded evidence of sexual dimorphism. ICSI females exhibited a deficit in acquisition learning relative to CTL females (P < 0.001), but there was not a significant difference between CTL and ICSI males. In the discrimination and memory tasks, ICSI males exhibited deficits relative to CTL males (P = 0.002 and P = 0.02, respectively) but the differences between females in these tasks were not significant. There was no difference in discrimination or memory retention/re-acquisition assessments conducted with mice at 12 months of age. ICSI males and females weighed significantly more than CTL counterparts at all points during the experiment. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The study was not blinded. All learning assessments utilized food reward; other assessments of operant, Pavlovian and nonassociative learning are needed to fully characterize learning in ICSI mice and speculate regarding the implications for cognitive function in humans conceived via ICSI. WIDER IMPLICATIONS OF THE FINDINGS Studying learning and memory processes in mouse models have the potential to shed light on ICSI outcomes at the level of cognitive function. Future research should use multiple learning paradigms, assess both males and females, and investigate the effects of variables related to the ICSI procedure. Studying cognitive function in ICSI is an interdisciplinary endeavor and requires co-ordination between researchers at the genetic and psychological levels of analysis. STUDY FUNDING/COMPETING INTEREST(S) This work was supported, in part, by grants from the NIH (P30GM110767, HD071736 and HD085506 to W.Y.), the Templeton Foundation (61174 to W.Y.) and a New Scholarly Endeavor Grant from the University of Nevada, Reno Office of Research and Innovation (to M.L., Y.W., H.Z., L.H. and W.Y.). The authors declare no competing interests.
Collapse
Affiliation(s)
- Matthew Lewon
- Department of Psychology, University of Nevada, Reno, NV, USA
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | | | | | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Linda Hayes
- Department of Psychology, University of Nevada, Reno, NV, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
- Department of Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
19
|
Harada Y, Kinutani M, Horiuchi T. Time-lapse monitoring of mouse embryos produced by injecting sonicated, frozen-thawed sperm heads with high or low chromosomal integrity. Reprod Med Biol 2020; 19:171-177. [PMID: 32273823 PMCID: PMC7138947 DOI: 10.1002/rmb2.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate the first-division kinetics and in vitro development of embryos produced by injecting sonicated sperm heads with high or low chromosomal integrity into oocytes. METHODS Mouse spermatozoa were frozen after separating the sperm heads from the tails by sonication in an EGTA solution (EGTA group) or M2 medium (M2 group). The chromosomal integrity of sonicated mouse spermatozoa was analyzed by injecting the sperm heads into fresh mouse oocytes. The developmental potential of spermatozoa was examined by injecting the sperm heads into vitrified-warming mouse oocytes. We used a time-lapse monitoring system to compare the first-division kinetics. RESULTS Chromosomal integrity was preserved significantly more frequently in the EGTA group (90.6%) than in the M2 group (32.7%). Blastocysts developed significantly more often in the EGTA group (80.8%) than in the M2 group (39.6%). In the M2 group, with frequent chromosome aberrations, the time between the sperm injection and first cleavage was delayed (18.4 hours), compared to the EGTA group (16.5 hours). All results of the EGTA group were similar to that of fresh epididymal spermatozoa. CONCLUSION The EGTA solution for sonication maintained the integrity of sperm chromosomes. Our results revealed a relationship between sperm chromosome integrity and first-division kinetics.
Collapse
Affiliation(s)
- Yoshihisa Harada
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaHiroshimaJapan
- Kinutani Women’s ClinicHiroshimaJapan
| | | | - Toshitaka Horiuchi
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaHiroshimaJapan
| |
Collapse
|
20
|
Wakai T, Mehregan A, Fissore RA. Ca 2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb Perspect Biol 2019; 11:a035162. [PMID: 31427376 PMCID: PMC6886447 DOI: 10.1101/cshperspect.a035162] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication between and among cells as well as with the environment. Cells have developed a sophisticated set of molecules, "the Ca2+ toolkit," to adapt [Ca2+]i changes to specific cellular functions. Mammalian oocytes and eggs, the subject of this review, are not an exception, and in fact the initiation of embryo devolvement in all species is entirely dependent on distinct [Ca2+]i responses. Here, we review the components of the Ca2+ toolkit present in mammalian oocytes and eggs, the regulatory mechanisms that allow these cells to accumulate Ca2+ in the endoplasmic reticulum, release it, and maintain basal and stable cytoplasmic concentrations. We also discuss electrophysiological and genetic studies that have uncovered Ca2+ influx channels in oocytes and eggs, and we analyze evidence supporting the role of a sperm-specific phospholipase C isoform as the trigger of Ca2+ oscillations during mammalian fertilization including its implication in fertility.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
21
|
Exploring dry storage as an alternative biobanking strategy inspired by Nature. Theriogenology 2019; 126:17-27. [DOI: 10.1016/j.theriogenology.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022]
|
22
|
Morishita N, Ochi M, Horiuchi T. Development of golden hamster embryos effectively produced by injection of sperm heads sonicated in Tris-HCl buffer with EGTA. Reprod Med Biol 2019; 18:83-90. [PMID: 30655725 PMCID: PMC6332760 DOI: 10.1002/rmb2.12253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To investigate the effects of sperm treatment medium-TCM199 or EGTA in Tris-HCl buffer (TBS + EGTA)-for sonication of frozen-thawed hamster spermatozoa in terms of sperm chromosome integrity and development of hamster oocytes injected with the sperm heads (ICSI). METHODS Frozen-thawed hamster spermatozoa were separated into heads and tails by sonication in TCM199 or TBS + EGTA. Sperm heads were injected into mouse oocytes to assess hamster sperm chromosomes. We further compared the development of hamster ICSI embryos produced by injecting sonicated sperm heads in TCM199 vs TBS + EGTA. RESULTS Sperm chromosome integrity was greater following sonication of frozen-thawed hamster spermatozoa in TBS + EGTA than in TCM199 (89.7% vs 69.0%). Embryonic development was improved following hamster oocyte injection with sperm heads sonicated in TBS + EGTA compared to in TCM199 (8-cell: 84.1% vs 65.4%; morula: 78.4% vs 43.2%; blastocyst: 42.0% vs 17.3%). Gene expression of zygotic genome activation in 2-cell embryos was significantly higher with TBS + EGTA than with TCM199. We transferred 43 morulae/blastocysts from the TBS + EGTA group to foster mothers, and 4 (9.3%) developed into live offspring. CONCLUSION These results showed that the rapid injection of hamster sperm heads separated by sonication in TBS + EGTA effectively produced more ICSI embryos during a short time.
Collapse
Affiliation(s)
- Nami Morishita
- Department of Life SciencesPrefectural University of HiroshimaShobaraHiroshimaJapan
- IVF laboratoryOchi Yume Clinic NagoyaNagoyaJapan
| | | | - Toshitaka Horiuchi
- Department of Life SciencesPrefectural University of HiroshimaShobaraHiroshimaJapan
| |
Collapse
|
23
|
Menéndez-Blanco I, Catala MG, Roura M, Soto-Heras S, Piras AR, Izquierdo D, Paramio MT. Intracytoplasmic sperm injection (ICSI) of prepubertal goat oocytes using fresh and frozen-thawed semen. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2018.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Ward MA, Ward WS. Contributions of Ryuzo Yanagimachi to the field of reproductive biology. Biol Reprod 2019; 100:1-7. [PMID: 30657895 PMCID: PMC11484509 DOI: 10.1093/biolre/ioy191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Monika A Ward
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry & Physiology, Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - W Steven Ward
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry & Physiology, Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
25
|
Hirose M, Ogura A. The golden (Syrian) hamster as a model for the study of reproductive biology: Past, present, and future. Reprod Med Biol 2019; 18:34-39. [PMID: 30655719 PMCID: PMC6332730 DOI: 10.1002/rmb2.12241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The golden (Syrian) hamster (Mesocricetus auratus) is a small rodent that belongs to the Cricetidae family. It has several unique features that are advantageous for the study of reproductive and developmental biology, including a consistent estrous cycle (4 days), high responsiveness to conventional superovulation regimens, and the short gestation period (16 days). METHODS Based on the published reports, the development in assisted reproductive technology (ART) in the golden hamsters was summarized. MAIN FINDINGS The technical ease of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in this species has contributed to our understanding of the basic mechanisms of mammalian fertilization in the last century. However, a strong developmental block in vitro of hamster embryos and unavailability of gene-modified strains has hampered its broader use in biomedical fields. A recently developed in vivo transfection method has enabled us to generate gene knockout hamsters without any major obstacles. It would be interesting to revisit the genes whose functions could not be identified using mouse models. CONCLUSION The authors expect that gene knockout hamsters might be able to substitute for mice-at least in part-for better understanding of gene functions in mammals including humans.
Collapse
Affiliation(s)
| | - Atsuo Ogura
- RIKEN BioResource Research CenterKoyadai, TsukubaJapan
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
- RIKEN Cluster for Pioneering ResearchSaitamaJapan
| |
Collapse
|
26
|
Parrington J, Arnoult C, Fissore RA. The eggstraordinary story of how life begins. Mol Reprod Dev 2018; 86:4-19. [PMID: 30411426 DOI: 10.1002/mrd.23083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
More than 15 years have elapsed since the identification of phospholipase C ζ1 (PLCζ) from a genomic search for mouse testis/sperm-specific PLCs. This molecule was proposed to represent the sperm factor responsible for the initiation of calcium (Ca2+ ) oscillations required for egg activation and embryo development in mammals. Supporting evidence for this role emerged from studies documenting its expression in all mammals and other vertebrate species, the physiological Ca2+ rises induced by injection of its messenger RNA into mammalian and nonmammalian eggs, and the lack of expression in infertile males that fail intracytoplasmic sperm injection. In the last year, genetic animal models have added support to its role as the long sought-after sperm factor. In this review, we highlight the findings that demonstrated the role of Ca2+ as the universal signal of egg activation and the experimental buildup that culminated with the identification of PLCζ as the soluble sperm factor. We also discuss the structural-functional properties that make PLCζ especially suited to evoke oscillations in eggs. Lastly, we examine unresolved aspects of the function and regulation of PLCζ and whether or not it is the only sperm factor in mammalian sperm.
Collapse
Affiliation(s)
- John Parrington
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institut pour l'Avancée des Biosciences (IAB), INSERM 1209, CNRS UMR 5309, La Tronche, France
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
27
|
Wani NA, Hong S. Intracytoplasmic sperm injection (ICSI) of in vitro matured oocytes with stored epididymal spermatozoa in camel (Camelus dromedarius): Effect of exogenous activation on in vitro embryo development. Theriogenology 2018; 113:44-49. [DOI: 10.1016/j.theriogenology.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 11/17/2022]
|
28
|
Kaneko T. Reproductive technologies for the generation and maintenance of valuable animal strains. J Reprod Dev 2018; 64:209-215. [PMID: 29657233 PMCID: PMC6021608 DOI: 10.1262/jrd.2018-035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many types of mutant and genetically engineered strains have been produced in various animal species. Their numbers have dramatically increased in recent years, with new strains being
rapidly produced using genome editing techniques. In the rat, it has been difficult to produce knockout and knock-in strains because the establishment of stem cells has been insufficient.
However, a large number of knockout and knock-in strains can currently be produced using genome editing techniques, including zinc-finger nuclease (ZFN), transcription activator-like
effector nuclease (TALEN), and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system. Microinjection technique has also
contributed widely to the production of various kinds of genome edited animal strains. A novel electroporation method, the “Technique for Animal Knockout system by Electroporation (TAKE)”
method, is a simple and highly efficient tool that has accelerated the production of new strains. Gamete preservation is extremely useful for maintaining large numbers of these valuable
strains as genetic resources in the long term. These reproductive technologies, including microinjection, TAKE method, and gamete preservation, strongly support biomedical research and the
bio-resource banking of animal models. In this review, we introduce the latest reproductive technologies used for the production of genetically engineered animals, especially rats, using
genome editing techniques and the efficient maintenance of valuable strains as genetic resources. These technologies can also be applied to other laboratory animals, including mice, and
domestic and wild animal species.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate 020-8551, Japan.,Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate 020-8551, Japan.,Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Iwate 020-8551, Japan
| |
Collapse
|
29
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
30
|
Abstract
The germ cell lineage originates early in development and undergoes a series of complex developmental processes that culminate in the generation of fully matured gametes, the spermatozoa and the oocytes. Remarkably, researchers have been recapitulating these developmental pathways using mouse and human pluripotent stem cells (PSCs). With further studies, including those involving non-human primate models, human gametogenesis may be fully reconstituted from PSCs, which would profoundly facilitate our understanding of human germ cell development and infertility. Here we discuss groundbreaking studies that lay the foundation for this achievement, the current state of the field, and challenges for deriving gametes from hPSCs.
Collapse
Affiliation(s)
- Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for Induced Pluripotent Stem Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hidetaka Miyauchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Suttirojpattana T, Somfai T, Matoba S, Nagai T, Parnpai R, Geshi M. Pretreatment of bovine sperm with dithiobutylamine (DTBA) significantly improves embryo development after ICSI. J Reprod Dev 2016; 62:577-585. [PMID: 27523189 PMCID: PMC5177975 DOI: 10.1262/jrd.2016-084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We assessed the effect of pretreating sperm with dithiobutylamine (DTBA) to improve embryo development by intracytoplasmic sperm injection (ICSI) in cows.
Acridine Orange staining revealed that when applied at different concentrations (2.5, 5, and 10 mM) and exposure times (5 min, 20 min, 1 h, and 2 h), DTBA
reduced disulfide bonds in spermatozoa with the highest efficacy at 5 mM for 5 min. DTBA enhanced the percentage of spermatozoa with free protamine thiol groups
compared with untreated spermatozoa (control) (P < 0.05); however, this result did not differ from that of dithiothreitol (DTT) treatment. The percentage of
live spermatozoa after DTBA treatment was identical to that in the control, but significantly higher than that after DTT treatment (P < 0.05). After ICSI,
DTBA treatment tended to improve male pronuclear formation rate (P = 0.071) compared with non-treated sperm injection. Blastocyst formation rate was
significantly improved by DTBA treatment compared with that in DTT, control, and sham injection groups (P < 0.05). Blastocyst quality in terms of cell
numbers and ploidy was not different among these groups. In conclusion, DTBA increases the efficacy of blastocyst production by ICSI even if DTT treatment does
not work.
Collapse
Affiliation(s)
- Tayita Suttirojpattana
- Embryo Technology and Stem Cell Research Center, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | | | |
Collapse
|
32
|
Hochi S. Microtubule assembly crucial to bovine embryonic development in assisted reproductive technologies. Anim Sci J 2016; 87:1076-83. [PMID: 27169525 PMCID: PMC5084824 DOI: 10.1111/asj.12621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 11/30/2022]
Abstract
Centrosome integrity and microtubule network are crucial to the events around fertilization, including pronuclear development, migration and fusion, and the first mitotic division. The present review highlights the importance of bull spermatozoal centrosomes to function as a microtubule‐organizing center for successful fertilization and the subsequent embryonic development. Spermatozoal centrosomes need to be blended with ooplasmic pericentriolar materials accurately to nucleate and organize the sperm aster. Dysfunction of the spermatozoal centrosomes is associated with fertilization failure, which has been overcome with supplemental stimuli for oocyte activation following intracytoplasmic sperm injection in humans. Even though the spermatozoal centrosomes are functionally intact, abnormal sperm aster formation was frequently observed in vitrified‐warmed bovine oocytes, with delayed pronuclear development and migration. Treatment of the post‐warm oocytes with Rho‐associated coiled‐coil kinase inhibitor or α‐tocopherol inhibited the incidence of the abnormal aster formation, resulting in higher blastocyst yields following in vitro fertilization and culture. Thus, understanding of centrosomal function made it possible to improve the performance of advanced reproductive technologies.
Collapse
Affiliation(s)
- Shinichi Hochi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
33
|
Kharche SD, Pathak J, Agarwal S, Kushwah B, Sikarwar A. Effect of Ca Ionophore On Blastocyst Production Following Intracytoplasmic Sperm Injection in Caprine Oocytes. Reprod Domest Anim 2016; 51:611-7. [PMID: 27170442 DOI: 10.1111/rda.12701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/09/2016] [Indexed: 11/28/2022]
Abstract
The aim of the present investigation was to study the effect of calcium ionophore activation on blastocyst production following intracytoplasmic sperm injection (ICSI) in in vitro-matured Caprine oocytes. A total of 470 in vitro-matured oocytes were selected and randomly divided in to three groups. Cumulus oocyte complexes (COCs) recovered by slicing the Caprine ovaries were matured in TCM199 supplemented with 10% foetal bovine serum (FBS) + 10% follicular fluid + FSH (5 μg/ml) + LH (10 μg/ml) + estradiol (1 μg/ml) + EGF (10 ng/ml) + BSA (3 mg/ml) for 27 h in humidified atmosphere at 38.5°C with 5% CO2 in CO2 incubator. After 27 h of culture, selected COCs (n = 470) were separated from cumulus cells by treating with 0.1% hyaluronidase enzyme and passing repeatedly through a fine pipette and randomly divided into three groups. In group 1, (n = 168) matured oocytes were injected with injection micropipette without sperm as control. In group 2, (n = 152) capacitated spermatozoa were injected into cytoplasm of in vitro-matured oocytes through injection micropipette. In group 3, (n = 150) capacitated spermatozoa were injected into cytoplasm of in vitro-matured oocytes through injection micropipette and then activated with 5 μm Ca ionophore for 5 min. The oocytes of all groups were then culture in RVCL media for embryo development. The cleavage rate was observed after 48-72 h of injection. The cleavage rate and blastocyst production in group 1, 2 and 3 were 0.00 and 0.00, 18.42 and 3.57 and 61.33% and 16.30%, respectively. The result indicated that mechanical activation failed to induce cleavage in in vitro-matured Caprine oocytes, whereas chemical activation of intracytoplasmic sperm-injected in vitro-matured Caprine oocytes showed significantly higher cleavage rate and blastocyst production as compare to non-activated oocytes.
Collapse
Affiliation(s)
- S D Kharche
- ICAR-CIRG, Makhdoom, Farah, Mathura, UP, India
| | - J Pathak
- ICAR-CIRG, Makhdoom, Farah, Mathura, UP, India
| | - S Agarwal
- ICAR-CIRG, Makhdoom, Farah, Mathura, UP, India
| | - B Kushwah
- ICAR-CIRG, Makhdoom, Farah, Mathura, UP, India
| | | |
Collapse
|
34
|
Hayama T, Yamaguchi T, Kato‐Itoh M, Ishii Y, Mizuno N, Umino A, Sato H, Sanbo M, Hamanaka S, Masaki H, Hirabayashi M, Nakauchi H. Practical selection methods for rat and mouse round spermatids without DNA staining by flow cytometric cell sorting. Mol Reprod Dev 2016; 83:488-96. [DOI: 10.1002/mrd.22644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Tomonari Hayama
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Megumi Kato‐Itoh
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Yumiko Ishii
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Naoaki Mizuno
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Ayumi Umino
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Hideyuki Sato
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Makoto Sanbo
- Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiAichiJapan
| | - Sanae Hamanaka
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Hideki Masaki
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiAichiJapan
| | - Hiromitsu Nakauchi
- Division of Stem Cell TherapyCenter for Stem Cell Biology and Regenerative MedicineInstitute of Medical ScienceUniversity of TokyoMinato‐kuTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCalifornia
| |
Collapse
|
35
|
Abstract
Capacitation and the acrosome reaction are key phenomena in mammalian fertilization. These phenomena were found more than 60 years ago. However, fundamental questions regarding the nature of capacitation and the timing of the acrosome reaction remain unsolved. Factors were postulated over time, but as their roles were not verified by gene-disruption experiments, widely accepted notions concerning the mechanism of fertilization are facing modifications. Today, although in vitro fertilization systems remain our central research tool, the importance of in vivo observations must be revisited. Here, primarily focusing on our own research, I summarize how in vivo observations using gene-manipulated animals have elucidated new concepts in the mechanisms of fertilization.
Collapse
Affiliation(s)
- Masaru Okabe
- Center for Genetic Analysis for Biological Responses, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565 0871, Japan
| |
Collapse
|
36
|
Kaneko T. Sperm freeze-drying and micro-insemination for biobanking and maintenance of genetic diversity in mammals. Reprod Fertil Dev 2016; 28:RD15386. [PMID: 26922373 DOI: 10.1071/rd15386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/12/2015] [Indexed: 02/28/2024] Open
Abstract
Breeding by natural mating is ideal for maintaining animal populations. However, the lack of breeding space resulting from an increased number of strains and the decline in fertility caused by inbreeding inhibits the reproduction of subsequent generations. Reproductive technologies, such as gamete preservation and artificial fertilisation, have been developed to overcome these problems. These approaches efficiently produce offspring of laboratory, domestic and wild animals, and can also be used to treat human infertility. Gamete preservation using sperm contributes to improvements in reproductive systems and enables the use of smaller breeding spaces. Although cryopreservation with liquid nitrogen has been used to preserve spermatozoa, freeze-drying without liquid nitrogen, a novel method, facilitates long-term storage of spermatozoa. This method has recently been applied to maintain animal strains. Micro-insemination techniques, such as intracytoplasmic sperm injection (ICSI), are exceptional for improving assisted reproduction. ICSI can be used to fertilise oocytes, even with immotile and immature spermatozoa that are unsuitable for AI and IVF. Reproductive technologies provide a substantial advantage for biobanking and maintaining the genetic diversity of laboratory, domestic and wild animals. This review covers the latest method of sperm freeze-drying and micro-insemination, and future possibilities for maintaining animal strains and populations.
Collapse
|
37
|
Kang KS, Park TS, Rengaraj D, Lee HC, Lee HJ, Choi HJ, Mizushima S, Ono T, Han JY. Fertilisation of cryopreserved sperm and unfertilised quail ovum by intracytoplasmic sperm injection. Reprod Fertil Dev 2016; 28:1974-1981. [DOI: 10.1071/rd15126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) is an important technique in animal biotechnology for animal cloning and conservation of genetic resources, but has been a challenge for avian species. In the present study, we investigated the ability of cryopreserved quail spermatozoa to achieve fertilisation and embryo development. Female quail were killed 70–120 min after previous oviposition to collect unfertilised oocytes from the oviduct. Fresh or cryopreserved–thawed spermatozoa were injected into the cytoplasm of unfertilised oocytes, and the manipulated oocytes were incubated in quail surrogate eggshells. Injection of fresh spermatozoa supplemented with inositol 1,4,5-trisphosphate (IP3) resulted in a significantly increased rate of embryo development compared with injection of fresh spermatozoa alone (90% vs 13%, respectively). Although >80% of embryos stopped cell division and development before Hamburger and Hamilton (HH) Stage 3, approximately 15% of embryos from the fresh sperm injection developed to past HH Stage 4, and one embryo survived up to HH Stage 39 (11 days of incubation). In the case of cryopreserved spermatozoa, the embryo development rate was 30% after ICSI, and this increased significantly to 74% with IP3 supplementation. In conclusion, cryopreserved spermatozoa combined with ICSI followed by surrogate eggshell culture can develop quail embryos.
Collapse
|
38
|
Yanagimachi R. Germ cells and fertilization: why I studied these topics and what I learned along the path of my study. Andrology 2015; 2:787-93. [PMID: 25327579 DOI: 10.1111/j.2047-2927.2014.00238.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- R Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, HI, USA.
| |
Collapse
|
39
|
Sun H, Lu F, Liu X, Tian M, Ruan Z, Zhu P, Ruan Q, Jiang J, Shi D. Effects of scriptaid on the histone acetylation of buffalo oocytes and their ability to support the development of somatic cell nuclear transfer embryos. Theriogenology 2015; 83:1219-25. [DOI: 10.1016/j.theriogenology.2015.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/15/2014] [Accepted: 01/01/2015] [Indexed: 10/24/2022]
|
40
|
Kaneko T. Simple gamete preservation and artificial reproduction of mammals using micro-insemination techniques. Reprod Med Biol 2014; 14:99-105. [PMID: 29259407 DOI: 10.1007/s12522-014-0202-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 11/24/2022] Open
Abstract
Assisted reproductive technology (ART) has been applied in various procedures as an effective breeding method in experimental, domestic, and wild animals, and for the treatment of human infertility. Micro-insemination techniques such as intracytoplasmic injection of spermatozoa and spermatids are now routinely used ART tools. With these techniques, even immotile and immature sperm cells can be employed as donors for producing the next generation. Gamete preservation, another ART tool, has contributed to reproductive regulation, worldwide transportation, and disease protection of animal strains, and the preserved gametes have been effectively used for the production of offspring. ART is now an indispensable tool in mammalian reproduction. This review covers the latest ART tools, with a particular emphasis on micro-insemination and gamete preservation, and discusses the future direction of mammalian artificial reproductive technology.
Collapse
Affiliation(s)
- Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine Kyoto University Yoshida-Konoe-cho, Sakyo-ku 606-8501 Kyoto Japan
| |
Collapse
|
41
|
Abstract
Analysis of the mechanisms underlying cell fates requires the molecular quantification of cellular features. Classical techniques use population average readouts at single time points. However, these approaches mask cellular heterogeneity and dynamics and are limited for studying rare and heterogeneous cell populations like stem cells. Techniques for single-cell analyses, ideally allowing non-invasive quantification of molecular dynamics and cellular behaviour over time, are required for studying stem cells. Here, we review the development and application of these techniques to stem cell research.
Collapse
|
42
|
Abstract
A plethora of assisted reproductive technologies (ARTs) have come into routine use over the past half century. Some of these procedures were used much earlier experimentally. For example, Spallanzani performed artificial insemination in the dog in the late 1700s, and Heape did successful embryo transfer in the rabbit in 1890. Truly revolutionary tools and concepts important for ART occur at approximately half-decade intervals, for example, recombinant DNA procedures, transgenic technology, somatic cell nuclear transplantation, the polymerase chain reaction, and microRNAs. Similarly, obvious technologies sometimes take decades to come into practical use, such as sexing sperm and in vitro fertilization. I have categorized ARTs into five somewhat arbitrary categories in terms of perceived difficulty and feasibility: (a) when the seemingly possible turns out to be (essentially) impossible, e.g., homozygous, uniparental females; (b) when the seemingly impossible becomes possible, e.g., cryopreservation of embryos and transgenesis; (c) when the seemingly difficult turns out to be relatively easy, e.g., cryopreservation of sperm; (d) when the seemingly easy turns out to be difficult in key species, e.g., in vitro fertilization; and (e) when the seemingly difficult remains difficult, e.g., making true embryonic stem cells. The adage that "it is easy when you know how" applies repeatedly. The boundaries between what appears impossible/possible and difficult/easy change constantly owing to new tools and insights, one of the more important lessons learned. ARTs frequently are synergistic with each other. For example, somatic cell nuclear transplantation has made many kinds of experiments feasible that otherwise were impractical. Another example is that sexing sperm is useless for application without artificial insemination or in vitro fertilization. ARTs frequently are perceived as neat tricks and stimulate further thinking. This is useful for both teaching and research.
Collapse
Affiliation(s)
- George E Seidel
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado 80523-1683;
| |
Collapse
|
43
|
Gil L, Olaciregui M, Luño V, Malo C, González N, Martínez F. Current Status of Freeze-Drying Technology to Preserve Domestic Animals Sperm. Reprod Domest Anim 2014; 49 Suppl 4:72-81. [DOI: 10.1111/rda.12396] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
- L Gil
- Obstetric and Reproduction Area; Universidad de Zaragoza; Zaragoza Spain
| | - M Olaciregui
- Obstetric and Reproduction Area; Universidad de Zaragoza; Zaragoza Spain
| | - V Luño
- Obstetric and Reproduction Area; Universidad de Zaragoza; Zaragoza Spain
| | - C Malo
- Obstetric and Reproduction Area; Universidad de Zaragoza; Zaragoza Spain
| | - N González
- Obstetric and Reproduction Area; Universidad de Zaragoza; Zaragoza Spain
| | - F Martínez
- Obstetric and Reproduction Area; Universidad de Zaragoza; Zaragoza Spain
| |
Collapse
|
44
|
Pan X, Kong D, Liu L, Gao F, Zhang X, Tang B, Li Z. Development block of golden hamster ICSI embryos is associated with decreased expression of HDAC1, HSPA1A and MYC. Cell Biol Int 2014; 38:1280-90. [PMID: 24890342 DOI: 10.1002/cbin.10319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/06/2014] [Indexed: 02/06/2023]
Abstract
We have investigated the mechanism for embryo development block in vitro and to improve the development rate of golden hamster embryos in vitro. Intracytoplasmic sperm injection (ICSI) technique was used to produce golden hamster ICSI embryos. The changes in the histone acetylation and the expression of histone deacetylase and related genes were analyzed by immunocytochemical staining and real-time PCR both in golden hamster in vivo embryos and in ICSI embryos. Aged oocytes significantly increased the oocyte spontaneous activation rate. In vitro cultured ICSI embryos suffered from severe development block in M199TE medium. Expression of histone deacetylase 1 (HDAC1) was significantly decreased in the nuclei of the arrested ICSI 2-cell embryos, and its nuclear and cytoplasmic expression pattern was also markedly altered. The acetylation level of H4K5, however, was not significantly changed between golden hamster in vivo embryos and ICSI embryos. HSPA1A and MYC, the marker genes for zygotic genome activation (ZGA), were transcriptionally decreased in arrested ICSI 2-cell embryos. Transcription of HDAC1 was also downregulated in these embryos, whereas the mRNA expression of the proapoptotic gene, BAX, was not changed. These results indicate that the golden hamster ICSI embryo development block during ZGA is associated with decreased nuclear expression and altered expression of HDAC1. HSPA1A, MYC, and HDAC1 mRNA levels, which decrease, resulting in ZGA failure.
Collapse
Affiliation(s)
- Xiaoyan Pan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, the Center for Animal Embryo Engineering of Jilin Province, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; Department of Histology and Embryology, Jilin Medical College, Jilin, Jilin 132013, China
| | | | | | | | | | | | | |
Collapse
|
45
|
In Vitro Development of Porcine Oocytes Following Intracytoplasmic Injection of Freeze-Dried Spermatozoa with Trehalose. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
46
|
Jo HT, Bang JI, Kim SS, Choi BH, Jin JI, Kim HL, Jung IS, Suh TK, Ghanem N, Wang Z, Kong IK. Production of female bovine embryos with sex-sorted sperm using intracytoplasmic sperm injection: efficiency and in vitro developmental competence. Theriogenology 2013; 81:675-82.e1. [PMID: 24360289 DOI: 10.1016/j.theriogenology.2013.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 11/24/2022]
Abstract
The production of embryos with a preselected sex sperm is important in the livestock industry. In this study, we examined the efficiency of producing female embryos by intracytoplasmic sperm injection (ICSI) with flow cytometry sorted (ssICSI) and unsorted (usICSI) bovine sperm, and their developmental competence in vitro. For comparison, bovine embryos were also produced by in vitro fertilization (IVF) with sorted (ssIVF) and unsorted (usIVF) bovine sperm. The semen used in this study was from a bull selected for its high fertility and blastocyst developmental competence among four bulls. We first examined and compared pronuclear (PN) formation and cleavage rates of the produced embryos among the treatment groups. Our results demonstrated that PN formation rates (judged by two pronucleus [2PN]) and cleavage rates in ssIVF group (23.1% and 43.6%) were lower than those in the usIVF (71.1% and 71.6%), usICSI (73.1% and 92.8%) and ssICSI (75% and 79.1%) groups, respectively (P < 0.05). Moreover, the blastocyst formation rate in the ssIVF group was less than those in the usIVF, usICSI, and ssICSI groups (2.7% vs. 30.2%, 28.7% and 24.7%, respectively; P < 0.05). Importantly, we reported that the blastocyst formation rate in the ssICSI group was similar to that in the usICSI group, which indicated that ICSI can rescue the damage introduced to sperm by flow cytometry-mediated sex-sorting. Of note, we achieved a blastocyst formation rate in the ssICSI group to be comparable with the usIVF group. We then examined embryo quality by counting the number of normal and apoptotic cells in blastocysts. It was found that, despite the fact that blastocyst formation rate in the ssIVF group was significantly lower than those in the usIVF, usICSI and ssICSI groups, there was no difference in total and apoptotic cell numbers among these groups (P > 0.05). Finally, karyotyping analysis demonstrated that the proportion of female embryos in the ssICSI and ssIVF groups was 100%, whereas it was 58.8% and 57.8% in the usIVF and usICSI groups, respectively. In conclusion, ICSI with flow cytometry sorted bovine sperm provides an alternative approach to produce embryos with predetermined sex.
Collapse
Affiliation(s)
- Hyun-Tae Jo
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Jae-Il Bang
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Seong-Su Kim
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Byung-Hyun Choi
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Jong-In Jin
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Heyng-Lyool Kim
- Dairy Cattle Improvement Center, National Agricultural Cooperation Federation, Goyang-si, Gyeonggi-do, Republic of Korea
| | - In-Suk Jung
- Korea Sexing Biotech Inc., Daegu, Gyeongsangbuk-do, Republic of Korea
| | - Tae-Kwang Suh
- Korea Sexing Biotech Inc., Daegu, Gyeongsangbuk-do, Republic of Korea
| | - Nasser Ghanem
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea; Department of Animal Production, Faculty of Agriculture Cairo University, Giza, Egypt
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, School of Veterinary Medicine, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
47
|
Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium 2013; 55:24-37. [PMID: 24290744 DOI: 10.1016/j.ceca.2013.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 01/21/2023]
Abstract
Since the establishment of in vitro fertilization, it became evident that almost half of the couples failed to achieve fertilization and this phenomenon was attributed to a male gamete dysfunction. The adoption of assisted fertilization techniques particularly ICSI has been able to alleviate male factor infertility by granting the consistent ability of a viable spermatozoon to activate an oocyte. Single sperm injection, by pinpointing the beginning of fertilization, has been an invaluable tool in clarifying the different aspects of early fertilization and syngamy. However, even with ICSI some couples fail to fertilize due to ooplasmic dysmaturity in relation to the achieved nuclear maturation marked by the extrusion of the first polar body. More uncommon are cases where the spermatozoa partially or completely lack the specific oocyte activating factor. In this work, we review the most relevant aspects of fertilization and its failure through assisted reproductive technologies. Attempts at diagnosing and treating clinical fertilization failure are described.
Collapse
Affiliation(s)
- Queenie V Neri
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bora Lee
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
48
|
Kant V, Parmar MS, Pant C, Karuppanas K, Mili B, Upadhyay D. Intracytoplasmic Sperm Injection (ICSI) and its Applications in Veterinary Sciences: An Overview. ACTA ACUST UNITED AC 2013. [DOI: 10.17311/sciintl.2013.266.270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Kohda T, Ishino F. Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120353. [PMID: 23166403 PMCID: PMC3539368 DOI: 10.1098/rstb.2012.0353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early stage of mammalian development from fertilization to implantation is a period when global and differential changes in the epigenetic landscape occur in paternally and maternally derived genomes, respectively. The sperm and egg DNA methylation profiles are very different from each other, and just after fertilization, only the paternally derived genome is subjected to genome-wide hydroxylation of 5-methylcytosine, resulting in an epigenetic asymmetry in parentally derived genomes. Although most of these differences are not present by the blastocyst stage, presumably due to passive demethylation, the maintenance of genomic imprinting memory and X chromosome inactivation in this stage are of critical importance for post-implantation development. Zygotic gene activation from paternally or maternally derived genomes also starts around the two-cell stage, presumably in a different manner in each of them. It is during this period that embryo manipulation, including assisted reproductive technology, is normally performed; so it is critically important to determine whether embryo manipulation procedures increase developmental risks by disturbing subsequent gene expression during the embryonic and/or neonatal development stages. In this review, we discuss the effects of various embryo manipulation procedures applied at the fertilization stage in relation to the epigenetic asymmetry in pre-implantation development. In particular, we focus on the effects of intracytoplasmic sperm injection that can result in long-lasting transcriptome disturbances, at least in mice.
Collapse
Affiliation(s)
- Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | |
Collapse
|
50
|
Yanagimachi R. Fertilization studies and assisted fertilization in mammals: their development and future. J Reprod Dev 2012; 58:25-32. [PMID: 22450281 DOI: 10.1262/jrd.11-015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of mammalian fertilization progressed very slowly in the beginning because of difficulties in obtaining a large quantity of fully mature eggs at one time. With progression of techniques to collect and handle eggs and spermatozoa, research in mammalian fertilization advanced rapidly. Today, far more papers are published on mammalian gametes and fertilization than those of all other animals combined. The development of assisted fertilization and related technologies revolutionized basic research as well as human reproductive medicine and animal husbandry. Reproduction is fundamental to human and animal lives. The author lists a few subjects of his personal interest for further development of basic and applied research of gametes and fertilization. Each reader will probably have more exciting subjects of future investigation.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii 96822, USA.
| |
Collapse
|