1
|
Schierling T, Tosi B, Eisenhardt C, Reining S, Daniliuc CG, Brenker C, Strünker T, Wünsch B. Synthesis and Functional Characterization of Novel RU1968-Derived CatSper Inhibitors with Reduced Stereochemical Complexity. ACS Pharmacol Transl Sci 2023; 6:115-127. [PMID: 36654752 PMCID: PMC9841779 DOI: 10.1021/acsptsci.2c00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/03/2022]
Abstract
The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration and, thereby, the swimming behavior of sperm from many species. The steroidal ethylenediamine RU1968 (1) represents a well-characterized, potent, and fairly selective cross-species inhibitor of CatSper. Due to its two additional centers of chirality in the amine-bearing side chain, RU1968 is a mixture of diastereomeric pairs of enantiomers and, thus, difficult to synthesize. This has hampered the use of this commercially not available inhibitor as a powerful tool for research. Here, simplifying both structure and synthesis, we introduced novel stereochemically less complex and enantiomerically pure aminomethyl RU1968 analogues lacking the C-21 CH3 moiety. Starting from (+)-estrone, a five-step synthesis was developed comprising a Wittig reaction as the key step, leading to a diastereomerically pure 17β-configured aldehyde. Subsequent reductive amination yielded diastereomerically and enantiomerically pure amines. Compared to RU1968, the novel ethylenediamine 2d and homologous trimethylenediamine derivative 2e inhibited CatSper with similar and even twofold enhanced potency, respectively. Considering that these aminomethyl analogues are enantiomerically pure and much easier to synthesize than RU1968, we envisage their common use in future studies investigating the physiology of CatSper in sperm.
Collapse
Affiliation(s)
- Tobias Schierling
- GRK
2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster 48149, Germany
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Beatrice Tosi
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Clara Eisenhardt
- GRK
2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster 48149, Germany
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Sophie Reining
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität
Münster, Corrensstraße
40, Münster 48149, Germany
| | - Christoph Brenker
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Timo Strünker
- GRK
2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster 48149, Germany
- Centrum
für Reproduktionsmedizin und Andrologie, Westfälische Wilhelms-Universität Münster, Universitätsklinikum
Münster, Domagkstrasse
11, Münster 48149, Germany
| | - Bernhard Wünsch
- GRK
2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster 48149, Germany
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| |
Collapse
|
2
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
3
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
4
|
Rennhack A, Schiffer C, Brenker C, Fridman D, Nitao ET, Cheng Y, Tamburrino L, Balbach M, Stölting G, Berger TK, Kierzek M, Alvarez L, Wachten D, Zeng X, Baldi E, Publicover SJ, Benjamin Kaupp U, Strünker T. A novel cross-species inhibitor to study the function of CatSper Ca 2+ channels in sperm. Br J Pharmacol 2018; 175:3144-3161. [PMID: 29723408 PMCID: PMC6031884 DOI: 10.1111/bph.14355] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Sperm from many species share the sperm-specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins. EXPERIMENTAL APPROACH We resynthesized RU1968 and studied its action on sperm from humans, mice, and the sea urchin Arbacia punctulata by Ca2+ fluorimetry, single-cell Ca2+ imaging, electrophysiology, opto-chemistry, and motility analysis. KEY RESULTS RU1968 inhibited CatSper in sperm from invertebrates and mammals. The compound lacked toxic side effects in human sperm, did not affect mouse Slo3, and inhibited human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, RU1968 mimicked CatSper dysfunction and suppressed motility responses evoked by progesterone, an oviductal steroid known to activate CatSper. Finally, RU1968 abolished CatSper-mediated chemotactic navigation in sea urchin sperm. CONCLUSION AND IMPLICATIONS We propose RU1968 as a novel tool to elucidate the function of CatSper channels in sperm across species.
Collapse
Affiliation(s)
- Andreas Rennhack
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Christian Schiffer
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Christoph Brenker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Dmitry Fridman
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Elis T Nitao
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Yi‐Min Cheng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | - Melanie Balbach
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Gabriel Stölting
- Institute of Complex Systems – Zelluläre Biophysik 4, Forschungszentrum JülichJülichGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Michelina Kierzek
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Luis Alvarez
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Dagmar Wachten
- Max‐Planck Research Group of Molecular Physiology, Center of Advanced European Studies and ResearchBonnGermany
- Institute of Innate ImmunityUniversity Hospital, University of BonnBonnGermany
| | - Xu‐Hui Zeng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | | | - U Benjamin Kaupp
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Timo Strünker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| |
Collapse
|
5
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
6
|
Nam Y, Shin EJ, Yang BK, Bach JH, Jeong JH, Chung YH, Park ES, Li Z, Kim KW, Kwon YB, Nabeshima T, Kim HC. Dextromethorphan-induced psychotoxic behaviors cause sexual dysfunction in male mice via stimulation of σ-1 receptors. Neurochem Int 2012; 61:913-22. [PMID: 22326744 DOI: 10.1016/j.neuint.2012.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/15/2012] [Accepted: 01/23/2012] [Indexed: 11/15/2022]
Abstract
Dextromethorphan (DM) is a well-known antitussive dextrorotatory morphinan. We and others have demonstrated that sigma (σ) receptors may be important for DM-mediated neuromodulation. Because an earlier report suggested that DM might affect sexual function and that σ receptor ligands affect signaling pathways in the periphery, we examined whether DM-induced psychotoxic burden affected male reproductive function. We observed that DM had a high affinity at σ-1 receptors in the brain and testis but relatively low affinity at σ-2 receptors. Prolonged treatment with DM resulted in conditioned place preference and hyperlocomotion, followed by an increase in Fos-related antigen expression in the nucleus accumbens in male mice. Simultaneously, DM induced significant reductions in gonadotropin-releasing-hormone immunoreactivity in the hypothalamus. Moreover, we observed that DM induced increased sperm abnormalities and decreased sperm viability and sexual behavior. These phenomena were significantly attenuated by combined treatment with BD1047, a σ-1 receptor antagonist, but not by SM-21, a σ-2 receptor antagonist. Thus, these results suggest that DM psychotoxicity might lead to reproductive stress in male mice by activating σ-1 receptors.
Collapse
Affiliation(s)
- Yunsung Nam
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wendler A, Albrecht C, Wehling M. Nongenomic actions of aldosterone and progesterone revisited. Steroids 2012; 77:1002-6. [PMID: 22285849 DOI: 10.1016/j.steroids.2011.12.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/20/2011] [Indexed: 01/16/2023]
Abstract
After almost 30 years of research, the existence of nongenomic steroid actions is no longer disputed. Yet, there is still a debate on the nature of receptors involved, and answers to the inherent questions are important for translational activities. In the case of aldosterone, the existence of receptors different from the classic mineralocorticoid receptors (MR) had been postulated 25 years ago as the pharmacology of about 50% of rapid actions of aldosterone reported so far is incompatible with MR involvement (insensitivity to classic MR antagonists). Candidates proposed as alternatives to MR were protein kinase C, sodium-potassium ATPase or aberrant forms of MR, none of which supported convincing evidence to represent 'the aldosterone membrane receptor'. Early in 2011, data on GPR30 showed its involvement in rapid aldosterone action, and major pharmacological aspects of this action are compatible with the landmark deviations from MR pharmacology mentioned above. GPR30, therefore, may be a receptor candidate for nongenomic aldosterone action. Similarly, a variety of promising candidates mediating rapid progesterone action has been described, including progesterone receptor membrane component 1 (PGRMC1) which seems to be associated with tumor proliferation, and membrane progesterone receptor (mPR) originally identified in fish with potential linkage to reproductive processes. So far, no candidate was unanimously convincing. In 2010, two independent groups reported that CatSper, a calcium channel, is a strong receptor candidate for the rapid action of progesterone on sperm fertilization. With these novel receptors cloned, translational activities ultimately leading to new drugs for cardiovascular protection (in the case of aldosterone) or fertilization benefits (for progesterone) are much more promising.
Collapse
Affiliation(s)
- Alexandra Wendler
- University of Heidelberg, Clinical Pharmacology Mannheim, Maybachstr. 14, D-68169 Mannheim, Germany
| | | | | |
Collapse
|
8
|
Monnet FP. Sigma-1 receptor as regulator of neuronal intracellular Ca2+: clinical and therapeutic relevance. Biol Cell 2005; 97:873-83. [PMID: 16293108 DOI: 10.1042/bc20040149] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preserving brain function and cognitive faculties during aging and psychiatric diseases (e.g. psychotic, anxiety and affective disorders, dementia) is essential for the self-reliance and quality of life of patients. Cognitive loss involves not only memory, but also motor function. The decrease of catecholaminergic and excitatory neurotransmissions, as well as of protein phosphorylation, have currently been identified as prominent biological markers of the above-mentioned diseases. Such deleterious biological events are well known to occur downstream of a progressive decline of intracellular Ca2+ signalling. This latter constitutes a key target for the neuronal plasticity that has also been reported during aging and psychiatric disorders. Most of the medicines used in psychiatry are active on the sigma-1 receptor. This membrane bound receptor is widely distributed in memory-associated cortical and motor-related brainstem areas, prompting the hypothesis that it might contribute to the pathophysiology of these behavioural brain diseases. The sigma-1 receptor is characterized by a unique mode of action by regulating both Ca2+ entry at the plasma membrane level (i.e. via potassium channels, voltage-sensitive Ca2+ channels) and Ca2+ mobilization from endoplasmic stores [i.e. via Ins(1,4,5)P3 receptors]. This review presents recent data supporting the notion that drugs acting via the endoplasmic reticulum-coupled sigma-1 receptor might reverse these deleterious events by restoring both extra- and intra-cellular Ca(2+)-dependent neuronal responses.
Collapse
Affiliation(s)
- François P Monnet
- Etablissement Public de Santé Charcot, 30 rue Marc Laurent, 78370 Plaisir Cedex, and INSERM, U705, CNRS, UMR 7157, Universités Paris 7 et 5, F-75475 Paris cedex 10, France.
| |
Collapse
|
9
|
Harper CV, Publicover SJ. Reassessing the role of progesterone in fertilization—compartmentalized calcium signalling in human spermatozoa? Hum Reprod 2005; 20:2675-80. [PMID: 15980011 DOI: 10.1093/humrep/dei158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progesterone is present at micromolar concentrations in the vicinity of the oocyte. Human spermatozoa generate a biphasic rise in intracellular calcium concentration ([Ca(2+)](i)) and undergo the acrosome reaction upon progesterone stimulation, suggesting that the hormone acts as a secondary inducer or 'primer' of the acrosome reaction in association with the zona pellucida. However, the sensitivity of human spermatozoa to progesterone is such that many cells may undergo the acrosome reaction prematurely, compromising their ability to fertilize. We have shown that exposing human spermatozoa to a progesterone gradient, simulating the stimulus encountered as sperm approach the oocyte, results in a novel response. A slow rise in [Ca(2+)](i) occurs, upon which, in many cells, [Ca(2+)](i) oscillations are superimposed. Cells showing this pattern of response do not undergo the acrosome reaction, but instead show an alternating pattern of flagellar activity associated with peaks and troughs of [Ca(2+)](i). A Ca(2+) store in the rear of the sperm head apparently generates this complex signal, functioning as an '[Ca(2+)](i) oscillator'. We propose that: (i) the acrosome reaction and flagellar beat are regulated by separate Ca(2+) stores; (ii) these stores are mobilized through different mechanisms by different agonists; and (iii) progesterone in vivo acts as a switch for the oscillator which regulates the flagellar beat mode.
Collapse
|
10
|
Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M. Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 2003; 83:965-1016. [PMID: 12843413 DOI: 10.1152/physrev.00003.2003] [Citation(s) in RCA: 393] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Steroids may exert their action in living cells by several ways: 1). the well-known genomic pathway, involving hormone binding to cytosolic (classic) receptors and subsequent modulation of gene expression followed by protein synthesis. 2). Alternatively, pathways are operating that do not act on the genome, therefore indicating nongenomic action. Although it is comparatively easy to confirm the nongenomic nature of a particular phenomenon observed, e.g., by using inhibitors of transcription or translation, considerable controversy exists about the identity of receptors that mediate these responses. Many different approaches have been employed to answer this question, including pharmacology, knock-out animals, and numerous biochemical studies. Evidence is presented for and against both the participation of classic receptors, or proteins closely related to them, as well as for the involvement of yet poorly understood, novel membrane steroid receptors. In addition, clinical implications for a wide array of nongenomic steroid actions are outlined.
Collapse
Affiliation(s)
- Ralf M Losel
- Institut für klinische Pharmakologie, Klinikum Mannheim, Theodor-Kutzer-Ufer, D-68167 Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Harper CV, Kirkman-Brown JC, Barratt CLR, Publicover SJ. Encoding of progesterone stimulus intensity by intracellular [Ca2+] ([Ca2+]i) in human spermatozoa. Biochem J 2003; 372:407-17. [PMID: 12614198 PMCID: PMC1223411 DOI: 10.1042/bj20021560] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Revised: 02/03/2003] [Accepted: 03/03/2003] [Indexed: 11/17/2022]
Abstract
Progesterone induces a biphasic Ca(2+) influx and consequent acrosome reaction in human spermatozoa. We have used two procedures to vary the stimulus (dosage and prior receptor desensitization) to investigate the encoding of stimulus strength by intracellular [Ca(2+)] ([Ca(2+)](i)). Acrosome reaction and amplitude (but not kinetics) of the transient [Ca(2+)](i) response (population measurement) showed sigmoidal dose sensitivity over the range 0.3 nM-3 microM, saturating at approximately 300 nM (ED(50) approximately 30 nM). The amplitude of the sustained response saturated at 3 microM. Single-cell imaging showed that the amplitudes of both transient and sustained [Ca(2+)](i) responses were highly dose-dependent, but that their frequency of occurrence and kinetics were largely dose-independent. Fluorimetric measurements confirmed that progesterone-induced [Ca(2+)](i) influx was subject to desensitization, with second and subsequent applications of 3 microM progesterone being ineffective. However, sequential additions of 3 nM, 30 nM and 3 microM progesterone generated transient [Ca(2+)](i) responses at each concentration, the amplitude and duration of the response to 3 microM progesterone being reduced compared with non-pretreated cells. Single-cell imaging revealed that pretreatment had no effect on the proportion of responsive cells, but single-cell responses, similarly to population responses, were smaller and markedly reduced in duration, consistent with an effect of desensitization on a late component of the [Ca(2+)](i) transient. We conclude that the strength of the progesterone stimulus, when varied by dosage or by desensitization, is encoded by an analogue [Ca(2+)](i) signal. Dose dependency of the acrosome reaction is therefore determined not by the number of progesterone-responsive cells but by variation in the probability of exocytosis in a 'constant' responsive population.
Collapse
|