1
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
2
|
Yuan B, Yang Y, Yan Z, He C, Sun YH, Wang F, Wang B, Shi J, Xiao S, Wang F, Fang Q, Li F, Ye X, Ye G. A rapidly evolving single copy histone H1 variant is associated with male fertility in a parasitoid wasp. Front Cell Dev Biol 2023; 11:1166517. [PMID: 37325562 PMCID: PMC10264595 DOI: 10.3389/fcell.2023.1166517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The linker histone H1 binds to the nucleosome core particle at the site where DNA enters and exits, and facilitates folding of the nucleosomes into a higher-order chromatin structure in eukaryotes. Additionally, some variant H1s promote specialized chromatin functions in cellular processes. Germline-specific H1 variants have been reported in some model species with diverse roles in chromatin structure changes during gametogenesis. In insects, the current understanding of germline-specific H1 variants comes mainly from the studies in Drosophila melanogaster, and the information on this set of genes in other non-model insects remains largely unknown. Here, we identify two H1 variants (PpH1V1 and PpH1V2) that are specifically predominantly expressed in the testis of the parasitoid wasp Pteromalus puparum. Evolutionary analyses suggest that these H1 variant genes evolve rapidly, and are generally maintained as a single copy in Hymenoptera. Disruption of PpH1V1 function in the late larval stage male by RNA interference experiments has no phenotype on spermatogenesis in the pupal testis, but results in abnormal chromatin structure and low sperm fertility in the adult seminal vesicle. In addition, PpH1V2 knockdown has no detectable effect on spermatogenesis or male fertility. Collectively, our discovery indicates distinct functions of male germline-enriched H1 variants between parasitoid wasp Pteromalus and Drosophila, providing new insights into the role of insect H1 variants in gametogenesis. This study also highlights the functional complexity of germline-specific H1s in animals.
Collapse
Affiliation(s)
- Bo Yuan
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chun He
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yu H. Sun
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Fei Wang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Beibei Wang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiamin Shi
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Botezatu A, Vladoiu S, Fudulu A, Albulescu A, Plesa A, Muresan A, Stancu C, Iancu IV, Diaconu CC, Velicu A, Popa OM, Badiu C, Dinu-Draganescu D. Advanced molecular approaches in male infertility diagnosis†. Biol Reprod 2022; 107:684-704. [PMID: 35594455 DOI: 10.1093/biolre/ioac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent years a special attention has been given to a major health concern namely to male infertility, defined as the inability to conceive after 12 months of regular unprotected sexual intercourse, taken into account the statistics that highlight that sperm counts have dropped by 50-60% in recent decades. According to the WHO, infertility affects approximately 9% of couples globally, and the male factor is believed to be present in roughly 50% of cases, with exclusive responsibility in 30%. The aim of this article is to present an evidence-based approach for diagnosing male infertility that includes finding new solutions for diagnosis and critical outcomes, retrieving up-to-date studies and existing guidelines. The diverse factors that induce male infertility generated in a vast amount of data that needed to be analyzed by a clinician before a decision could be made for each individual. Modern medicine faces numerous obstacles as a result of the massive amount of data generated by the molecular biology discipline. To address complex clinical problems, vast data must be collected, analyzed, and used, which can be very challenging. The use of artificial intelligence (AI) methods to create a decision support system can help predict the diagnosis and guide treatment for infertile men, based on analysis of different data as environmental and lifestyle, clinical (sperm count, morphology, hormone testing, karyotype, etc.), and "omics" bigdata. Ultimately, the development of AI algorithms will assist clinicians in formulating diagnosis, making treatment decisions, and predicting outcomes for assisted reproduction techniques.
Collapse
Affiliation(s)
- A Botezatu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - S Vladoiu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - A Fudulu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Albulescu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
- Pharmacology Department, National Institute for Chemical Pharmaceutical Research & Development, Bucharest, Romania
| | - A Plesa
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Muresan
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Stancu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - I V Iancu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - C C Diaconu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Velicu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - O M Popa
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Badiu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
- Endocrinology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - D Dinu-Draganescu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| |
Collapse
|
4
|
Moritz L, Hammoud SS. The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange. Front Endocrinol (Lausanne) 2022; 13:895502. [PMID: 35813619 PMCID: PMC9258737 DOI: 10.3389/fendo.2022.895502] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
Male fertility throughout life hinges on the successful production of motile sperm, a developmental process that involves three coordinated transitions: mitosis, meiosis, and spermiogenesis. Germ cells undergo both mitosis and meiosis to generate haploid round spermatids, in which histones bound to the male genome are replaced with small nuclear proteins known as protamines. During this transformation, the chromatin undergoes extensive remodeling to become highly compacted in the sperm head. Despite its central role in spermiogenesis and fertility, we lack a comprehensive understanding of the molecular mechanisms underlying the remodeling process, including which remodelers/chaperones are involved, and whether intermediate chromatin proteins function as discrete steps, or unite simultaneously to drive successful exchange. Furthermore, it remains largely unknown whether more nuanced interactions instructed by protamine post-translational modifications affect chromatin dynamics or gene expression in the early embryo. Here, we bring together past and more recent work to explore these topics and suggest future studies that will elevate our understanding of the molecular basis of the histone-to-protamine exchange and the underlying etiology of idiopathic male infertility.
Collapse
Affiliation(s)
- Lindsay Moritz
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Mahadevan IA, Kumar S, Rao MRS. Linker histone variant H1t is closely associated with repressed repeat-element chromatin domains in pachytene spermatocytes. Epigenetics Chromatin 2020; 13:9. [PMID: 32131873 PMCID: PMC7057672 DOI: 10.1186/s13072-020-00335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA–PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Collapse
Affiliation(s)
- Iyer Aditya Mahadevan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sanjeev Kumar
- BioCOS Life Sciences Private Limited, SAAMI Building, 851/A, AECS Layout, B-Block, Singasandra Hosur Road, Bangalore, India
| | | |
Collapse
|
6
|
Lipschutz E, Dasgupta A, Guan Y, Kistler WS, Wang PJ. A rat H1t-GFP transgene recapitulates endogenous H1t expression pattern in mouse. Genesis 2020; 58:e23355. [PMID: 31990142 DOI: 10.1002/dvg.23355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/06/2022]
Abstract
H1 histones bind to linker DNA. H1t (H1f6), a testis-specific linker histone variant, is present in pachytene spermatocytes and spermatids. The expression of H1t histone coincides with the acquisition of metaphase I competence in pachytene spermatocytes. Here we report the generation of H1t-GFP transgenic mice. The H1t-GFP (H1 histone testis-green fluorescence protein) fusion protein expression recapitulates the endogenous H1t expression pattern. This protein appears first in mid pachytene spermatocytes in stage V seminiferous tubules, persists in round spermatids and elongating spermatids, but is absent in elongated spermatids. The strong green fluorescence signal, due to the high abundance of H1t-GFP, is maintained in spermatocytes after induction towards metaphase I through treatment with okadaic acid. Therefore, H1t-GFP can be used as a visual marker for monitoring the progression of meiosis in vitro and in vivo, as well as fluorescence-activated cell sorting (FACS) sorting of germ cells.
Collapse
Affiliation(s)
- Emma Lipschutz
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Anindya Dasgupta
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - W Stephen Kistler
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Wang T, Gao H, Li W, Liu C. Essential Role of Histone Replacement and Modifications in Male Fertility. Front Genet 2019; 10:962. [PMID: 31649732 PMCID: PMC6792021 DOI: 10.3389/fgene.2019.00962] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Spermiogenesis is a complex cellular differentiation process that the germ cells undergo a distinct morphological change, and the protamines replace the core histones to facilitate chromatin compaction in the sperm head. Recent studies show the essential roles of epigenetic events during the histone-to-protamine transition. Defects in either the replacement or the modification of histones might cause male infertility with azoospermia, oligospermia or teratozoospermia. Here, we summarize recent advances in our knowledge of how epigenetic regulators, such as histone variants, histone modification and their related chromatin remodelers, facilitate the histone-to-protamine transition during spermiogenesis. Understanding the molecular mechanism underlying the modification and replacement of histones during spermiogenesis will enable the identification of epigenetic biomarkers of male infertility, and shed light on potential therapies for these patients in the future.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene 2019; 706:201-210. [DOI: 10.1016/j.gene.2019.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
|
9
|
MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice. PLoS One 2018; 13:e0190800. [PMID: 29324782 PMCID: PMC5764304 DOI: 10.1371/journal.pone.0190800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
The transcription factor MAFB is an important regulator of the development and differentiation of various organs and tissues. Previous studies have shown that MAFB is expressed in embryonic and adult mouse testes and is expected to act as the downstream target of retinoic acid (RA) to initiate spermatogenesis. However, its exact localization and function remain unclear. Here, we localized MAFB expression in embryonic and adult testes and analyzed its gene function using Mafb-deficient mice. We found that MAFB and c-MAF are the only large MAF transcription factors expressed in testes, while MAFA and NRL are not. MAFB was localized in Leydig and Sertoli cells at embryonic day (E) 18.5 but in Leydig cells, Sertoli cells, and pachytene spermatocytes in adults. Mafb-deficient testes at E18.5 showed fully formed seminiferous tubules with no abnormal structure or differences in testicular somatic cell numbers compared with those of control wild-type mice. Additionally, the expression levels of genes related to development and function of testicular cells were unchanged between genotypes. In adults, the expression of MAFB in Sertoli cells was shown to be stage specific and induced by RA. By generating Mafbfl/fl CAG-CreER™ (Mafb-cKO) mice, in which Cre recombinase was activated upon tamoxifen treatment, we found that the neonatal cKO mice died shortly upon Mafb deletion, but adult cKO mice were alive upon deletion. Adult cKO mice were fertile, and spermatogenesis maintenance was normal, as indicated by histological analysis, hormone levels, and germ cell stage-specific markers. Moreover, there were no differences in the proportion of seminiferous stages between cKO mice and controls. However, RNA-Seq analysis of cKO Sertoli cells revealed that the down-regulated genes were related to immune function and phagocytosis activity but not spermatogenesis. In conclusion, we found that MAFB is dispensable for fetal testis morphogenesis and spermatogenesis maintenance in adult mice, despite the significant gene expression in different cell types, but MAFB might be critical for phagocytosis activity of Sertoli cells.
Collapse
|
10
|
Millán-Ariño L, Izquierdo-Bouldstridge A, Jordan A. Specificities and genomic distribution of somatic mammalian histone H1 subtypes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:510-9. [DOI: 10.1016/j.bbagrm.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022]
|
11
|
Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 2016; 151:R55-70. [PMID: 26850883 DOI: 10.1530/rep-15-0562] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then by protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. Although early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we discuss recent advances in our understanding of how epigenetic players, such as histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| |
Collapse
|
12
|
Machida S, Hayashida R, Takaku M, Fukuto A, Sun J, Kinomura A, Tashiro S, Kurumizaka H. Relaxed Chromatin Formation and Weak Suppression of Homologous Pairing by the Testis-Specific Linker Histone H1T. Biochemistry 2016; 55:637-46. [DOI: 10.1021/acs.biochem.5b01126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shinichi Machida
- Laboratory
of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ryota Hayashida
- Laboratory
of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Motoki Takaku
- Laboratory
of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Atsuhiko Fukuto
- Department
of Cellular Biology, Research Institute for Radiation Biology and
Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Jiying Sun
- Department
of Cellular Biology, Research Institute for Radiation Biology and
Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Aiko Kinomura
- Department
of Cellular Biology, Research Institute for Radiation Biology and
Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Satoshi Tashiro
- Department
of Cellular Biology, Research Institute for Radiation Biology and
Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hitoshi Kurumizaka
- Laboratory
of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute
for Medical-oriented Structural Biology, Waseda University, 2-2
Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
13
|
Geeven G, Zhu Y, Kim BJ, Bartholdy BA, Yang SM, Macfarlan TS, Gifford WD, Pfaff SL, Verstegen MJAM, Pinto H, Vermunt MW, Creyghton MP, Wijchers PJ, Stamatoyannopoulos JA, Skoultchi AI, de Laat W. Local compartment changes and regulatory landscape alterations in histone H1-depleted cells. Genome Biol 2015; 16:289. [PMID: 26700097 PMCID: PMC4699363 DOI: 10.1186/s13059-015-0857-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Background Linker histone H1 is a core chromatin component that binds to nucleosome core particles and the linker DNA between nucleosomes. It has been implicated in chromatin compaction and gene regulation and is anticipated to play a role in higher-order genome structure. Here we have used a combination of genome-wide approaches including DNA methylation, histone modification and DNase I hypersensitivity profiling as well as Hi-C to investigate the impact of reduced cellular levels of histone H1 in embryonic stem cells on chromatin folding and function. Results We find that depletion of histone H1 changes the epigenetic signature of thousands of potential regulatory sites across the genome. Many of them show cooperative loss or gain of multiple chromatin marks. Epigenetic alterations cluster to gene-dense topologically associating domains (TADs) that already showed a high density of corresponding chromatin features. Genome organization at the three-dimensional level is largely intact, but we find changes in the structural segmentation of chromosomes specifically for the epigenetically most modified TADs. Conclusions Our data show that cells require normal histone H1 levels to expose their proper regulatory landscape. Reducing the levels of histone H1 results in massive epigenetic changes and altered topological organization particularly at the most active chromosomal domains. Changes in TAD configuration coincide with epigenetic landscape changes but not with transcriptional output changes, supporting the emerging concept that transcriptional control and nuclear positioning of TADs are not causally related but independently controlled by the locally associated trans-acting factors. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0857-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geert Geeven
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| | - Yun Zhu
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| | - Byung Ju Kim
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Seung-Min Yang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Todd S Macfarlan
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| | - Wesley D Gifford
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA, 92037, USA.
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA, 92037, USA.
| | - Marjon J A M Verstegen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| | - Hugo Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Marit W Vermunt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| | - Menno P Creyghton
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| | - Patrick J Wijchers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| | - John A Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA. .,Department of Medicine, Division of Oncology, University of Washington, Seattle, WA, 98195, USA.
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Wouter de Laat
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:496-509. [PMID: 26689747 DOI: 10.1016/j.bbagrm.2015.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.
Collapse
Affiliation(s)
- Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
Liu Y, Tao D, Lu Y, Yang Y, Ma Y, Zhang S. Targeted disruption of the mouse testis-enriched gene Znf230 does not affect spermatogenesis or fertility. Genet Mol Biol 2014; 37:708-15. [PMID: 25505846 PMCID: PMC4261971 DOI: 10.1590/s1415-47572014005000013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 06/24/2014] [Indexed: 02/05/2023] Open
Abstract
The mouse testis-enriched Znf230 gene, which encodes a type of RING finger protein, is present primarily in the nuclei of spermatogonia, the acrosome and the tail of spermatozoa. To investigate the role of Znf230 in spermatogenesis, we generated Znf230-deficient mice by disrupting Znf230 exon-5 and exon-6 using homologous recombination. The homozygous Znf230-knockout (KO) mice did not exhibit Znf230 mRNA expression and Znf230 protein production. Znf230 KO mice exhibited no obvious impairment in body growth or fertility. Male Znf230 KO mice had integral reproductive systems and mature sperm that were regular in number and shape. The developmental stages of male germ cells of Znf230 KO mice were also normal. We further examined variations in the transcriptomes of testicular tissue between Znf230 KO and wild-type mice through microarray analysis. The results showed that the mRNA level of one unclassified transcript 4921513I08Rik was increased and that the mRNA levels of three other transcripts, i.e., 4930448A20Rik, 4931431B13Rik and potassium channel tetramerisation domain containing 14(Kctd14), were reduced more than two-fold in Znf230 KO mice compared with wild-type mice. Using our current examination techniques, these findings suggested that Znf230 deficiency in mice may not affect growth, fertility or spermatogenesis.
Collapse
Affiliation(s)
- Yunqiang Liu
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Dachang Tao
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yongjie Lu
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yuan Yang
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yongxin Ma
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Sizhong Zhang
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| |
Collapse
|
16
|
The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development. PLoS One 2014; 9:e96858. [PMID: 24802750 PMCID: PMC4011883 DOI: 10.1371/journal.pone.0096858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs) depleted of H1c, H1d and H1e subtypes (H1-KO ESCs) by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.
Collapse
|
17
|
Abstract
An extreme case of chromatin remodelling is the genome-wide exchange of histones with basic non-histone DNA-packaging proteins that occurs in post-meiotic male germ cells. The scale of this genome reorganization is such that chromatin needs to undergo a prior "preparation" for a facilitated action of the factors involved. Stage-specific incorporation of specialized histone variants, affecting large domains of chromatin, combined with histone post-translational modifications accompany the successive steps of the male genome reorganization. Recently, it has been shown that a testis-specific H2B variant, TH2B, one of the first identified core histone variants, replaces H2B at the time of cells' commitment into meiotic divisions and contributes to the process of global histone removal. These investigations also revealed a previously unknown histone dosage compensation mechanism that also ensures a functional interconnection between histone variant expression and histone post-translational modifications and will be further discussed here.
Collapse
Affiliation(s)
- Jérôme Govin
- CEA, iRTSV; Biologie à Grande Echelle; Grenoble, France; INSERM, U1038; Grenoble, France; Université Grenoble-Alpes; Grenoble, France; INSERM, U823; Institut Albert Bonniot; Grenoble, France
| | - Saadi Khochbin
- Université Grenoble-Alpes; Grenoble, France; INSERM, U823; Institut Albert Bonniot; Grenoble, France
| |
Collapse
|
18
|
Ferfouri F, Boitrelle F, Ghout I, Albert M, Molina Gomes D, Wainer R, Bailly M, Selva J, Vialard F. A genome-wide DNA methylation study in azoospermia. Andrology 2013; 1:815-21. [DOI: 10.1111/j.2047-2927.2013.00117.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 01/15/2023]
Affiliation(s)
- F. Ferfouri
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Medical Center; Poissy France
- EA 2493; University of Versailles Saint-Quentin; Versailles France
| | - F. Boitrelle
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Medical Center; Poissy France
- EA 2493; University of Versailles Saint-Quentin; Versailles France
| | - I. Ghout
- Clinical Research Department; Ambroise Paré Hospital; Boulogne France
| | - M. Albert
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Medical Center; Poissy France
- EA 2493; University of Versailles Saint-Quentin; Versailles France
| | - D. Molina Gomes
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Medical Center; Poissy France
- EA 2493; University of Versailles Saint-Quentin; Versailles France
| | - R. Wainer
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Medical Center; Poissy France
- EA 2493; University of Versailles Saint-Quentin; Versailles France
| | - M. Bailly
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Medical Center; Poissy France
- EA 2493; University of Versailles Saint-Quentin; Versailles France
| | - J. Selva
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Medical Center; Poissy France
- EA 2493; University of Versailles Saint-Quentin; Versailles France
| | - F. Vialard
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Medical Center; Poissy France
- EA 2493; University of Versailles Saint-Quentin; Versailles France
| |
Collapse
|
19
|
Berkovits BD, Wolgemuth DJ. The role of the double bromodomain-containing BET genes during mammalian spermatogenesis. Curr Top Dev Biol 2013; 102:293-326. [PMID: 23287038 DOI: 10.1016/b978-0-12-416024-8.00011-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The double bromodomain-containing BET (bromodomain and extra terminal) family of proteins is highly conserved from yeast to humans and consists not just of transcriptional regulators but also histone-interacting chromatin remodelers. The four mammalian BET genes are each expressed at unique times during spermatogenesis, and the testis-specific gene Brdt is essential for spermatogenesis. Loss of the first bromodomain of BRDT results in improper/incomplete spermatid elongation and severely morphologically defective sperm. The elongation defects observed in mutant spermatids can be directly tied to altered postmeiotic chromatin architecture. BRDT is required for creation/maintenance of the chromocenter of round spermatids, a structure that forms just after completion of meiosis. The chromocenter creates a defined topology in spermatids, and the presence of multiple chromocenters rather than a single intact chromocenter correlates with loss of spermatid polarity, loss of heterochromatin foci at the nuclear envelope, and loss of proper spermatid elongation. BRDT is not only essential for proper chromatin organization but also involved in regulation of transcription and in cotranscriptional processing. That is, transcription and alternative splicing are altered in spermatocytes and spermatids that lack full-length BRDT. Additionally, the transcription of mRNAs with short 3' UTRs, which is characteristic of round spermatids, is also altered. Examination of the genes regulated by BRDT yields many possible targets that could in part explain the morphologically abnormal sperm produced by the BRDT mutant testes. Thus, BRDT and possibly the other BET genes are required for proper spermatogenesis, which opens up the possibility that the recently discovered small molecule inhibitors of the BET family could be useful as reversible male contraceptives.
Collapse
Affiliation(s)
- Binyamin D Berkovits
- Department of Genetics and Development, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
20
|
Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, Wang ZQ, Meyer RG. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod 2010; 84:218-28. [PMID: 20881315 DOI: 10.1095/biolreprod.110.087361] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sperm chromatin is organized in a protamine-based, highly condensed form, which protects the paternal chromosome complement in transit, facilitates fertilization, and supports correct gene expression in the early embryo. Very few histones remain selectively associated with genes and defined regulatory sequences essential to embryonic development, while most of the genome becomes bound to protamine during spermiogenesis. Chromatin remodeling processes resulting in the dramatically different nuclear structure of sperm are poorly understood. This study shows that perturbation of poly(ADP-ribose) (PAR) metabolism, which is mediated by PAR polymerases and PAR glycohydrolase in response to naturally occurring endogenous DNA strand breaks during spermatogenesis, results in the abnormal retention of core histones and histone linker HIST1H1T (H1t) and H1-like linker protein HILS1 in mature sperm. Moreover, genetic or pharmacological alteration of PAR metabolism caused poor sperm chromatin quality and an abnormal nuclear structure in mice, thus reducing male fertility.
Collapse
Affiliation(s)
- Mirella L Meyer-Ficca
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee JH, Ahn HJ, Lee SJ, Gye MC, Min CK. Effects of L- and T-type Ca²(+) channel blockers on spermatogenesis and steroidogenesis in the prepubertal mouse testis. J Assist Reprod Genet 2010; 28:23-30. [PMID: 20859763 DOI: 10.1007/s10815-010-9480-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/05/2010] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To assess the involvement of L-type and T-type Ca²(+) channel blockers in inducing male infertility. METHODS Prepubertal male mice were fed Ca²(+) channel blockers nifedipine and ethosuximide for 20 days at dosages below maximum tolerated dose (MTD) and assayed for gross morphological changes in the testis such as body weight, testis size and weight. Sperm and Leydig cell counting were conducted concomitantly with serum testosterone level measurement by radioimmunoassay (RIA) and StAR protein mRNA measurement by reverse transcription and polymerase chain reaction (RT-PCR). RESULTS A chronic exposure to nifedipine or ethosuximide caused a significant reduction in body weight, testis size/weight and sperm production in a dose-dependent fashion associated with a spermatogenic arrest largely at the elongating spermatid stage. The number of Leydig cells, the serum testosterone level but not the luteinizing hormone level, and the content of StAR protein mRNA were also drastically reduced relative to the controls. CONCLUSIONS Both T- and L-type Ca²(+) channel blockers play an adverse role in normal spermatogenesis and steroidogenesis partly by blocking postmeiotic germ cell maturation and/or by abrogating StAR protein expression, contributing to male sterility. Therefore, any therapeutic application of Ca²(+) channel blockers must be used with caution due to its potential adverse side effects on male infertility.
Collapse
Affiliation(s)
- Jae Ho Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, South Korea
| | | | | | | | | |
Collapse
|
22
|
Abstract
Germ line gene transposition technology has been used to generate "libraries" of flies and worms carrying genomewide mutations. Phenotypic screening and DNA sequencing of such libraries provide functional information resulting from insertional events in target genes. There is also a great need to have a fast and efficient way to generate mouse mutants in vivo to model developmental defects and human diseases. Here we describe an optimized mammalian germ line transposition system active during early mouse spermatogenesis using the Minos transposon. Transposon-positive progeny carry on average more than 2 new transpositions, and 45 to 100% of the progeny carry an insertion in a gene. The optimized Minos-based system was tested in a small rapid dominant functional screen to identify mutated genes likely to cause measurable cardiovascular "disease" phenotypes in progeny/embryos. Importantly this system allows rapid screening for modifier genes.
Collapse
|
23
|
Horvath GC, Kistler MK, Kistler WS. RFX2 is a candidate downstream amplifier of A-MYB regulation in mouse spermatogenesis. BMC DEVELOPMENTAL BIOLOGY 2009; 9:63. [PMID: 20003220 PMCID: PMC2797782 DOI: 10.1186/1471-213x-9-63] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022]
Abstract
Background Mammalian spermatogenesis involves formation of haploid cells from the male germline and then a complex morphological transformation to generate motile sperm. Focusing on meiotic prophase, some tissue-specific transcription factors are known (A-MYB) or suspected (RFX2) to play important roles in modulating gene expression in pachytene spermatocytes. The current work was initiated to identify both downstream and upstream regulatory connections for Rfx2. Results Searches of pachytene up-regulated genes identified high affinity RFX binding sites (X boxes) in promoter regions of several new genes: Adam5, Pdcl2, and Spag6. We confirmed a strong promoter-region X-box for Alf, a germ cell-specific variant of general transcription factor TFIIA. Using Alf as an example of a target gene, we showed that its promoter is stimulated by RFX2 in transfected cells and used ChIP analysis to show that the promoter is occupied by RFX2 in vivo. Turning to upstream regulation of the Rfx2 promoter, we identified a cluster of three binding sites (MBS) for the MYB family of transcription factors. Because testis is one of the few sites of A-myb expression, and because spermatogenesis arrests in pachytene in A-myb knockout mice, the MBS cluster implicates Rfx2 as an A-myb target. Electrophoretic gel-shift, ChIP, and co-transfection assays all support a role for these MYB sites in Rfx2 expression. Further, Rfx2 expression was virtually eliminated in A-myb knockout testes. Immunohistology on testis sections showed that A-MYB expression is up-regulated only after pachytene spermatocytes have clearly moved away from the tubule wall, which correlates with onset of RFX2 expression, whereas B-MYB expression, by contrast, is prevalent only in earlier spermatocytes and spermatogonia. Conclusion With an expanding list of likely target genes, RFX2 is potentially an important transcriptional regulator in pachytene spermatocytes. Rfx2 itself is a good candidate to be regulated by A-MYB, which is essential for meiotic progression. If Alf is a genuine RFX2 target, then A-myb, Rfx2, and Alf may form part of a transcriptional network that is vital for completion of meiosis and preparation for post-meiotic differentiation.
Collapse
Affiliation(s)
- Gary C Horvath
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
24
|
Kistler WS, Horvath GC, Dasgupta A, Kistler MK. Differential expression of Rfx1-4 during mouse spermatogenesis. Gene Expr Patterns 2009; 9:515-9. [PMID: 19596083 DOI: 10.1016/j.gep.2009.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 11/17/2022]
Abstract
The regulatory factor X (RFX) family of transcription factors has been recently implicated in gene regulation during spermatogenesis. However, the relative expression of individual members during this developmental process is not completely characterized, particularly in the case of Rfx4, which has multiple transcript variants in the testis. We used reverse transcriptase-dependent real-time PCR, 5'-RACE cloning, and Western blotting to compare transcripts and protein levels for this family in cell populations from the three major phases of spermatogenesis (mitotic, meiotic, and haploid). Transcripts for Rfx1-4 were present at trace to low levels in spermatogonia prepared from 8-day-old mice. Transcripts for both Rfx2 and Rfx4 were elevated in mid-late pachytene spermatocytes; however, the dominant Rfx4 transcript present begins at a downstream exon and lacks the DNA binding domain. Transcripts for all four genes were elevated in early haploid cells (round spermatids). In these cells Rfx4 transcripts originate primarily from a newly described promoter with intron 1 but are expected to be translationally compromised due to a poorly situated start codon. Western blotting confirmed that RFX2 is greatly elevated beginning in meiosis and also confirmed that full-length RFX4 protein is not prevalent in mouse testis at any stage. These results imply that RFX2 is the most likely X box binding factor to influence novel gene expression during meiosis, that RFX1-3 may all play roles in haploid cells but that RFX4 is much less prevalent than implied by its high transcript levels.
Collapse
Affiliation(s)
- W Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|
25
|
Cavalcanti M, Rizgalla M, Geyer J, Failing K, Litzke LF, Bergmann M. Expression of histone 1 (H1) and testis-specific histone 1 (H1t) genes during stallion spermatogenesis. Anim Reprod Sci 2009; 111:220-34. [DOI: 10.1016/j.anireprosci.2008.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/02/2008] [Accepted: 03/13/2008] [Indexed: 11/16/2022]
|
26
|
Izzo A, Kamieniarz K, Schneider R. The histone H1 family: specific members, specific functions? Biol Chem 2008; 389:333-43. [PMID: 18208346 DOI: 10.1515/bc.2008.037] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The linker histone H1 binds to the DNA entering and exiting the nucleosomal core particle and has an important role in establishing and maintaining higher order chromatin structures. H1 forms a complex family of related proteins with distinct species, tissue and developmental specificity. In higher eukaryotes all H1 variants have the same general structure, consisting of a central conserved globular domain and less conserved N-terminal and C-terminal tails. These tails are moderately conserved among species, but differ among variants, suggesting a specific function for each H1 variant. Due to compensatory mechanisms and to the lack of proper tools, it has been very difficult to study the biological role of individual variants in chromatin-mediated processes. Our knowledge about H1 variants is indeed limited, and in vitro and in vivo observations have often been contradictory. Therefore, H1 variants were considered to be functionally redundant. However, recent knockout studies and biochemical analyses in different organisms have revealed exciting new insights into the specificity and mechanisms of actions of the H1 family members. Here, we collect and compare the available literature about H1 variants and discuss possible specific roles that challenge the concept of H1 being a mere structural component of chromatin and a general repressor of transcription.
Collapse
Affiliation(s)
- Annalisa Izzo
- Max Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | |
Collapse
|
27
|
Grzmil P, Boinska D, Kleene KC, Adham I, Schlüter G, Kämper M, Buyandelger B, Meinhardt A, Wolf S, Engel W. Prm3, the fourth gene in the mouse protamine gene cluster, encodes a conserved acidic protein that affects sperm motility. Biol Reprod 2008; 78:958-67. [PMID: 18256328 DOI: 10.1095/biolreprod.107.065706] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The protamine gene cluster containing the Prm1, Prm2, Prm3, and Tnp2 genes is present in humans, mice, and rats. The Prm1, Prm2, and Tnp2 genes have been extensively studied, but almost nothing is known about the function and regulation of the Prm3 gene. Here we demonstrate that an intronless Prm3 gene encoding a distinctive small acidic protein is present in 13 species from seven orders of mammals. We also demonstrate that the Prm3 gene has not generated retroposons, which supports the contention that genes that are expressed in meiotic and haploid spermatogenic cells do not generate retroposons. The Prm3 mRNA is first detected in early round spermatids, while the PRM3 protein is first detected in late spermatids. Thus, translation of the Prm3 mRNA is developmentally delayed similar to the Prm1, Prm2, and Tnp2 mRNAs. In contrast to PRM1, PRM2, and TNP2, PRM3 is an acidic protein that is localized in the cytoplasm of elongated spermatids and transfected NIH-3T3 cells. To elucidate the function of PRM3, the Prm3 gene was disrupted by homologous recombination. Sperm from Prm3(-/-) males exhibited reductions in motility, but the fertility of Prm3(-/-) and Prm3(+/+) males was similar in matings of one male and one female. We have developed a competition test in which a mutant male has to compete with a rival wild-type male to fertilize a female; the implications of these results are also discussed.
Collapse
Affiliation(s)
- Pawel Grzmil
- Institute of Human Genetics, University of Göttingen, Göttingen D-37073, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wolfe SA, van Wert J, Grimes SR. Transcription factor RFX2 is abundant in rat testis and enriched in nuclei of primary spermatocytes where it appears to be required for transcription of the testis-specific histone H1t gene. J Cell Biochem 2007; 99:735-46. [PMID: 16676351 DOI: 10.1002/jcb.20959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Previous work in our laboratory revealed upregulated transcription of the testis-specific linker histone H1t gene in pachytene primary spermatocytes during spermatogenesis. Using the H1t X-box as an affinity chromatography probe, we identified Regulatory Factor X2 (RFX2), a member of the RFX family of transcription factors, as a nuclear protein that binds the probe. We also showed that RFX2 activated the H1t promoter in transient expression assays. However, other RFX family members have the same DNA-binding domain and they also may regulate H1t gene expression. Therefore, in this study we examined the distribution of RFX2 and other RFX family members in rat testis germinal cells and in several tissues. Among tissues examined, RFX2 is most abundant in testis. Testis RFX2 is most abundant in spermatocytes where transcription of the H1t gene is upregulated and the steady-state H1t mRNA level is high. RFX2 levels decrease but RFX1 levels increase in early spermatids where H1t gene transcription is downregulated. Antibodies against RFX2 generate a shifted band in electrophoretic mobility shift assays (EMSA) using H1t or testisin X-box DNA probes with nuclear proteins from spermatocytes. These data support the hypothesis that RFX2 expression is upregulated in spermatocytes where it participates in activating transcription of the H1t gene and other testis genes. These data also support the possibility that other RFX family members may bind to the H1t promoter in other testis germinal cell types and in nongerminal cells to downregulate H1t gene transcription.
Collapse
Affiliation(s)
- Steven A Wolfe
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, Louisiana 71101-4295, USA
| | | | | |
Collapse
|
29
|
Ramesh S, Bharath MMS, Chandra NR, Rao MRS. A K52Q substitution in the globular domain of histone H1t modulates its nucleosome binding properties. FEBS Lett 2006; 580:5999-6006. [PMID: 17052712 DOI: 10.1016/j.febslet.2006.09.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/25/2006] [Accepted: 09/26/2006] [Indexed: 11/20/2022]
Abstract
A comparison of the globular domain sequences of the somatic H1d and testis-specific H1t revealed a single substitution of lysine 52 in H1d to glutamine 54 in H1t, which is one of the three crucial residues within the second DNA binding site. The globular domains of both histones were modeled using the crystal structure of chicken GH5 as a template and was also docked onto the nucleosome structure. The glutamine residue in histone H1t forms a hydrogen bond with main chain carbonyl of methionine-52 (in H1t) and is spatially oriented away from the nucleosome dyad axis. A consequence of this change was a lower affinity of recombinant histone H1t towards Four-way junction DNA and reconstituted 5S mononucleosomes. When Gln-54 in Histone H1t was mutated to lysine, its binding affinity towards DNA substrates was comparable to that of histone H1d. The differential binding of histones H1d and H1t towards reconstituted mononucleosomes was also reflected in the chromatosome-stop assay.
Collapse
Affiliation(s)
- Sneha Ramesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
30
|
Catena R, Ronfani L, Sassone-Corsi P, Davidson I. Changes in intranuclear chromatin architecture induce bipolar nuclear localization of histone variant H1T2 in male haploid spermatids. Dev Biol 2006; 296:231-238. [PMID: 16765935 DOI: 10.1016/j.ydbio.2006.04.458] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/28/2006] [Accepted: 04/21/2006] [Indexed: 11/29/2022]
Abstract
Spermiogenesis entails a major biochemical and morphological restructuring of the germ cell packing the DNA into the condensed spermatid nucleus. H1T2 is a histone H1 variant selectively and transiently expressed in male haploid germ cells during spermiogenesis that specifically localizes to a chromatin domain at the apical pole under the acrosome. We explored the mechanisms determining polar localization of H1T2 in spermatids. In acrosome-deficient round spermatids of hrb -/- and gopc -/- mice, H1T2 localization is not altered, indicating that proper acrosome development is not required for specifying nuclear polarity. In contrast, in late round spermatids from trf2 -/- or hmgb2 -/- mice, a bipolar H1T2 localization was observed revealing that polarity is modified by loss of proteins specifying chromatin architecture. Our results show that intranuclear chromatin organization is critical for correct polar localization of H1T2 and that H1T2 can be a useful molecular marker revealing chromatin disorganization in spermatids.
Collapse
Affiliation(s)
- Raffaella Catena
- Institut de Génétique et de Biologie Molécularie et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|
31
|
Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature 2005; 434:583-9. [PMID: 15800613 DOI: 10.1038/nature03368] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Germ cells have the unique capacity to start a new life upon fertilization. They are generated during a sex-specific differentiation programme called gametogenesis. Maturation of germ cells is characterized by an impressive degree of cellular restructuring and gene regulation that involves remarkable genomic reorganization. These events are finely tuned, but are also susceptible to the introduction of various types of error. Because stable genetic transmission to future generations is essential for life, understanding the control of these processes has far-reaching implications for human health and reproduction.
Collapse
Affiliation(s)
- Sarah Kimmins
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, B.P. 10142, 67404 Illkirch, Strasbourg, France
| | | |
Collapse
|
32
|
Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci U S A 2005; 102:2808-13. [PMID: 15710904 PMCID: PMC549447 DOI: 10.1073/pnas.0406060102] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spermiogenesis entails a major biochemical and morphological restructuring of the germ cell involving replacement of the somatic histones by protamines packing the DNA into the condensed spermatid nucleus and elimination of the cytoplasm during the elongation phase. We describe H1T2, an histone H1 variant selectively and transiently expressed in male haploid germ cells during spermiogenesis. In round and elongating spermatids, H1T2 specifically localizes to a chromatin domain at the apical pole, revealing a polarity in the spermatid nucleus. Inactivation by homologous recombination shows that H1T2 is critical for spermiogenesis as male H1t2(-/-) mice have greatly reduced fertility. Analysis of spermiogenesis in H1t2 mutant mice shows delayed nuclear condensation and aberrant elongation. As a result, mutant spermatids are characterized by the presence of residual cytoplasm, acrosome detachment, and fragmented DNA. Hence, H1T2 is a protein required for proper cell restructuring and DNA condensation during the elongation phase of spermiogenesis.
Collapse
Affiliation(s)
- Igor Martianov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, and Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Caron C, Govin J, Rousseaux S, Khochbin S. How to pack the genome for a safe trip. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:65-89. [PMID: 15881891 DOI: 10.1007/3-540-27310-7_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The transformation of the somatic chromatin into a unique and highly compact structure occurring during the post-meiotic phase of spermatogenesis is one of the most dramatic known processes of chromatin remodeling. Paradoxically, no information is available on the mechanisms controlling this specific reorganization of the haploid cell genome. The only existing hints suggest a role for histone variants, as well as for stage-specific post-translational histone modifications,before and during the incorporation of testis-specific basic nuclear proteins. Moreover, the exact functions of the latter remain obscure. This chapter summarizes the major chromatin-associated events taking place during the post-meiotic differentiation of male haploid cells in mammals and discusses some of the basic issues that remain to be solved to finally understand chromatin remodeling during spermatogenesis.
Collapse
Affiliation(s)
- Cécile Caron
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation - INSERM U309, Equipe "Chromatine et Expression des Gènes", Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | |
Collapse
|
34
|
Grimes SR. Testis-specific transcriptional control. Gene 2004; 343:11-22. [PMID: 15563828 DOI: 10.1016/j.gene.2004.08.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/06/2004] [Accepted: 08/19/2004] [Indexed: 01/19/2023]
Abstract
In the testis, tissue-specific transcription is essential for proper expression of the genes that are required for the reproduction of the organism. Many testis-specific genes are required for mitotic proliferation of spermatogonia, spermatocytes undergoing genetic recombination and meiotic divisions, and differentiation of haploid spermatids. In this article we describe some of the genes that are transcribed in male germinal cells and in non-germinal testis cells. Because significant progress has been made in examination of promoter elements and their cognate transcription factors that are involved in controlling transcription of the testis-specific linker histone H1t gene in primary spermatocytes, this work will be reviewed in greater detail. The gene is transcriptionally active in spermatocytes and repressed in all other germinal and non-germinal cell types and, therefore, it serves as a model for study of regulatory mechanisms involved in testis-specific transcription.
Collapse
Affiliation(s)
- S R Grimes
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, LA 71101-4295, USA.
| |
Collapse
|
35
|
Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. ACTA ACUST UNITED AC 2004; 271:3459-69. [PMID: 15317581 DOI: 10.1111/j.1432-1033.2004.04266.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the most dramatic chromatin remodelling processes takes place during mammalian spermatogenesis. Indeed, during the postmeiotic maturation of male haploid germ cells, or spermiogenesis, histones are replaced by small basic proteins, which in mammals are transition proteins and protamines. However, nothing is known of the mechanisms controlling the process of histone replacement. Two hints from the literature could help to shed light on the underlying molecular events: one is the massive synthesis of histone variants, including testis-specific members, and the second is a stage specific post-translational modification of histones. A new testis-specific 'histone code' can therefore be generated combining both histone variants and histone post-translational modifications. This review will detail these two phenomena and discuss possible functional significance of the global chromatin alterations occurring prior to histone replacement during spermiogenesis.
Collapse
Affiliation(s)
- Jérôme Govin
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, INSERM U309, Equipe Chromatine et Expression des gènes, Institut Albert Bonniot, Faculté de médecine, La Tronche, France
| | | | | | | | | |
Collapse
|
36
|
Horvath GC, Kistler WS, Kistler MK. RFX2 is a potential transcriptional regulatory factor for histone H1t and other genes expressed during the meiotic phase of spermatogenesis. Biol Reprod 2004; 71:1551-9. [PMID: 15229132 DOI: 10.1095/biolreprod.104.032268] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
H1t is a novel linker histone variant synthesized in mid- to late pachytene spermatocytes. Its regulatory region is of interest because developmentally specific expression has been impressed on an otherwise ubiquitously expressed promoter. Using competitive band-shift assays and specific antisera, we have now shown that the H1t-60 CCTAGG palindrome motif region binds members of the RFX family of transcriptional regulators. The testis-specific binding complex contains RFX2, probably as a homodimer. Other DNA-protein complexes obtained from testis as well as somatic organs contain RFX1, primarily as a heterodimer. Western blots confirmed that RFX2 expression is greatly enhanced in adult testis and that RFX2 is equally prominent in highly enriched populations of late pachytene spermatocytes and round spermatids. Immunohistochemistry carried out on mouse testis showed that RFX2 is strongly expressed in pachytene spermatocytes, remains high in early round spermatids, and declines only in advance of nuclear condensation. Maximum expression correlates well with the appearance of H1t. In contrast, RFX1 immunoreactivity in germ cells was only detected in late round spermatids. RFX-specific band complexes were also identified for both the mouse lamin C2 and Sgy promoters, using either testis nuclear extracts or in vitro-synthesized RFX2. These results call attention to RFX2 as a transcription factor with obvious potential for the regulation of gene expression during meiosis and the early development of spermatids.
Collapse
Affiliation(s)
- Gary C Horvath
- Department of Chemistry and Biochemistry and The School of Medicine, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
37
|
Lin Q, Inselman A, Han X, Xu H, Zhang W, Handel MA, Skoultchi AI. Reductions in Linker Histone Levels Are Tolerated in Developing Spermatocytes but Cause Changes in Specific Gene Expression. J Biol Chem 2004; 279:23525-35. [PMID: 15039436 DOI: 10.1074/jbc.m400925200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H1 linker histones are involved in packaging chromatin into 30-nm fibers and higher order structures. Most eukaryotic cells contain nearly one H1 molecule for each nucleosome core particle. Male germ cells in mammals contain large amounts of a germ cell-specific linker histone, HIST1HT, herein denoted H1t, which is particularly abundant in pachytene spermatocytes. Despite its abundance in male germ cells and significant divergence in primary sequence from other H1 subtypes, inactivation of the H1t gene in mice showed that it is not required for spermatogenesis. Analysis of germ cell chromatin from H1t null mice showed that other H1 subtypes, especially the testis-enriched HIST1H1A, herein denoted as the H1a subtype, were able to compensate for the absence of H1t to maintain a normal total H1 to nucleosome core ratio. To disrupt the compensation, we generated H1t and H1a double null mice by two sequential gene-targeting steps in embryonic stem cells. Elimination of both H1t and H1a led to a 25% decrease in the ratio of H1 to nucleosome cores in double null germ cells. Surprisingly, the reduction in H1 did not perturb spermatogenesis or produce detectable defects in meiotic processes. Microarray analysis of gene expression showed that the reduced linker histone levels did not affect global gene expression, but it did cause changes in expression of specific genes. Our results indicate that a partial reduction in linker histone-nucleosome core particle stoichiometry is tolerated in developing male germ cells.
Collapse
Affiliation(s)
- Qingcong Lin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
The linker histones. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Dadoune JP, Siffroi JP, Alfonsi MF. Transcription in haploid male germ cells. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 237:1-56. [PMID: 15380665 DOI: 10.1016/s0074-7696(04)37001-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major modifications in chromatin organization occur in spermatid nuclei, resulting in a high degree of DNA packaging within the spermatozoon head. However, before arrest of transcription during midspermiogenesis, high levels of mRNA are found in round spermatids. Some transcripts are the product of genes expressed ubiquitously, whereas some are generated from male germ cell-specific gene homologs of somatic cell genes. Others are transcript variants derived from genes with expression regulated in a testis-specific fashion. The haploid genome of spermatids also initiates the transcription of testis-specific genes. Various general transcription factors, distinct promoter elements, and specific transcription factors are involved in transcriptional regulation. After meiosis, spermatids are genetically but not phenotypically different, because of transcript and protein sharing through cytoplasmic bridges connecting spermatids of the same generation. Interestingly, different types of mRNAs accumulate in the sperm cell nucleus, raising the question of their origin and of a possible role after fertilization.
Collapse
Affiliation(s)
- Jean-Pierre Dadoune
- Laboratoire de Cytologie et Histologie, Centre Universitaire des Saints-Pères, 75270 Paris, France
| | | | | |
Collapse
|
40
|
Yan W, Ma L, Burns KH, Matzuk MM. HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proc Natl Acad Sci U S A 2003; 100:10546-51. [PMID: 12920187 PMCID: PMC193598 DOI: 10.1073/pnas.1837812100] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin remodeling is a major event that occurs during mammalian spermiogenesis, the process of spermatid maturation into spermatozoa. Nuclear condensation during spermiogenesis is accomplished by replacing somatic histones (linker histone H1 and core histones) and the testis-specific linker histone, H1t, with transition proteins and protamines. It has long been thought that H1t is the only testis-specific linker histone, and that all linker histones are replaced by transition proteins, and subsequently by protamines during spermiogenesis. Here, we report the identification and characterization of a spermatid-specific linker histone H1-like protein (termed HILS1) in the mouse and human. Both mouse and human HILS1 genes are located in intron 8 of the alpha-sarcoglycan genes. HILS1 is highly expressed in nuclei of elongating and elongated spermatids (steps 9-15). HILS1 displays several biochemical properties that are similar to those of linker histones, including the abilities to bind reconstituted mononucleosomes, produce a chromatosome stop during micrococcal nuclease digestion, and aggregate chromatin. Because HILS1 is expressed in late spermatids that do not contain core histones, HILS1 may participate in spermatid nuclear condensation through a mechanism distinct from that of linker histones. Because HILS1 also belongs to the large winged helix/forkhead protein superfamily, HILS1 may also regulate gene transcription, DNA repair, and/or other chromosome processes during mammalian spermiogenesis.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
41
|
Fan Y, Nikitina T, Morin-Kensicki EM, Zhao J, Magnuson TR, Woodcock CL, Skoultchi AI. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol 2003; 23:4559-72. [PMID: 12808097 PMCID: PMC164858 DOI: 10.1128/mcb.23.13.4559-4572.2003] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most eukaryotic cells contain nearly equimolar amounts of nucleosomes and H1 linker histones. Despite their abundance and the potential functional specialization of H1 subtypes in multicellular organisms, gene inactivation studies have failed to reveal essential functions for linker histones in vivo. Moreover, in vitro studies suggest that H1 subtypes may not be absolutely required for assembly of chromosomes or nuclei. By sequentially inactivating the genes for three mouse H1 subtypes (H1c, H1d, and H1e), we showed that linker histones are essential for mammalian development. Embryos lacking the three H1 subtypes die by mid-gestation with a broad range of defects. Triple-H1-null embryos have about 50% of the normal ratio of H1 to nucleosomes. Mice null for five of these six H1 alleles are viable but are underrepresented in litters and are much smaller than their littermates. Marked reductions in H1 content were found in certain tissues of these mice and in another compound H1 mutant. These results demonstrate that the total amount of H1 is crucial for proper embryonic development. Extensive reduction of H1 in certain tissues did not lead to changes in nuclear size, but it did result in global shortening of the spacing between nucleosomes.
Collapse
Affiliation(s)
- Yuhong Fan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Eukaryotic DNA is organized in a complex structure called chromatin. Although a primary function of chromatin is compaction of DNA, this must done such that the underlying DNA is potentially accessible to factor-mediated regulatory responses. Chromatin structure clearly plays a dominant role in regulating much of eukaryotic transcription. The demonstration that reversible covalent modification of the core histones contribute to transcriptional activation and repression by altering chromatin structure and the identification of numerous ATP-dependent chromatin remodeling enzymes provide strong support for this view. Chromatin is much more dynamic than was previously thought and regulation of the dynamic properties of chromatin is a key aspect of gene regulation. This review will focus on recent attempts to elucidate the specific contribution of histone H1 to chromatin-mediated regulation of gene expression.
Collapse
Affiliation(s)
- David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, 39216, USA.
| |
Collapse
|
43
|
Wilkerson DC, Wolfe SA, Grimes SR. TE2 and TE1 sub-elements of the testis-specific histone H1t promoter are functionally different. J Cell Biochem 2003; 88:1177-87. [PMID: 12647300 DOI: 10.1002/jcb.10468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The testis-specific linker histone H1t gene is transcribed exclusively in pachytene primary spermatocytes. Tissue specific expression of the gene is mediated in part by transcriptional factors that bind elements located within the proximal and distal promoter. A 40 bp promoter element, designated H1t/TE, that is located within the proximal promoter between the CCAAT-box and AC-box, is known to be essential for H1t gene transcription in transgenic animals. In the present study, we show by SDS-PAGE analysis of UV crosslinked protein and DNA and by electrophoretic mobility shift assays (EMSA) of testis nuclear proteins separated on a non-denaturing glycerol gradient that the TE1 sub-element is bound by a protein complex. Mutation of TE1 leads to a drop in H1t promoter activity in germinal GC-2spd cells as well as in nongerminal Leydig, NIH3T3, and C127I cell lines. Although TE1 and TE2 sub-elements have similar sequences, mutation of the TE2 sub-element causes an increase in promoter activity in C127I and Leydig cells. The rat TE1 but not TE2 contains a CpG dinucleotide and this cytosine is methylated in liver but not in primary spermatocytes. Methylation of the cytosine at this site almost eliminates nuclear protein binding. Thus, there are significant functional differences in the TE2 and TE1 sub-elements of the H1t promoter with TE1 serving as a transcriptional activator binding site and TE2 serving as a repressor binding site in some cell lines.
Collapse
Affiliation(s)
- Donald C Wilkerson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | |
Collapse
|
44
|
Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P, Bradbury EM. Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 2002; 277:43474-80. [PMID: 12213818 DOI: 10.1074/jbc.m206065200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human sperm, unlike the sperm of other mammals, contain replacement histones with unknown biological functions. Here, we report the identification of the novel human gene coding for a testis/sperm-specific histone H2B (hTSH2B). This variant histone is 85% homologous to somatic H2B and has over 93% homology with the testis H2B of rodents. Using genomic PCR, two genetic alleles of hTSH2B were found in the human population. The hTSH2B gene is transcribed exclusively in testis, and the corresponding protein is also present in mature sperm. We expressed recombinant hTSH2B and identified this protein with a particular H2B subtype expressed in vivo. The subnuclear distribution of H2B variants in sperm was determined using biochemical fractionation and immunoblotting. The H2B variant associated with telomere-binding activity () was solubilized by Triton X-100 or micrococcal nuclease extraction, whereas hTSH2B was relatively tightly bound in nuclei. Immunofluorescence showed that hTSH2B was concentrated in spots located at the basal nuclear area of a subpopulation (20% of cells) of mature sperm. This fact may be of particular importance, because the hTSH2B "positive" and "negative" sperm cells may undergo significantly different decondensation processes following fertilization.
Collapse
Affiliation(s)
- Andrei O Zalensky
- Department of Biological Chemistry, School of Medicine, University of California Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Xue J, Tarnasky HA, Rancourt DE, van Der Hoorn FA. Targeted disruption of the testicular SPAG5/deepest protein does not affect spermatogenesis or fertility. Mol Cell Biol 2002; 22:1993-7. [PMID: 11884588 PMCID: PMC133686 DOI: 10.1128/mcb.22.7.1993-1997.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In an effort to define the molecular basis for morphogenesis of major sperm tail structures, including outer dense fibers, we recently cloned the Spag5 gene by virtue of its strong and specific leucine-zipper-mediated interaction with Odf1, the 27-kDa major outer dense fiber protein. Spag5 is expressed during meiosis and in round spermatids and is similar, if not identical, to Deepest, a putative spindle pole protein. Here we report the disruption of the Spag5 gene by homologous recombination. Spag5-null mice lack Spag5 mRNA and protein. However, male mice are viable and fertile. Analysis of the process of spermatogenesis and sperm produced in Spag5-null mice did not reveal a major phenotype as a consequence of the knockout event. This result suggests that if Spag5 plays a role in spermatogenesis it is likely compensated for by unknown proteins.
Collapse
Affiliation(s)
- Jiaping Xue
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
46
|
Fan Y, Sirotkin A, Russell RG, Ayala J, Skoultchi AI. Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol Cell Biol 2001; 21:7933-43. [PMID: 11689686 PMCID: PMC99962 DOI: 10.1128/mcb.21.23.7933-7943.2001] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H1 linker histones are involved in facilitating the folding of chromatin into a 30-nm fiber. Mice contain eight H1 subtypes that differ in amino acid sequence and expression during development. Previous work showed that mice lacking H1(0), the most divergent subtype, develop normally. Examination of chromatin in H1(0-/-) mice showed that other H1s, especially H1c, H1d, and H1e, compensate for the loss of H1(0) to maintain a normal H1-to-nucleosome stoichiometry, even in tissues that normally contain abundant amounts of H1(0) (A. M. Sirotkin et al., Proc. Natl. Acad. Sci. USA 92:6434-6438, 1995). To further investigate the in vivo role of individual mammalian H1s in development, we generated mice lacking H1c, H1d, or H1e by homologous recombination in mouse embryonic stem cells. Mice lacking any one of these H1 subtypes grew and reproduced normally and did not exhibit any obvious phenotype. To determine whether one of these H1s, in particular, was responsible for the compensation present in H1(0-/-) mice, each of the three H1 knockout mouse lines was bred with H1(0) knockout mice to generate H1c/H1(0), H1d/H1(0), or H1e/H1(0) double-knockout mice. Each of these doubly H1-deficient mice also was fertile and exhibited no anatomic or histological abnormalities. Chromatin from the three double-knockout strains showed no significant change in the ratio of total H1 to nucleosomes. These results suggest that any individual H1 subtype is dispensable for mouse development and that loss of even two subtypes is tolerated if a normal H1-to-nucleosome stoichiometry is maintained. Multiple compound H1 knockouts will probably be needed to disrupt the compensation within this multigene family.
Collapse
Affiliation(s)
- Y Fan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
47
|
Horvath GC, Clare SE, Kistler MK, Kistler WS. Characterization of the H1t promoter: role of conserved histone 1 AC and TG elements and dominance of the cap-proximal silencer. Biol Reprod 2001; 65:1074-81. [PMID: 11566728 DOI: 10.1095/biolreprod65.4.1074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
H1t is a testis-specific variant histone 1 gene transcribed in pachytene spermatocytes. As part of a program to understand its transcriptional control, we have investigated the effect of the cap-proximal, GC-rich silencer element in the context of various lengths of upstream sequence. By transient transfection of NIH 3T3 cells, we showed that a targeted mutation in the silencer has a large (>10-fold) effect on reporter gene expression, regardless of the length of upstream sequence present. No other discrete silencing activity was observed in the upstream region extending to nucleotide -1842. Similarly, when the silencer mutation was introduced into the natural gene, H1t expression was readily detected in permanently transfected cells by both RNase protection and Western blot analysis, regardless of the extent of 5' or 3' flanking genomic DNA. In constructs with the mutated silencer, we showed interdependence of the characteristic H1 AC and TG box regulatory elements. Promoter up-regulation occurred only when both were intact, and possibly identical binding factors were demonstrated for each by electrophoretic mobility shift assays. In view of its precisely regulated but limited expression, it is interesting that H1t retains all the promoter elements known to activate standard H1 genes, including the TG/AC unit, SP1 site, and CCAAT element. Their presence emphasizes the apparent dominance of the silencer element in most cells.
Collapse
Affiliation(s)
- G C Horvath
- Department of Chemistry and Biochemistry and the School of Medicine, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Genes encoding linker histone variants have evolved to link their expression to signals controlling the proliferative capacities of cells, i.e. cycling and growth-arrested cells express distinct and specific H1 subtypes. In metazoan, these variants show a tripartite structure, with considerably divergent sequences in their amino and carboxyl terminus domains. The aim of this review is to show how specific regulatory signals control the expression of an individual H1 and to discuss the functional significance of the two variables associated with a linker histone: its primary sequence and the timing of its expression.
Collapse
Affiliation(s)
- S Khochbin
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation - INSERM U309, Equipe chromatine et expression des gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, 38706 La Tronche Cedex, France.
| |
Collapse
|
49
|
Abstract
The completion of spermiogenesis requires condensation of the haploid spermatid genome. This task is accomplished in a gradual and relentless manner by first erasing the nucleosomal organization of chromatin while the DNA is protected by transient nuclear proteins TP1 and TP2. Then, the more permanent protamines come into play to stabilize the spermatid genome until fertilization occurs. Mice lacking TPI manage to produce relatively structurally normal sperm, although fertility is reduced and chromatin condensation is abnormal despite the compensatory expression of TP2. TP1 and TP2 appear to have the house-keeping function of reestablishing continuity when chromatin breaks take place during the remodeling process. DNA single-strand breaks are frequently observed when spermiogenesis is half completed. There is a temporal relationship between TP1 and DNA breaks: TP1 nuclear levels increase and the frequency of DNA breaks become less prominent as spermiogenesis is reaching completion. TP1 seems to hold the broken ends together until an as-yet-unidentified ligase bridges the gap.
Collapse
Affiliation(s)
- A L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, The City University of New York Medical School, New York, NY 10031, USA.
| |
Collapse
|
50
|
Abstract
In most eukaryotes, histones, which are the major structural components of chromatin, are expressed as a family of sequence variants encoded by multiple genes. Because different histone variants can contribute to a distinct or unique nucleosomal architecture, this heterogeneity can be exploited to regulate a wide range of nuclear functions, and evidence is accumulating that histone variants do indeed have distinct functions.
Collapse
Affiliation(s)
- D T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|