1
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
2
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Ultrastructure of the male accessory glands of sesarmid crab, Parasesarma plicatum (Latreille, 1803). J Microsc Ultrastruct 2017; 5:111-117. [PMID: 30023244 PMCID: PMC6025762 DOI: 10.1016/j.jmau.2016.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/01/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022] Open
Abstract
The structure of accessory glands (AGs) in the male sesarmid crab, Parasesarma plicatum, is described by light and transmission electron microscopy. Adult males of carapace of width 1.6-2.2 cm were collected from along the estuarine regions of Kanyakumari District, India. Posteriorly, the male reproductive system receives several sac-like structures, referred to as AGs. Histologically, the AG is internally lined by cuboidal epithelium and the lumen encloses eosinophilic vesicular secretions, apparently glycopreoteinaceous in nature. Ultrastructurally, the epithelium shows the signs of typical infrastructure for synthetic activity, as demonstrated by the prolific presence of rough endoplasmic reticulum, free ribosomes, and Golgi complex. The cytoplasm is manifested with electron-dense, electron-lucent, and medium-density secretory vesicles, and the mode of release into the lumen is both merocrine and apocrine. Within the lumen, these secretory vesicles coalesce and aggregate into large heterogeneous masses of varying sizes, which may play an important role post-copulation within the female duct.
Collapse
|
4
|
Seminal Fluid Signalling in the Female Reproductive Tract: Implications for Reproductive Success and Offspring Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:127-58. [PMID: 26178848 DOI: 10.1007/978-3-319-18881-2_6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carriage of sperm is not the only function of seminal fluid in mammals. Studies in mice show that at conception, seminal fluid interacts with the female reproductive tract to induce responses which influence whether or not pregnancy will occur, and to set in train effects that help shape subsequent fetal development. In particular, seminal fluid initiates female immune adaptation processes required to tolerate male transplantation antigens present in seminal fluid and inherited by the conceptus. A tolerogenic immune environment to facilitate pregnancy depends on regulatory T cells (Treg cells), which recognise male antigens and function to suppress inflammation and immune rejection responses. The female response to seminal fluid stimulates the generation of Treg cells that protect the conceptus from inflammatory damage, to support implantation and placental development. Seminal fluid also elicits molecular and cellular changes in the oviduct and endometrium that directly promote embryo development and implantation competence. The plasma fraction of seminal fluid plays a key role in this process with soluble factors, including TGFB, prostaglandin-E, and TLR4 ligands, demonstrated to contribute to the peri-conception immune environment. Recent studies show that conception in the absence of seminal plasma in mice impairs embryo development and alters fetal development to impact the phenotype of offspring, with adverse effects on adult metabolic function particularly in males. This review summarises our current understanding of the molecular responses to seminal fluid and how this contributes to the establishment of pregnancy, generation of an immune-regulatory environment and programming long-term offspring health.
Collapse
|
5
|
Bonduriansky R, Day T. Nongenetic inheritance and the evolution of costly female preference. J Evol Biol 2012; 26:76-87. [DOI: 10.1111/jeb.12028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 01/08/2023]
Affiliation(s)
- R. Bonduriansky
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW Australia
| | - T. Day
- Departments of Mathematics and Biology; Queen's University; Kingston ON Canada
| |
Collapse
|
6
|
Chen H, Liao SB, Cheung MPL, Chow PH, Cheung ALM, O WS. Effects of sperm DNA damage on the levels of RAD51 and p53 proteins in zygotes and 2-cell embryos sired by golden hamsters without the major accessory sex glands. Free Radic Biol Med 2012; 53:885-92. [PMID: 22705368 DOI: 10.1016/j.freeradbiomed.2012.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/15/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
We previously reported that the male accessory sex gland (ASG) secretion is the main source of antioxidants to safeguard sperm genomic integrity and functional competence. Removal of all ASGs in the golden hamster can reduce male fertility by increasing embryo wastage. This study aims to investigate whether the oxidative DNA-damaged sperm from hamsters without all ASGs (TX) could successfully fertilize oocytes and to qualify the status of DNA repair by the expression of RAD51 and p53 proteins. Here we demonstrated a significantly higher DNA-base adduct formation (8-hydroxy-2'-deoxyguanosine) in sperm from TX males than those from sham-operated males. Comet assays demonstrated that all female pronuclei in both zygotes were intact, but single- and double-strand DNA damage was found in decondensed sperm in TX males only. DNA damage could also be detected in both nuclei of the TX 2-cell embryos. RAD51, a DNA repair enzyme, was found to be evenly distributed in the cytoplasm and nuclei in oocytes/zygotes, while at the 2-cell stage, a strong expression of p53 protein and a larger clear perinuclear area without RAD51 expression were found in TX embryos. In conclusion, we demonstrated for the first time DNA damage in decondensed sperm of zygotes and blastomeres of 2-cell stage embryos sired by TX males, resulting in the activation of DNA repair. Sperm DNA damage could induce the increase in p53 expression and the reduction of RAD51 expression in the TX 2-cell stage embryos.
Collapse
Affiliation(s)
- Hong Chen
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
7
|
Bonduriansky R, Day T. Nongenetic Inheritance and Its Evolutionary Implications. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.39.110707.173441] [Citation(s) in RCA: 453] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Center and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia;
| | - Troy Day
- Departments of Mathematics and Biology, Queen's University, Kingston, Ontario, Canada;
| |
Collapse
|
8
|
Poon HK, Lee KH, Wong CL, O WS, Chow PH. A Lack of Contact of Sperm with Accessory Sex Gland Secretions Deregulates DNA Methylation and Imprinted Gene Expression in Rodent Embryos. Syst Biol Reprod Med 2009; 55:200-13. [DOI: 10.3109/19396360903165256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Absence of paternal accessory sex gland secretions disturbs epigenetic reprogramming and expression of Igf2 and Dlk1 in golden hamster embryos. Theriogenology 2009; 71:1367-80. [DOI: 10.1016/j.theriogenology.2008.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 12/18/2008] [Accepted: 12/21/2008] [Indexed: 11/21/2022]
|
10
|
Wong CL, Lee KH, Lo KM, Chan OC, Goggins W, O WS, Chow PH. Ablation of paternal accessory sex glands imparts physical and behavioural abnormalities to the progeny: an in vivo study in the golden hamster. Theriogenology 2007; 68:654-62. [PMID: 17597198 DOI: 10.1016/j.theriogenology.2007.04.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 04/19/2007] [Indexed: 11/21/2022]
Abstract
The functional significance of male accessory sex glands (ASG) remains unclear. This study explored their importance in reproduction. In previous investigations, embryos sired by males with ASG either totally or partially removed had a shift in the cell cycle and delayed cleavage during preimplantation development, higher incidence of apoptosis, early oviductal-uterine transit, higher proportion of embryo degeneration, lower implantation rate, and ultimately reduced fertility and fecundity. Some pups were born alive; but would they be normal? We hypothesized that the first generation offspring (F1) could also bear undesirable traits. To test our hypothesis, we raised and studied these F1 pups from birth to 8 weeks. We monitored physical growth and assessed behaviour such as nest patch odor preference, acoustic startle response (ASR) and exploratory activity. We detected deviations from the norm in physical growth, a premature cessation of nest patch odor preferences, accelerated acoustic startle habituation and more frequent rearing when exposed to a novel environment. In terms of structure, we found one incidence of diphallus with duplicated urethra. We concluded that sperm lacking contact with ASG secretions gave rise to progeny with abnormal traits.
Collapse
Affiliation(s)
- C L Wong
- Department of Anatomy, the Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
11
|
Moura AA, Chapman DA, Koc H, Killian GJ. A comprehensive proteomic analysis of the accessory sex gland fluid from mature Holstein bulls. Anim Reprod Sci 2007; 98:169-88. [PMID: 16713141 DOI: 10.1016/j.anireprosci.2006.03.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 03/10/2006] [Indexed: 11/21/2022]
Abstract
The expression of proteins in accessory sex gland fluid (AGF) of proven, high use mature Holstein bulls was evaluated. Thirty-seven bulls with documented fertility based on their non-return rates were studied. AGF was obtained by artificial vagina after bulls were surgically equipped with cannulae in the vasa deferentia. Samples of AGF were evaluated by two-dimensional SDS-PAGE, gels stained with Coomassie blue and polypeptide maps analyzed by PDQuest software. A master gel generated by the software representing the best pattern of spots in the AGF polypeptide maps was used as a reference for protein identification. Proteins were identified by Western blots and capillary liquid chromatography-nanoelectrospray ionization tandem-mass spectrometry (CapLC-MS/MS). The product ion spectra were processed using Protein Lynx Global Server 2.1 prior to database search with both PLGS and MASCOT (Matrix Science) software. The entire NCBI database was considered for mass fingerprint matching. An average of 52+/-5 spots was detected in the AGF 2D gels, which corresponded to proteins potentially involved in capacitation (bovine seminal plasma protein-BSP-A1/A2 and A3, BSP 30 kDa, albumin); sperm membrane protection, prevention of oxidative stress, complement-mediated sperm destruction and anti-microbial activity (albumin, clusterin, acidic seminal fluid protein--aSFP, 5'-nucleotidase--5'-NT, phospholipase A2--PLA2); acrosome reaction and sperm-oocyte interaction (PLA2, osteopontin); interaction with the extracellular matrix (tissue inhibitor of metalloproteinase 2, clusterin) and sperm motility (aSFP, spermadhesin Z13, 5'-NT). The 20 spots distinguished in all gels were matched to proteins associated with these functions. Proteins identified by tandem mass spectrometry as ecto-ADP-ribosyltransferase 5 and nucleobindin, never described before in the accessory sex gland secretions, were also detected. In summary, we identified a diverse range of components in the accessory sex gland fluid of a select group of Holstein bulls with documented fertility. Known characteristics of these proteins suggest that they play important roles in sperm physiology after ejaculation.
Collapse
Affiliation(s)
- Arlindo A Moura
- J.O. Almquist Research Center, Department of Dairy and Animal Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
12
|
Moura AA, Chapman DA, Killian GJ. Proteins of the accessory sex glands associated with the oocyte-penetrating capacity of cauda epididymal sperm from holstein bulls of documented fertility. Mol Reprod Dev 2007; 74:214-22. [PMID: 16941673 DOI: 10.1002/mrd.20590] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously reported that accessory sex gland fluid (AGF) from high fertility (HF) bulls influenced the oocyte-penetrating capacity of cauda epididymal sperm from low fertility (LF) bulls, based on in vitro fertilization (IVF) assays. The present study determined if AGF proteins were associated with these effects. Nineteen IVF assays with 12 bulls were grouped as follows. Group I (n = 8): assays where sperm from LF bulls exposed to AGF from HF bulls had greater oocyte penetration than exposed to homologous AGF. Group II (n = 7): sperm from LF bulls to AGF from HF bulls versus homologous AGF showed no significant differences. Group III (n = 4): sperm from LF bulls treated with homologous AGF had greater fertility than sperm treated with AGF from HF bulls. Sire fertility was based on nonreturn rates (NNR) and AGF collected by artificial vagina from bulls with cannulated vasa deferentia. Two-dimensional SDS-PAGE maps of AGF were analyzed by PDQuest and proteins identified by tandem mass spectrometry and Western blots. Differences in spot intensity between AGF of HF and LF bulls were compared across groups of IVF assays (P < 0.05). The expression of BSP A1/A2 and A3, BSP 30 kDa, clusterin, albumin, phospholipase A(2) (PLA(2)), and osteopontin was greater in the AGF of HF bulls in Group I as compared to Groups II and III. Conversely, there was less nucleobindin in the AGF of HF bulls in Group I than in Groups II and III. This is the first report of nucleobindin (58 kDa/pI 5.6) in male reproductive fluids, using both immunoblots and mass spectrometry. Thus, the effect of AGF from HF bulls on epididymal sperm is likely the result of specific proteins expressed in the AGF.
Collapse
Affiliation(s)
- Arlindo A Moura
- Department of Dairy and Animal Science, J. O. Almquist Research Center, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
13
|
Chen H, Chow PH, Cheng SK, Cheung ALM, Cheng LYL, O WS. Male genital tract antioxidant enzymes: their source, function in the female, and ability to preserve sperm DNA integrity in the golden hamster. JOURNAL OF ANDROLOGY 2003; 24:704-11. [PMID: 12954661 DOI: 10.1002/j.1939-4640.2003.tb02730.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, we reported that male accessory sex gland (ASG) secretions protect sperm genomic integrity by demonstrating that DNA damage was more extensive in sperm not exposed to the secretions. The present study was conducted to find out if ASGs secrete the main antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx or GSH-Px), and catalase (CAT) and if the most abundant one, SOD, can protect those sperm that were not exposed to ASG secretions against NADPH-induced oxidative stress. Four experimental groups of male golden hamsters were used: intact animals with proven fertility, animals with all major ASGs removed (TX), animals that were bilaterally vasectomized, and sham-operated controls. SOD, CAT, and GPx activities were measured in secretions from all 5 ASGs and sperm-free uterine flushing from virgin females and those mated with the experimental males. The alkaline comet assay was used to analyze DNA integrity of the TX group sperm after incubation in a medium containing 50 U/mL of SOD along with 0 to 20 mmol/L NADPH. The main antioxidant enzyme in ASGs was SOD from coagulating glands (P <.05) and GPx together with CAT from ampullary glands (P <.05). Uterine flushing of ejaculates that contained ASG secretions had more SOD and CAT activities than those with epididymal secretions alone (P <.05 and P <.001, respectively), whereas activity of GPx was the same (P >.05). Addition of SOD in vitro dose dependently decreased the incidence of single-strand DNA damage in sperm not exposed to ASG secretions incubated in the presence of 0 to 20 mmol/L NADPH (P <.001). These results indicated that, in terms of abundance, SOD was the main antioxidant enzyme secreted by male ASGs, whereas CAT was the second one. The GPx activity came from both epididymis and ASGs. We conclude that ASG secretions play a significant role in protecting sperm against oxidative stress.
Collapse
Affiliation(s)
- Hong Chen
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | | | | | | | | | | |
Collapse
|
14
|
Comizzoli P, Marquant-Le Guienne B, Heyman Y, Renard JP. Onset of the first S-phase is determined by a paternal effect during the G1-phase in bovine zygotes. Biol Reprod 2000; 62:1677-84. [PMID: 10819771 DOI: 10.1095/biolreprod62.6.1677] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The aim of this study was to characterize the respective influences of the paternal and the maternal components on the timing of the first S-phase in the bovine zygote. In vitro-matured oocytes were fertilized in vitro with sperm conferring a high blastocyst rate (embryos of group 1) or a low blastocyst rate (embryos of group 2). Resulting zygotes were either allowed to develop in vitro to the blastocyst stage or exposed to 5'-bromo-2'-deoxyuridine in order to characterize the timing of their first S-phases. Timing of pronuclear formation was similar in the two groups, but the onset of S-phase and the first cleavage occurred earlier in group 1 than in group 2. We also showed that the length of the S-phase represented 30% of the first cell cycle in group 1 and 20% in group 2. Differences in times of onset of the first S-phase observed between embryo groups concerned both male and female pronuclei in a similar manner and were not dependent on the maternal component of the zygote. Our data demonstrated that the precocity of the onset of the first S-phase stemmed from a paternal control exerted during a transient period of the G1-phase.
Collapse
Affiliation(s)
- P Comizzoli
- Muséum National d'Histoire Naturelle, Laboratoire de Conservation des Espèces Animales, 75012 Paris, France
| | | | | | | |
Collapse
|
15
|
Ying Y, Cheung MP, Chow PH, O WS. Effects of male accessory sex glands on sperm decondensation and oocyte activation during in vivo fertilization in golden hamsters. INTERNATIONAL JOURNAL OF ANDROLOGY 1999; 22:68-76. [PMID: 10194637 DOI: 10.1046/j.1365-2605.1999.00146.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Removal of paternal male accessory sex glands (ASG) could cause a delay in DNA synthesis in hamster zygotes fertilized in vivo. In view of the fact that this process is closely related to pronuclear development which, in part, depends on sperm nuclear decondensation and oocyte activation during fertilization, we carried out a series of experiments were undertaken to determine whether ASG also has an effect on these early events. (1) Oocytes were collected from females mated with SH (sham-operated control), AGX (bilateral excision of ampullary glands), VPX (bilateral excision of ventral prostates) or TX (excision of all ASG) males (n = 8 per group) at 4, 5 and 6 h post coitus. (2) Epididymal spermatozoa were incubated with total ventral prostate (VP) secretion to study its effect on dithiothreitol-induced sperm decondensation. (3) Histone H1 kinase activity in oocytes collected as described in (1) was determined. (4) Exocytosed cortical granules on oocytes were labelled with FITC-LCA and quantified by a Metamorph Imaging System. Results showed that sperm decondensation and resumption of meiosis in oocytes in VPX and TX groups were significantly slower compared with SH. VP secretion augmented sperm decondensation in vitro. At 4 h post coitus, the relative activity of histone H1 kinase in the TX and VPX groups was significantly higher than that in the SH group (p < 0.01). Cortical granule exocytosis in the AGX group was consistently weaker at all time points studied and was significantly lower than that of the control at 4 h post coitus (p < 0.05), while the percentage of polyspermic fertilization in the AGX group was significantly higher compared with that in the SH group (p < 0.05). Taken together, these results show that the lack of exposure of spermatozoa to secretions of the ASG does not jeopardize their ability to penetrate ova, although other aspects of their function in the early stages of gamete interaction and subsequent initiation of embryonic development are affected.
Collapse
Affiliation(s)
- Y Ying
- Department of Anatomy, Faculty of Medicine, University of Hong Kong, China
| | | | | | | |
Collapse
|