1
|
Fu B, Ma H, Liu D. 2-Cell-like Cells: An Avenue for Improving SCNT Efficiency. Biomolecules 2022; 12:1611. [PMID: 36358959 PMCID: PMC9687756 DOI: 10.3390/biom12111611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 03/25/2024] Open
Abstract
After fertilization, the zygote genome undergoes dramatic structural reorganization to ensure the establishment of totipotency, and then the totipotent potential of the zygote or 2-cell-stage embryo progressively declines. However, cellular potency is not always a one-way street. Specifically, a small number of embryonic stem cells (ESCs) occasionally overcome epigenetic barriers and transiently convert to a totipotent status. Despite the significant potential of the somatic cell nuclear transfer (SCNT) technique, the establishment of totipotency is often deficient in cloned embryos. Because of this phenomenon, the question arises as to whether strategies attempting to induce 2-cell-like cells (2CLCs) can provide practical applications, such as reprogramming of somatic cell nuclei. Inspired by strategies that convert ESCs into 2CLCs, we hypothesized that there will be a similar pathway by which cloned embryos can establish totipotent status after SCNT. In this review, we provide a snapshot of the practical strategies utilized to induce 2CLCs during investigations of the development of cloned embryos. The 2CLCs have similar transcriptome and chromatin features to that of 2-cell-stage embryos, and we propose that 2CLCs, already a valuable in vitro model for dissecting totipotency, will provide new opportunities to improve SCNT efficiency.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
2
|
Hashimoto S, Morimoto Y. Mitochondrial function of human embryo: Decline in their quality with maternal aging. Reprod Med Biol 2022; 21:e12491. [PMID: 36570768 PMCID: PMC9769491 DOI: 10.1002/rmb2.12491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Female fertility declines with age, due to increased chromosomal aneuploidy and possible reduced mitochondrial function in the embryo. Methods This review outlines how mitochondrial function in human embryos, as predicted from oxygen consumption rate (OCR) measurements, changes in preimplantation stage, and what factors, particularly maternal age, affect mitochondrial function in embryos. Main findings The structure of the mitochondrial inner membrane and its respiratory function developed with embryo development, while the copy number of mitochondrial DNA per specimen was transiently reduced compared with that of the oocyte. The undifferentiated state of the inner cell mass cells appears to be associated with a low OCR. In contrast, the copy number of mitochondrial DNA increased in trophoblast cells and mitochondrial aerobic metabolism increased.The OCRs at morulae stage decreased with maternal age, but there was no relationship between maternal age and the copy number of mitochondrial DNA at any stages. The higher oxygen spent at the morula stage; the shorter time was needed for development to the mid-stage blastocyst. Conclusions The mitochondrial respiratory function of human embryos developed along with embryonic growth. Mitochondrial function at morula stage declined with their maternal age and reduced mitochondrial function decreased the rate of development from morula to blastocyst.
Collapse
Affiliation(s)
- Shu Hashimoto
- Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | | |
Collapse
|
3
|
He Y, Chen Q, Zhang J, Yu J, Xia M, Wang X. Pervasive 3'-UTR Isoform Switches During Mouse Oocyte Maturation. Front Mol Biosci 2021; 8:727614. [PMID: 34733887 PMCID: PMC8558312 DOI: 10.3389/fmolb.2021.727614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Oocyte maturation is the foundation for developing healthy individuals of mammals. Upon germinal vesicle breakdown, oocyte meiosis resumes and the synthesis of new transcripts ceases. To quantitatively profile the transcriptomic dynamics after meiotic resumption throughout the oocyte maturation, we generated transcriptome sequencing data with individual mouse oocytes at three main developmental stages: germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). When clustering the sequenced oocytes, results showed that isoform-level expression analysis outperformed gene-level analysis, indicating isoform expression provided extra information that was useful in distinguishing oocyte stages. Comparing transcriptomes of the oocytes at the GV stage and the MII stage, in addition to identification of differentially expressed genes (DEGs), we detected many differentially expressed transcripts (DETs), some of which came from genes that were not identified as DEGs. When breaking down the isoform-level changes into alternative RNA processing events, we found the main source of isoform composition changes was the alternative usage of polyadenylation sites. With detailed analysis focusing on the alternative usage of 3′-UTR isoforms, we identified, out of 3,810 tested genes, 512 (13.7%) exhibiting significant switches of 3′-UTR isoforms during the process of moues oocyte maturation. Altogether, our data and analyses suggest the importance of examining isoform abundance changes during oocyte maturation, and further investigation of the pervasive 3′-UTR isoform switches in the transition may deepen our understanding on the molecular mechanisms underlying mammalian early development.
Collapse
Affiliation(s)
- Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuzhen Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Xia
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Wu Y, Dong J, Feng S, Zhao Q, Duan P, Xiong M, Wen Y, Lv C, Wang X, Yuan S. Maternal UHRF1 Is Essential for Transcription Landscapes and Repression of Repetitive Elements During the Maternal-to-Zygotic Transition. Front Cell Dev Biol 2021; 8:610773. [PMID: 33634103 PMCID: PMC7902027 DOI: 10.3389/fcell.2020.610773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Maternal factors that modulate maternal-to-zygotic transition (MZT) are essential for the growth from specialized oocytes to totipotent embryos. Despite several studies, the mechanisms regulating epigenetic reprogramming during MZT remain largely elusive. UHRF1 plays a role in maintaining GC methylation in oocytes and early embryos. However, little is known about its role in mouse MZT. Here, we explored the function of maternal UHRF1 in zygotic genome regulation during early embryonic development in mice. We showed that the conditional knockout (cKO) of UHRF1 in either primordial or growing oocytes causes infertility but differentially affects early embryonic development. UHRF1 deficiency in primordial oocytes led to early embryonic developmental arrest at the two-cell stage, accompanied by significant alterations in global DNA and H3K4me3 methylation patterns. In comparison, UHRF1 ablation in growing oocytes significantly reduced developmental competence from two-cell embryos to blastocysts. At the transcriptional level, the absence of maternal UHRF1 led to aberrant transcriptional regulation of the zygotic genome during MZT at the two-cell stage. Furthermore, we observed that retrotransposable elements in UHRF1-deficient oocytes and embryos were not silenced properly; in particular, the LINE-1 and long terminal repeat (LTR) subfamily were activated abnormally. Collectively, the findings of our study reveal that maternal UHRF1 plays a critical role in establishing the correct epigenetic chromatin reprogramming of early embryos, regulating essential genes during MZT, and preserving genome integrity that drives early embryonic development in mice.
Collapse
Affiliation(s)
- Yanqing Wu
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Dong
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglei Feng
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhao
- Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Laboratory of Gynecological Oncology and Reproductive Health, Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Mengneng Xiong
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Yujiao Wen
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Lv
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
5
|
Zhang J, Teng F, Tang S, Zhang Y, Guo Y, Li J, Li Y, Zhang C, Xiong L. The Effect of Polymer Dots During Mammalian Early Embryo Development and Their Biocompatibility on Maternal Health. Macromol Biosci 2020; 20:e2000128. [PMID: 32567242 DOI: 10.1002/mabi.202000128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Conjugated polymer dots have excellent fluorescence properties in terms of their structural diversity and functional design, showing broad application prospects in the fields of biological imaging and biosensing. Polymer dots contain no heavy metals and are thought to be of low toxicity and good biocompatibility. Therefore, systematic studies on their potential toxicity are needed. Herein, the biocompatibility of poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)],10% benzothiadiazole(y) (PFBT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer dots on early embryo development as well as maternal health is studied in detail. The results show that prepared polymer dots are dose-dependently toxic to preimplantation embryos, and low-dose polymer dots can be used for cell labeling of early embryos without affecting the normal development of embryos into blastocysts. In addition, the in vivo distribution data show that the polymer dots accumulate mainly in the maternal liver, spleen, kidney, placenta, ovary, and lymph nodes of the pregnant mice. Histopathological examination and blood biochemical tests demonstrate that exposure of the maternal body to polymer dots at a dosage of 14 µg g-1 does not affect the normal function of the maternal organs and early fetal development. The research provides a safe basis for the wide application of polymer dots.
Collapse
Affiliation(s)
- Juxiang Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Fei Teng
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shiyi Tang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yuqiao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chunfu Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
6
|
Tang SB, Yang LL, Zhang TT, Wang Q, Yin S, Luo SM, Shen W, Ge ZJ, Sun QY. Multiple superovulations alter histone modifications in mouse early embryos. Reproduction 2020; 157:511-523. [PMID: 30884466 PMCID: PMC6454231 DOI: 10.1530/rep-18-0495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
It is demonstrated that repeated superovulation has deleterious effects on mouse ovaries and cumulus cells. However, little is known about the effects of repeated superovulation on early embryos. Epigenetic reprogramming is an important event in early embryonic development and could be easily disrupted by the environment. Thus, we speculated that multiple superovulations may have adverse effects on histone modifications in the early embryos. Female CD1 mice were randomly divided into four groups: (a) spontaneous estrus cycle (R0); (b) with once superovulation (R1); (c) with three times superovulation at a 7-day interval (R3) and (d) with five times superovulation at a 7-day interval (R5). We found that repeated superovulation remarkably decreased the fertilization rate. With the increase of superovulation times, the rate of early embryo development was decreased. The expression of Oct4, Sox2 and Nanog was also affected by superovulation in blastocysts. The immunofluorescence results showed that the acetylation level of histone 4 at lysine 12 (H4K12ac) was significantly reduced by repeated superovulation in mouse early embryos (P < 0.01). Acetylation level of histone 4 at lysine 16 (H4K16ac) was also significantly reduced in pronuclei and blastocyst along with the increase of superovulation times (P < 0.01). H3K9me2 and H3K27me3 were significantly increased in four-cell embryos and blastocysts. We further found that repeated superovulation treatment increased the mRNA level of histone deacetylases Hdac1, Hdac2 and histone methyltransferase G9a, but decreased the expression level of histone demethylase-encoding genes Kdm6a and Kdm6b in early embryos. In a word, multiple superovulations alter histone modifications in early embryos.
Collapse
Affiliation(s)
- Shou-Bin Tang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lei-Lei Yang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Ting-Ting Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Qian Wang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Shi-Ming Luo
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
7
|
White MD, Plachta N. Specification of the First Mammalian Cell Lineages In Vivo and In Vitro. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035634. [PMID: 31615786 DOI: 10.1101/cshperspect.a035634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of how the first mammalian cell lineages arise has been shaped largely by studies of the preimplantation mouse embryo. Painstaking work over many decades has begun to reveal how a single totipotent cell is transformed into a multilayered structure representing the foundations of the body plan. Here, we review how the first lineage decision is initiated by epigenetic regulation but consolidated by the integration of morphological features and transcription factor activity. The establishment of pluripotent and multipotent stem cell lines has enabled deeper analysis of molecular and epigenetic regulation of cell fate decisions. The capability to assemble these stem cells into artificial embryos is an exciting new avenue of research that offers a long-awaited window into cell fate specification in the human embryo. Together, these approaches are poised to profoundly increase our understanding of how the first lineage decisions are made during mammalian embryonic development.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| |
Collapse
|
8
|
Pang CY, Bai MZ, Zhang C, Chen J, Lu XR, Deng TX, Ma XY, Duan AQ, Liang SS, Huang YQ, Xiu Z, Liang XW. Global transcriptome analysis of different stages of preimplantation embryo development in river buffalo. PeerJ 2019; 7:e8185. [PMID: 31824777 PMCID: PMC6894430 DOI: 10.7717/peerj.8185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/10/2019] [Indexed: 12/03/2022] Open
Abstract
Background Water buffalo (Bubalus bubalis) are divided into river buffalo and swamp buffalo subspecies and are essential livestock for agriculture and the local economy. Studies on buffalo reproduction have primarily focused on optimal fertility and embryonic mortality. There is currently limited knowledge on buffalo embryonic development, especially during the preimplantation period. Assembly of the river buffalo genome offers a reference for omics studies and facilitates transcriptomic analysis of preimplantation embryo development (PED). Methods We revealed transcriptomic profile of four stages (2-cell, 8-cell, Morula and Blastocyst) of PED via RNA-seq (Illumina HiSeq4000). Each stage comprised three biological replicates. The data were analyzed according to the basic RNA-seq analysis process. Ingenuity analysis of cell lineage control, especially transcription factor (TF) regulatory networks, was also performed. Results A total of 21,519 expressed genes and 67,298 transcripts were predicted from approximately 81.94 Gb of raw data. Analysis of transcriptome-wide expression, gene coexpression networks, and differentially expressed genes (DEGs) allowed for the characterization of gene-specific expression levels and relationships for each stage. The expression patterns of TFs, such as POU5F1, TEAD4, CDX4 and GATAs, were elucidated across diverse time series; most TF expression levels were increased during the blastocyst stage, during which time cell differentiation is initiated. All of these TFs were involved in the composition of the regulatory networks that precisely specify cell fate. These findings offer a deeper understanding of PED at the transcriptional level in the river buffalo.
Collapse
Affiliation(s)
- Chun-Ying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Ming-Zhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, PR China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, PR China
| | - Junhui Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, PR China
| | - Xing-Rong Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Ting-Xian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Xiao-Ya Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - An-Qin Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Sha-Sha Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Yun-Qi Huang
- Shandong Agricultural University, Taian, PR China
| | - Zhihui Xiu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, PR China
| | - Xian-Wei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| |
Collapse
|
9
|
Pimentel RN, Navarro PA, Wang F, Robinson LG, Cammer M, Liang F, Kramer Y, Keefe DL. Amyloid-like substance in mice and human oocytes and embryos. J Assist Reprod Genet 2019; 36:1877-1890. [PMID: 31332596 DOI: 10.1007/s10815-019-01530-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To identify and characterize amyloid-like substance (ALS) in human and mouse oocytes and preimplantation embryos. METHODS An experimental prospective pilot study. A total of 252 mouse oocytes and preimplantation embryos and 50 immature and in vitro matured human oocytes and parthenogenetic human embryos, from 11 consenting fertility patients, ages 18-45. Fluorescence intensity from immunofluorescent staining and data from confocal microscopy were quantified. Data were compared by one-way analysis of variance, with the least square-MEANS post-test, Pearson correlation coefficients (r), and bivariate analyses (t tests). ALS morphology was verified using transmission electron microscopy. RESULTS Immunostaining for ALS appears throughout the zona pellucida, as well as in the cytoplasm and nucleus of mouse and human oocytes, polar bodies, and parthenogenetic embryos, and mouse preimplantation embryos. In mouse, 2-cell embryos exhibited the highest level of ALS (69000187.4 ± 6733098.07). Electron microscopy confirmed the presence of ALS. In humans, fresh germinal vesicle stage oocytes exhibited the highest level of ALS (4164.74088 ± 1573.46) followed by metaphase I and II stages (p = 0.008). There was a significant negative association between levels of ALS and patient body mass index, number of days of ovarian stimulation, dose of gonadotropin used, time between retrieval and fixation, and time after the hCG trigger. Significantly higher levels of ALS were found in patients with AMH between 1 and 3 ng/ml compared to < 1 ng/ml. CONCLUSION We demonstrate for the first time the presence, distribution, and change in ALS throughout some stages of mouse and human oocyte maturation and embryonic development. We also determine associations between ALS in human oocytes with clinical characteristics.
Collapse
Affiliation(s)
- Ricardo N Pimentel
- Research Scientist from the Department of Obstetrics and Gynecology, New York University School of Medicine, 550 First Avenue, NBV 9N1, New York, NY, USA.,Human Reproduction Division, Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paula A Navarro
- Human Reproduction Division, Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fang Wang
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - LeRoy G Robinson
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - Michael Cammer
- DART Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Fengxia Liang
- DART Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Yael Kramer
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - David Lawrence Keefe
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
10
|
PLGA nanoparticles with multiple modes are a biologically safe nanocarrier for mammalian development and their offspring. Biomaterials 2018; 183:43-53. [PMID: 30149229 DOI: 10.1016/j.biomaterials.2018.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023]
Abstract
Nano-sized particles (NPs) of various materials have been extensively used as therapeutic and diagnostic agents, drug delivery systems, and biomedical devices. However, the biological impacts of NP exposure during early embryogenesis on following development and next generations have not been investigated. Here, we demonstrated that polylactic-co-glycolic acid (PLGA)-NPs were not toxic and did not perturb development of preimplantation mouse embryos in vitro. Moreover, subsequent fetal development in vivo after embryo transfer proceeded normally and healthy pups were born without any genetic aberrations, suggesting biosafety of PLGA-NPs during developmental processes. TRITC-labeled PLGA-NPs, named TRITC nano-tracer (TnT) were used to visualize the successful delivery of the NPs into sperms, oocytes and early embryos. Various molecular markers for early embryogenesis demonstrated that TnT treatment at various developmental stages did not compromise embryo development to the blastocyst. mRNA-Seq analyses reinforced that TnT treatment did not significantly affect mRNA landscapes of blastocysts which undergo embryo implantation critical for following developmental processes. Moreover, when 2-cell embryos exposed to TnT were transferred into pseudopregnant recipients, healthy offspring were born without any distinct morphologic and chromosomal abnormalities. TnT treatment did not affect the sex ratio of the exposed embryos after birth. When mated with male mice, female mice that were exposed to TnT during early embryogenesis produced a comparable number of pups as control females. Furthermore, the phenotypes of the offspring of mice experienced TnT at their early life clearly demonstrated that TnT did not elicit any negative transgenerational effects on mammalian development.
Collapse
|
11
|
Liu X, Luo C, Deng K, Wu Z, Wei Y, Jiang J, Lu F, Shi D. Cytoplasmic volume of recipient oocytes affects the nucleus reprogramming and the developmental competence of HMC buffalo (Bubalus bubalis) embryos. J Vet Med Sci 2018; 80:1291-1300. [PMID: 29925699 PMCID: PMC6115262 DOI: 10.1292/jvms.18-0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to examine the effects of cytoplasmic volume on nucleus
reprogramming and developmental competence of buffalo handmade cloning (HMC) embryos. We
found that both HMC embryos derived from ~150% cytoplasm or ~225% cytoplasm resulted in a
higher blastocyst rate and total cell number of blastocyst in comparison with those from
~75% cytoplasm (25.4 ± 2.0, 27.9 ± 1.6% vs. 17.9 ± 3.1%; 150 ± 10, 169 ± 12 vs. 85 ± 6,
P<0.05). Meanwhile, the proportions of nuclear envelope breakdown
(NEBD) and premature chromosome condensation (PCC) were also increased in the embryos
derived from ~150 or ~225% enucleated cytoplasm compared to those from ~75% cytoplasm.
Moreover, HMC embryos derived from ~225% cytoplasm showed a decrease of global DNA
methylation from the 2-cell to the 4-cell stage in comparison with those of ~75% cytoplasm
(P<0.05). Furthermore, the expression of embryonic genome activation
(EGA) relative genes (eIF1A and U2AF) in HMC embryos
derived from ~225% cytoplasm at the 8-cell stages was also found to be enhanced compared
with that of the ~75% cytoplasm. Two of seven recipients were confirmed to be pregnant
following transfer of blastocysts derived from ~225% cytoplasm, and one healthy cloned
calf was delivered at the end of the gestation period, whereas no recipients were pregnant
after the transfer of blastocysts derived from ~75% cytoplasm. These results indicate that
the cytoplasmic volume of recipient oocytes affects donor nucleus reprogramming, and then
further accounted for the developmental ability of the reconstructed embryos.
Collapse
Affiliation(s)
- Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Chan Luo
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhulian Wu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yingming Wei
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jianrong Jiang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
12
|
Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 2018; 14:e1007412. [PMID: 29799838 PMCID: PMC5991768 DOI: 10.1371/journal.pgen.1007412] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/07/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
The N6-methyladenosine (m6A) modification is the most prevalent internal RNA modification in eukaryotes. The majority of m6A sites are found in the last exon and 3' UTRs. Here we show that the nuclear m6A reader YTHDC1 is essential for embryo viability and germline development in mouse. Specifically, YTHDC1 is required for spermatogonial development in males and for oocyte growth and maturation in females; Ythdc1-deficient oocytes are blocked at the primary follicle stage. Strikingly, loss of YTHDC1 leads to extensive alternative polyadenylation in oocytes, altering 3' UTR length. Furthermore, YTHDC1 deficiency causes massive alternative splicing defects in oocytes. The majority of splicing defects in mutant oocytes are rescued by introducing wild-type, but not m6A-binding-deficient, YTHDC1. YTHDC1 is associated with the pre-mRNA 3' end processing factors CPSF6, SRSF3, and SRSF7. Thus, YTHDC1 plays a critical role in processing of pre-mRNA transcripts in the oocyte nucleus and may have similar non-redundant roles throughout fetal development.
Collapse
Affiliation(s)
- Seth D. Kasowitz
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, United States of America
| | - Stephen J. Anderson
- Department of Biology, University of Pennsylvania, Philadelphia, United States of America
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America
| | - Yang Xu
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, United States of America
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, United States of America
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, United States of America
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
13
|
Quantitative and qualitative changes of mitochondria in human preimplantation embryos. J Assist Reprod Genet 2017; 34:573-580. [PMID: 28190213 DOI: 10.1007/s10815-017-0886-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022] Open
Abstract
PURPOSE The oxygen consumption rates (OCRs) in mice and cattle have been reported to change during preimplantation embryogenesis. On the other hand, mitochondrial DNA (mtDNA) copy number has been shown to be unchanged in mice and changed in cattle and pigs. The interactions between mitochondrial functions and mtDNA copy numbers in human embryos during preimplantation development remain obscure. METHODS Sixteen oocytes and 100 embryos were used to assess mtDNA copy numbers and OCR. Three oocytes and 12 embryos were used to determine cytochrome c oxidase activity. All specimens were obtained between July 2004 and November 2014, and donated from couples after they had given informed consent. Mature oocytes and embryos at 2-14-cell, morula, and blastocyst stages were used to assess their OCR in the presence or absence of mitotoxins. The mtDNA copy number was determined using the samples after analysis of OCR. The relationships between developmental stages and OCR, and developmental stages and mtDNA copy number were analyzed. Furthermore, cytochrome c oxidase activity was determined in oocytes and 4-cell to blastocyst stage embryos. RESULTS The structure of inner mitochondrial membranes and their respiratory function developed with embryonic growth and the mtDNA copy numbers decreased transiently compared with those of oocytes. The undifferentiated state of inner cell mass cells appears to be associated with a low OCR. On the other hand, the mtDNA copy numbers increased and aerobic metabolism of mitochondria increased in trophectoderm cells. CONCLUSIONS The mitochondrial respiratory function of human embryos developed along with embryonic growth although the copy numbers of mtDNA decreased transiently before blastulation. OCRs increased toward the morula stage ahead of an increase of mtDNA at the time of blastulation. Data regarding changes in mitochondrial function and mtDNA copy number during preimplantation development of human embryos will be useful for the development of ideal culture media.
Collapse
|
14
|
Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño-Roa L, Liu T, Metzger E, Servant N, Barillot E, Chen CJ, Schüle R, Heard E. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. eLife 2016; 5. [PMID: 26836306 PMCID: PMC4829419 DOI: 10.7554/elife.08851] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/25/2016] [Indexed: 12/29/2022] Open
Abstract
Upon fertilization, the highly specialised sperm and oocyte genomes are remodelled to confer totipotency. The mechanisms of the dramatic reprogramming events that occur have remained unknown, and presumed roles of histone modifying enzymes are just starting to be elucidated. Here, we explore the function of the oocyte-inherited pool of a histone H3K4 and K9 demethylase, LSD1/KDM1A during early mouse development. KDM1A deficiency results in developmental arrest by the two-cell stage, accompanied by dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns. At the transcriptional level, the switch of the maternal-to-zygotic transition fails to be induced properly and LINE-1 retrotransposons are not properly silenced. We propose that KDM1A plays critical roles in establishing the correct epigenetic landscape of the zygote upon fertilization, in preserving genome integrity and in initiating new patterns of genome expression that drive early mouse development. DOI:http://dx.doi.org/10.7554/eLife.08851.001 During fertilization, an egg cell and a sperm cell combine to make a cell called a zygote that then divides many times to form an embryo. Many of the characteristics of the embryo are determined by the genes it inherits from its parents. However, not all of these genes should be “expressed” to produce their products all of the time. One way of controlling gene expression is to add a chemical group called a methyl tag to the DNA near the gene, or to one of the histone proteins that DNA wraps around. Soon after fertilization, a process called reprogramming occurs that begins with the rearrangement of most of the methyl tags a zygote inherited from the egg and sperm cells. This dynamic process is thought to help to activate a new pattern of gene expression. Reprogramming is assisted by “maternal factors” that are inherited from the egg cell. KDM1A is a histone demethylase enzyme that can remove specific methyl tags from certain histone proteins, but how this affects the zygote is not well understood. Now, Ancelin et al. (and independently Wasson et al.) have investigated the role that KDM1A plays in mouse development. Ancelin et al. genetically engineered mouse eggs to lack KDM1A and used them to create zygotes, which die before or shortly after they have divided for the first time. The zygotes display severe reprogramming faults (because methyl tags accumulate at particular histones) and improper gene expression patterns, preventing a correct maternal-to-zygotic transition. Further experiments then showed that KDM1A also regulates the expression level of specific mobile elements, which indicates its importance in maintaining the integrity of the genome. These findings provide important insights on the crucial role of KDM1A in establishing the proper expression patterns in zygotes that are required for early mouse development. These findings might help us to understand how KDM1A enzymes, and histone demethylases more generally, perform similar roles in human development and diseases such as cancer. DOI:http://dx.doi.org/10.7554/eLife.08851.002
Collapse
Affiliation(s)
- Katia Ancelin
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Laurène Syx
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | - Maud Borensztein
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Noémie Ranisavljevic
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Ivaylo Vassilev
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | | | - Tao Liu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Eric Metzger
- Urologische Klinik und Zentrale Klinische Forschung, Freiburg, Germany
| | - Nicolas Servant
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | - Emmanuel Barillot
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | | | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Freiburg, Germany
| | - Edith Heard
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| |
Collapse
|
15
|
Ding F, Chen L, Liu Y, Wu FR, Ding B, Li WY, Wang R. Effects of alcohol on H3K9 acetylation in mouse pre-implantation embryos. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:54-8. [PMID: 25730462 DOI: 10.13918/j.issn.2095-8137.2015.1.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
It is well known that excessive long-term alcohol consumption is harmful, especially in pregnant women. In the present study, the Kunming white mouse was used as an animal model and indirect immunofluorescence was performed to analyze the toxic effects of alcohol on early pre-implantation embryos. H3K9 acetylation immunofluorescence could not be detected in MII oocytes. H3K9 acetylation levels in the treatment group were higher than in the control group during the morula stage, and contrary to results during the blastocyst stage. Other stages showed no obvious differences for in vivo embryos. For in vitro embryos, almost no difference was found between the two experimental groups across all stages, and both groups showed increasing H3K9 acetylation levels (except at the 2-cell stage). This study shows that H3K9 acetylation levels in early pre-implantation embryos are notably impacted by excessive alcohol ingestion by females. These data are the first step in understanding the epigenetic mechanism of alcohol toxicity in early pre-implantation mouse embryos.
Collapse
Affiliation(s)
- Fang Ding
- School of Life Science, Anhui University, Hefei 230601, China;School of biological and food engineering, Fuyang Teachers College, Fuyang 236037, China
| | - Li Chen
- School of Life Science, Anhui University, Hefei 230601, China;School of biological and food engineering, Fuyang Teachers College, Fuyang 236037, China
| | - Yong Liu
- School of biological and food engineering, Fuyang Teachers College, Fuyang 236037, China;Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang 236037, China
| | - Feng-Rui Wu
- School of biological and food engineering, Fuyang Teachers College, Fuyang 236037, China;Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang 236037, China
| | - Biao Ding
- School of biological and food engineering, Fuyang Teachers College, Fuyang 236037, China;Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang 236037, China
| | - Wen-Yong Li
- Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang 236037, China
| | - Rong Wang
- School of biological and food engineering, Fuyang Teachers College, Fuyang 236037, China.
| |
Collapse
|
16
|
Ma J, Fukuda Y, Schultz RM. Mobilization of Dormant Cnot7 mRNA Promotes Deadenylation of Maternal Transcripts During Mouse Oocyte Maturation. Biol Reprod 2015; 93:48. [PMID: 26134871 DOI: 10.1095/biolreprod.115.130344] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 11/01/2022] Open
Abstract
Maternal mRNAs in oocytes are remarkably stable. In mouse, oocyte maturation triggers a transition from mRNA stability to instability. This transition is a critical event in the oocyte-to-embryo transition in which a differentiated oocyte loses its identity as it is transformed into totipotent blastomeres. We previously demonstrated that phosphorylation of MSY2, an RNA-binding protein, and mobilization of mRNAs encoding the DCP1A-DCP2 decapping complex contribute to maternal mRNA destruction during meiotic maturation. We report here that Cnot7, Cnot6l, and Pan2, key components of deadenylation machinery, are also dormant maternal mRNAs that are recruited during oocyte maturation. Inhibiting the maturation-associated increase in CNOT7 (or CNOT6L) using a small interference RNA approach inhibits mRNA deadenylation, whereas inhibiting the increase in PAN2 has little effect. Reciprocally, expressing CNOT7 (or CNOT6L) in oocytes prevented from resuming meiosis initiates deadenylation of mRNAs. These effects on deadenylation are also observed when the total amount of poly (A) is quantified. Last, inhibiting the increase in CNOT7 protein results in an ~70% decrease in transcription in 2-cell embryos.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yusuke Fukuda
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Bai H, Li Y, Gao H, Dong Y, Han P, Yu H. Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development. Cytotechnology 2015; 68:849-59. [PMID: 25563599 DOI: 10.1007/s10616-014-9838-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/20/2014] [Indexed: 01/09/2023] Open
Abstract
Mammalian early embryonic development is controlled by a unique program of gene expression, and involves epigenetic reprogramming of histone modifications and DNA methylation. SET and MYND domain-containing protein 3 (SMYD3) is a histone H3 lysine 4 methyltransferase that plays important roles in transcription regulation. The expression of SMYD3 has been studied in some cancer cell lines. However, its expression in oocytes and embryos has not previously been reported. Here, we detected the SMYD3 mRNA and found that it was expressed throughout bovine oocyte in vitro maturation and early embryonic development. Microinjection of SMYD3 siRNA at germinal vesicle stage decreased the transcription level of NANOG, and blocked the development of in vitro fertilization embryos at 4-8 cell stage. Conversely, Microinjection of SMYD3 siRNA at pronuclear stage did not affect early embryonic development. Our findings suggest that SMYD3 regulates the expression of NANOG, and plays an essential role in bovine early embryonic development.
Collapse
Affiliation(s)
- Haidong Bai
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Haixia Gao
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Yanhua Dong
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Pengyong Han
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Haiquan Yu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
18
|
Histone Variants and Reprogramming in Early Development. EPIGENETIC MECHANISMS IN CELLULAR REPROGRAMMING 2015. [DOI: 10.1007/978-3-642-31974-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Pan X, Kong D, Liu L, Gao F, Zhang X, Tang B, Li Z. Development block of golden hamster ICSI embryos is associated with decreased expression of HDAC1, HSPA1A and MYC. Cell Biol Int 2014; 38:1280-90. [PMID: 24890342 DOI: 10.1002/cbin.10319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/06/2014] [Indexed: 02/06/2023]
Abstract
We have investigated the mechanism for embryo development block in vitro and to improve the development rate of golden hamster embryos in vitro. Intracytoplasmic sperm injection (ICSI) technique was used to produce golden hamster ICSI embryos. The changes in the histone acetylation and the expression of histone deacetylase and related genes were analyzed by immunocytochemical staining and real-time PCR both in golden hamster in vivo embryos and in ICSI embryos. Aged oocytes significantly increased the oocyte spontaneous activation rate. In vitro cultured ICSI embryos suffered from severe development block in M199TE medium. Expression of histone deacetylase 1 (HDAC1) was significantly decreased in the nuclei of the arrested ICSI 2-cell embryos, and its nuclear and cytoplasmic expression pattern was also markedly altered. The acetylation level of H4K5, however, was not significantly changed between golden hamster in vivo embryos and ICSI embryos. HSPA1A and MYC, the marker genes for zygotic genome activation (ZGA), were transcriptionally decreased in arrested ICSI 2-cell embryos. Transcription of HDAC1 was also downregulated in these embryos, whereas the mRNA expression of the proapoptotic gene, BAX, was not changed. These results indicate that the golden hamster ICSI embryo development block during ZGA is associated with decreased nuclear expression and altered expression of HDAC1. HSPA1A, MYC, and HDAC1 mRNA levels, which decrease, resulting in ZGA failure.
Collapse
Affiliation(s)
- Xiaoyan Pan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, the Center for Animal Embryo Engineering of Jilin Province, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; Department of Histology and Embryology, Jilin Medical College, Jilin, Jilin 132013, China
| | | | | | | | | | | | | |
Collapse
|
20
|
García-López J, Hourcade JDD, Alonso L, Cárdenas DB, del Mazo J. Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:463-75. [PMID: 24769224 DOI: 10.1016/j.bbagrm.2014.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
A set of small RNAs known as rasRNAs (repeat-associated small RNAs) have been related to the down-regulation of Transposable Elements (TEs) to safeguard genome integrity. Two key members of the rasRNAs group are piRNAs and endo-siRNAs. We have performed a comparative analysis of piRNAs and endo-siRNAs present in mouse oocytes, spermatozoa and zygotes, identified by deep sequencing and bioinformatic analysis. The detection of piRNAs and endo-siRNAs in the spermatozoa and revealed also in zygotes, hints to their potential delivery to oocytes during fertilization. However, a comparative assessment of the three cell types indicates that both piRNAs and endo-siRNAs are mainly maternally inherited. Finally, we have assessed the role of the different rasRNA molecules in connection with amplification processes by way of the "ping-pong cycle". Our results suggest that the ping-pong cycle can act on other rasRNAs, such as tRNA- and rRNA-derived fragments, thus not only being restricted to TEs during gametogenesis.
Collapse
Affiliation(s)
- Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juan de Dios Hourcade
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Lola Alonso
- Bioinformatics Service, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - David B Cárdenas
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
21
|
Lee AR, Thanh Ha L, Kishigami S, Hosoi Y. Abnormal lysine acetylation with postovulatory oocyte aging. Reprod Med Biol 2013; 13:81-86. [PMID: 29699152 DOI: 10.1007/s12522-013-0172-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022] Open
Abstract
Background A postovulatory mammalian oocyte decreases developmental potential with in vivo aging in the oviduct or in vitro aging in the culture dish. The mechanism underlying oocyte aging still largely remains an enigma. Accumulating data suggest that the epigenetic alterations such as histone acetylation are also associated with postovulatory aging. Objective To perform a review evaluating a new aspect of oocyte aging in terms of the epigenetic alterations focusing on lysine acetylation. Methods In addition to a search of the literature in Pubmed, we introduced our recent published data. Results Histone acetylation in the mouse oocyte increases during aging, potentially impacting gene regulation in the subsequent embryonic development. Oocyte aging results in increased acetylation of alpha-tubulin, a non-histone protein, and nicotinamide, an inhibitor of class III HDAC, partially prevents some of oocyte aging phenotypes. Conclusion Abnormal regulation of protein acetylation itself is suggested in oocyte aging and could contribute to the aging phenotypes.
Collapse
Affiliation(s)
- Ah Reum Lee
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology Kinki University 649-6493 Kinokawa Wakayama Japan
| | - Le Thanh Ha
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology Kinki University 649-6493 Kinokawa Wakayama Japan
| | - Satoshi Kishigami
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology Kinki University 649-6493 Kinokawa Wakayama Japan.,PRESTO, Japan Science and Technology Agency 332-0012 Kawaguchi Saitama Japan
| | - Yoshihiko Hosoi
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology Kinki University 649-6493 Kinokawa Wakayama Japan
| |
Collapse
|
22
|
Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110329. [PMID: 23166393 DOI: 10.1098/rstb.2011.0329] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
23
|
Matsubara K, Lee AR, Kishigami S, Ito A, Matsumoto K, Chi H, Nishino N, Yoshida M, Hosoi Y. Dynamics and regulation of lysine-acetylation during one-cell stage mouse embryos. Biochem Biophys Res Commun 2013; 434:1-7. [DOI: 10.1016/j.bbrc.2013.03.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
|
24
|
Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 2012; 487:57-63. [PMID: 22722858 PMCID: PMC3395470 DOI: 10.1038/nature11244] [Citation(s) in RCA: 771] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/21/2012] [Indexed: 12/05/2022]
Abstract
Embryonic stem (ES) cells are derived from blastocyst stage embryos and are believed to be functionally equivalent to the inner cell mass, which lacks the ability to produce all extraembryonic tissues. Here we report the identification of a rare transient cell population within mouse ES and induced pluripotent stem (iPS) cell cultures that express high levels of transcripts found in two-cell (2C) embryos in which the blastomeres are totipotent. We genetically tagged these 2C-like ES cells and show that they lack the ICM pluripotency proteins Oct4, Sox2, and Nanog and have acquired the ability to contribute to both embryonic and extraembryonic tissues. We show that nearly all ES cells cycle in and out of this privileged state, which we find is partially controlled by histone modifying enzymes. Transcriptome sequencing and bioinformatic analyses revealed that a significant number of 2C-transcripts are initiated from long terminal repeats derived from murine endogenous retroviruses, suggesting this foreign sequence has helped to drive cell fate regulation in placental mammals.
Collapse
|
25
|
Kanka J, Nemcova L, Toralova T, Vodickova-Kepkova K, Vodicka P, Jeseta M, Machatkova M. Association of the transcription profile of bovine oocytes and embryos with developmental potential. Anim Reprod Sci 2012; 134:29-35. [PMID: 22951116 DOI: 10.1016/j.anireprosci.2012.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although improvements in culture system have enhanced in vitro embryo production, success rates are still not adequate. The reasons for developmental arrest of a part of in vitro produced embryos are unknown, but are connected in part with low cytoplasmic competence of oocytes. The immaturity of cytoplasm can negatively influence fertilization efficiency and subsequent progression through embryonic genome activation (EGA), which are necessary steps in further pre-implantation development. A large number of studies have compared mRNA abundance among oocytes with different developmental competence with the aim to find markers of the normal embryo development. The amount of mitochondrial DNA (mtDNA) and mRNA for mitochondrial transcriptional factors directing oxidative phosphorylation belongs to such promising markers. Nevertheless, recently published studies revealed that the mammalian embryo is able to compensate for a reduced level of mtDNA in oocyte during subsequent pre-implantation development. The search for other molecular markers is in progress. Characterization of oocyte and embryonic mRNA expression patterns during the pre-implantation period, and their relationship to the successful in vitro and in vivo development will be essential for defining the optimized culture conditions or the nuclear transfer protocols. Microarrays technology enables us to reveal the differentially expressed genes during EGA, and to compare the expression profile of in vivo and in vitro produced embryos. Recent evidence indicates that the depletion of the pool of stored maternal mRNAs is critical for subsequent embryo development. All these experiments gradually offer a list of possible candidates for quality and developmental competence markers for mammalian oocytes and pre-implantation embryos.
Collapse
Affiliation(s)
- J Kanka
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, v.v.i., 277 21 Liběchov, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
26
|
Jenkins TG, Carrell DT. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet 2012; 3:143. [PMID: 23024648 PMCID: PMC3442791 DOI: 10.3389/fgene.2012.00143] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/13/2012] [Indexed: 12/14/2022] Open
Abstract
Embryonic development is a complex and dynamic process with frequent changes in gene expression, ultimately leading to cellular differentiation and commitment of various cell lines. These changes are likely preceded by changes to signaling cascades and/or alterations to the epigenetic program in specific cells. The process of epigenetic remodeling begins early in development. In fact, soon after the union of sperm and egg massive epigenetic changes occur across the paternal and maternal epigenetic landscape. The epigenome of these cells includes modifications to the DNA itself, in the form of DNA methylation, as well as nuclear protein content and modification, such as modifications to histones. Sperm chromatin is predominantly packaged by protamines, but following fertilization the sperm pronucleus undergoes remodeling in which maternally derived histones replace protamines, resulting in the relaxation of chromatin and ultimately decondensation of the paternal pronucleus. In addition, active DNA demethylation occurs across the paternal genome prior to the first cell division, effectively erasing many spermatogenesis derived methylation marks. This complex interplay begins the dynamic process by which two haploid cells unite to form a diploid organism. The biology of these events is central to the understanding of sexual reproduction, yet our knowledge regarding the mechanisms involved is extremely limited. This review will explore what is known regarding the post-fertilization epigenetic alterations of the paternal chromatin and the implications suggested by the available literature.
Collapse
Affiliation(s)
- Timothy G Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
27
|
Verma A, Kumar P, Rajput S, Roy B, De S, Datta T. Embryonic genome activation events in buffalo (Bubalus bubalis) preimplantation embryos. Mol Reprod Dev 2012; 79:321-8. [DOI: 10.1002/mrd.22027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/25/2012] [Indexed: 11/11/2022]
|
28
|
Li Y, O'Neill C. Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS One 2012; 7:e30687. [PMID: 22292019 PMCID: PMC3266909 DOI: 10.1371/journal.pone.0030687] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/22/2011] [Indexed: 12/31/2022] Open
Abstract
Normal development of the mammalian embryo requires epigenetic reprogramming of the genome. The level of cytosine methylation of CpG-rich (5meC) regions of the genome is a major epigenetic regulator and active global demethylation of 5meC throughout the genome is reported to occur within the first cell-cycle following fertilization. An enzyme or mechanism capable of catalysing such rapid global demethylation has not been identified. The mouse is a widely used model for studying developmental epigenetics. We have reassessed the evidence for this phenomenon of genome-wide demethylation following fertilisation in the mouse. We found when using conventional methods of immunolocalization that 5meC showed a progressive acid-resistant antigenic masking during zygotic maturation which gave the appearance of demethylation. Changing the unmasking strategy by also performing tryptic digestion revealed a persistence of a methylated state. Analysis of methyl binding domain 1 protein (MBD1) binding confirmed that the genome remained methylated following fertilisation. The maintenance of this methylated state over the first several cell-cycles required the actions of DNA methyltransferase activity. The study shows that any 5meC remodelling that occurs during early development is not explained by a global active loss of 5meC staining during the cleavage stage of development and global loss of methylation following fertilization is not a major component of epigenetic reprogramming in the mouse zygote.
Collapse
Affiliation(s)
- Yan Li
- Sydney Medical School, Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Chris O'Neill
- Sydney Medical School, Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
29
|
Kafer GR, Kaye PL, Pantaleon M, Moser RJ, Lehnert SA. In Vitro Manipulation of Mammalian Preimplantation Embryos Can Alter Transcript Abundance of Histone Variants and Associated Factors. Cell Reprogram 2011; 13:391-401. [DOI: 10.1089/cell.2011.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Georgia R. Kafer
- CSIRO Food Futures National Research Flagship, Australia
- CSIRO Livestock Industries, St. Lucia, Brisbane, QLD Australia
- The University of Queensland, School of Biomedical Sciences, St. Lucia, Brisbane, QLD Australia
| | - Peter L. Kaye
- The University of Queensland, School of Biomedical Sciences, St. Lucia, Brisbane, QLD Australia
| | - Marie Pantaleon
- The University of Queensland, School of Biomedical Sciences, St. Lucia, Brisbane, QLD Australia
| | - Ralf J. Moser
- CSIRO Livestock Industries, St. Lucia, Brisbane, QLD Australia
| | - Sigrid A. Lehnert
- CSIRO Food Futures National Research Flagship, Australia
- CSIRO Livestock Industries, St. Lucia, Brisbane, QLD Australia
| |
Collapse
|
30
|
Isachenko V, Maettner R, Sterzik K, Strehler E, Kreinberg R, Hancke K, Roth S, Isachenko E. In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod Biomed Online 2011; 22:536-44. [DOI: 10.1016/j.rbmo.2011.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/29/2011] [Accepted: 02/02/2011] [Indexed: 12/26/2022]
|
31
|
Differential gene expression and developmental competence in in vitro produced bovine embryos. ZYGOTE 2011; 20:281-90. [DOI: 10.1017/s0967199411000141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe embryonic developmental block occurs at the 8-cell stage in cattle and is characterized by a lengthening of the cell cycle and an increased number of embryos that stop development. The maternal-embryonic transition arises at the same stage resulting in the transcription of many genes. Gene expression studies during this stage may contribute to the understanding of the physiological mechanisms involved in the maternal-embryonic transition. Herein we identified genes differentially expressed between embryos with high or low developmental competence to reach the blastocyst stage using differential display PCR. Embryos were analysed according to developmental kinetics: fast cleavage embryos showing 8 cells at 48 h post insemination (hpi) with high potential of development (F8), and embryos with slow cleavage presenting 4 cells at 48 hpi (S4) and 8 cells at 90 hpi (S8), both with reduced rates of development to blastocyst. The fluorescence DDPCR method was applied and allowed the recovery of 176 differentially expressed bands with similar proportion between high and low development potential groups (52% to F8 and 48% in S4 and S8 groups). A total of 27 isolated fragments were cloned and sequenced, confirming the expected primer sequences and allowing the identification of 27 gene transcripts. PI3KCA and ITM2B were chosen for relative quantification of mRNA using real-time PCR and showed a kinetic and a time-related pattern of expression respectively. The observed results suggest the existence of two different embryonic genome activation mechanisms: fast-developing embryos activate genes related to embryonic development, and slow-developing embryos activate genes related to cellular survival and/or death.
Collapse
|
32
|
Mezzalira JC, Ohlweiler LU, da Costa Gerger RP, Casali R, Vieira FK, Ambrósio CE, Miglino MA, Rodrigues JL, Mezzalira A, Bertolini M. Production of bovine hand-made cloned embryos by zygote-oocyte cytoplasmic hemi-complementation. Cell Reprogram 2011; 13:65-76. [PMID: 21241164 DOI: 10.1089/cell.2010.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the effect of the cytoplast type and activation process on development of cloned embryos. Bovine oocytes (MII) or zygotes at the one-cell stage (IVF) were manually bisected and segregated in MII or IVF hemi-cytoplasts or hemi-karyoplasts. Adult skin cells from a bovine female were used as nucleus donors (SC). Experimental groups were composed of IVF embryos; parthenogenetic embryos; hand-made cloned (HMC) embryos; and reconstructed HMC embryos using IVF hemi-cytoplast + MII hemi-cytoplast + SC (G-I); IVF hemi-cytoplast + IVF hemi-cytoplast + SC (G-II); MII hemi-cytoplast + IVF hemi-karyoplast (G-III); and IVF hemi-cytoplast + IVF hemi-karyoplast (G-IV). Embryos from G-I to G-IV were allocated to subgroups as sperm-activated (SA) or were further chemically activated (SA + CA). Embryos from all groups and subgroups were in vitro cultured in the WOW system. Blastocyst development in subgroup G-I SA (28.2%) was similar to IVF (27.0%) and HMC (31.4%) controls, perhaps due to a to a more suitable activation process and/or better complementation of cytoplasmic reprogramming factors, with the other groups and subgroups having lower levels of development. No blastocyst development was observed when using IVF hemi-karyoplasts (G-III and G-IV), possibly due to the manipulation process during a sensitive biological period. In summary, the presence of cytoplasmic factors from MII hemi-oocytes and the sperm activation process from hemi-zygotes appear to be necessary for adequate in vitro development, as only the zygote-oocyte hemi-complementation was as efficient as controls for the generation of bovine cloned blastocysts.
Collapse
Affiliation(s)
- Joana Claudia Mezzalira
- Animal Reproduction Laboratory, Center of Agronomy and Veterinary Sciences (CAV), Santa Catarina State University (UDESC) , Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
KANG H, ROH S. Extended Exposure to Trichostatin A after Activation Alters the Expression of Genes Important for Early Development in Nuclear Transfer Murine Embryos. J Vet Med Sci 2011; 73:623-31. [DOI: 10.1292/jvms.10-0492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hoin KANG
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS 21, Seoul National University School of Dentistry
| | - Sangho ROH
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS 21, Seoul National University School of Dentistry
| |
Collapse
|
34
|
Bui HT, Wakayama S, Mizutani E, Park KK, Kim JH, Van Thuan N, Wakayama T. Essential role of paternal chromatin in the regulation of transcriptional activity during mouse preimplantation development. Reproduction 2010; 141:67-77. [PMID: 20974742 DOI: 10.1530/rep-10-0109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several lines of evidence indicate that the formation of a transcriptionally repressive state during the two-cell stage in the preimplantation mouse embryo is superimposed on the activation of the embryonic genome. However, it is difficult to determine the profile of newly synthesized (nascent) RNA during this phase because large amounts of maternal RNA accumulate in maturing oocytes to support early development. Using 5-bromouridine-5'-triphosphate labeling of RNA, we have verified that nascent RNA synthesis was repressed between the two-cell and four-cell transition in normally fertilized but not in parthenogenetic embryos. Moreover, this repression was contributed by sperm (male) chromatin, which we confirmed by studying androgenetic embryos. The source of factors responsible for repressing nascent RNA production was investigated using different stages of sperm development. Fertilization with immature round spermatids resulted in a lower level of transcriptional activity than with ICSI at the two-cell stage, and this was consistent with further repression at the four-cell stage in the ICSI group. Finally, study on DNA replication and chromatin remodeling was performed using labeled histones H3 and H4 to differentiate between male and female pronuclei. The combination of male and female chromatin appeared to decrease nascent RNA production in the fertilized embryo. This study indicates that paternal chromatin is important in the regulation of transcriptional activity during mouse preimplantation development and that this capacity is acquired during spermiogenesis.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
35
|
Godmann M, May E, Kimmins S. Epigenetic mechanisms regulate stem cell expressed genes Pou5f1 and Gfra1 in a male germ cell line. PLoS One 2010; 5:e12727. [PMID: 20856864 PMCID: PMC2939054 DOI: 10.1371/journal.pone.0012727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/19/2010] [Indexed: 01/15/2023] Open
Abstract
Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes.
Collapse
Affiliation(s)
- Maren Godmann
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Erin May
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Sarah Kimmins
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
36
|
Hu J, Wang F, Yuan Y, Zhu X, Wang Y, Zhang Y, Kou Z, Wang S, Gao S. Novel importin-alpha family member Kpna7 is required for normal fertility and fecundity in the mouse. J Biol Chem 2010; 285:33113-33122. [PMID: 20699224 DOI: 10.1074/jbc.m110.117044] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear importing system and nuclear factors play important roles in mediating nuclear reprogramming and zygotic gene activation. However, the components and mechanisms that mediate nuclearly specific targeting of the nuclear proteins during nuclear reprogramming and zygotic gene activation remain largely unknown. Here, we identified a novel member of the importin-α family, AW146299(KPNA7), which is predominantly expressed in mouse oocytes and zygotes and localizes to the nucleus or spindle. Mutation of Kpna7 gene caused reproductivity reduction and sex imbalance by inducing preferential fetal lethality in females. Parthenogenesis analysis showed that the cell cycle of activated one-cell embryos is loss of control and ahead of schedule but finally failed to develop into blastocyst stage. Further RT-PCR and epigenetic modification analysis showed that knocking out of Kpna7 induced abnormalities of gene expression (dppa2, dppa4, and piwil2) and epigenetic modifications (down-regulation of histone H3K27me3). Biochemical analysis showed that KPNA7 interacts with KPNB1 (importin-β1). In summary, we identified a novel Kpna7 gene that is required for normal fertility and fecundity.
Collapse
Affiliation(s)
- Jianjun Hu
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Fengchao Wang
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Ye Yuan
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaoquan Zhu
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Yixuan Wang
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Yu Zhang
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaohui Kou
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Shufang Wang
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Shaorong Gao
- From the National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
37
|
Ono T, Li C, Mizutani E, Terashita Y, Yamagata K, Wakayama T. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice. Biol Reprod 2010; 83:929-37. [PMID: 20686182 DOI: 10.1095/biolreprod.110.085282] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.
Collapse
Affiliation(s)
- Tetsuo Ono
- Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
38
|
St. John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 2010; 16:488-509. [DOI: 10.1093/humupd/dmq002] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
39
|
Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod 2010; 25:613-22. [PMID: 20047936 DOI: 10.1093/humrep/dep449] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite advances in in vitro manipulation of preimplantation embryos, there is still a reduction in the quality of embryos produced leading to lower pregnancy rates compared with embryos produced in vivo. We hypothesized that a dynamic microfunnel embryo culture system would enhance outcomes by better mimicking the fluid-mechanical and biochemical stimulation embryos experience in vivo from ciliary currents and oviductal contractions. METHODS AND RESULTS Mouse embryos were cultured in microdrop-static control, microfunnel-static control or microfunnel-dynamic conditions with microfluidics. All groups tested had greater than 90% total blastocyst development from zygotes after 96 h culture. Blastocyst developmental stage was significantly enhanced (P < 0.01) under dynamic microfunnel culture conditions as evidenced by an increased percentage of hatching or hatched blastocysts (Microdrop-control 31%; Microfunnel-control 23%; Microfunnel-pulsatile 71%) and significantly higher (P < 0.01) average number of cells per blastocyst (Microdrop-control 67 +/- 3; Microfunnel-control 60 +/- 3; Microfunnel-pulsatile 109 +/- 5). Blastocyst cell numbers in dynamic microfunnel cultures (109 +/- 5) more closely matched numbers obtained from in vivo grown blastocysts (144 +/- 9). Importantly, dynamic microfunnel culture significantly improved embryo implantation and ongoing pregnancy rates over static culture to levels approaching that of in utero derived preimplantation embryos. CONCLUSIONS The improved pregnancy outcomes along with the simple and user-friendly design of the microfluidic/microfunnel system has potential to alleviate many inefficiencies in embryo production for biomedical research, genetic gain in domestic species and assisted reproductive technologies in humans.
Collapse
Affiliation(s)
- Y S Heo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Hu J, Wang F, Zhu X, Yuan Y, Ding M, Gao S. Mouse ZAR1-like (XM_359149) colocalizes with mRNA processing components and its dominant-negative mutant caused two-cell-stage embryonic arrest. Dev Dyn 2009; 239:407-24. [DOI: 10.1002/dvdy.22170] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
42
|
Bogolyubova NA, Bogolyubova IO. Actin localization in nuclei of two-cell mouse embryos. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09050034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Jin XL, O'Neill C. The presence and activation of two essential transcription factors (cAMP response element-binding protein and cAMP-dependent transcription factor ATF1) in the two-cell mouse embryo. Biol Reprod 2009; 82:459-68. [PMID: 19776387 DOI: 10.1095/biolreprod.109.078758] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The expression of two members of an important family of transcription factors, cAMP response element-binding protein (CREB) and cAMP-dependent transcription factor ATF1 (ATF1), is essential for normal preimplantation development. There is a high degree of functional similarity between these two transcription factors, and they can both homodimerize and heterodimerize with each other to form active transcription factors. CREB is present in all stages of mouse preimplantation embryo, and we show here that ATF1 is localized to the nucleus in all preimplantation stages. Activation of these transcription factors requires their phosphorylation, and this was only observed to occur for both transcription factors (serine 133 phosphorylation of CREB and serine 63 phosphorylation of ATF1) at the two-cell stage. Nuclear localization and phosphorylation of ATF1 were constitutive. The nuclear localization and phosphorylation of CREB showed a constitutive component that was further induced by the autocrine embryotropin Paf (1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Activation of CREB by Paf was independent of cAMP but was dependent on calcium, calmodulin, and calmodulin-dependent kinase activity. ATF1 nuclear localization was unaffected by inhibition of the calcium/calmodulin pathway. A complex pattern of expression of calmodulin-dependent kinases was observed throughout preimplantation development. At the two-cell stage, only mRNAs coding for calmodulin-dependent protein kinase kinase beta, calmodulin-dependent protein kinase II gamma, and calmodulin-dependent protein kinase IV were detected. A selective antagonist for calmodulin-dependent protein kinase kinase (STO-609) and calmodulin-dependent protein kinases I, II, and IV (KN-62) blocked the Paf-induced phosphorylation of CREB. The study demonstrates a role for trophic signaling and constitutive activation of two essential transcription factors at the time of zygotic genome activation.
Collapse
Affiliation(s)
- X L Jin
- Human Reproduction Unit, Sydney Centre for Developmental and Regenerative Medicine, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
44
|
Huang CJ, Lin WY, Chang CM, Choo KB. Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences. BMC Mol Biol 2009; 10:74. [PMID: 19630990 PMCID: PMC2724483 DOI: 10.1186/1471-2199-10-74] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/25/2009] [Indexed: 01/22/2023] Open
Abstract
Background Retrotransposition is an important evolutionary force for the creation of new and potentially functional intronless genes which are collectively called retrogenes. Many retrogenes are expressed in the testis and the gene products have been shown to actively participate in spermatogenesis and other unique functions of the male germline. We have previously reported a cluster of retrogenes in the rat genome that encode putative TRAF- and POZ-domain proteins. Two of the genes, Rtdpoz-T1 and -T2 (abbreviated as T1 and T2), have further been shown to be expressed specifically in the rat testis. Results We show here that the T1 and T2 genes are also expressed in the rat embryo up to days 16–17 of development when the genes are silenced until being re-activated in the adult testis. On database interrogation, we find that some T1/T2 exons are chromosomally duplicated as cassettes of 2 or 3 exons consistent with retro-duplication. The embryonic T1/T2 transcripts, characterised by RT-PCR-cloning and rapid amplification of cDNA ends, are further found to have acquired one or more noncoding exons in the 5'-untranslated region (5'-UTR). Most importantly, the T1/T2 locus is embedded within a dense field of relics of transposable element (TE) derived mainly from LINE1 and ERV sequences, and the TE sequences are frequently exonised through alternative splicing to form the 5'-UTR sequences of the T1/T2 transcripts. In a case of T1 transcript, the 3'-end is extended into and terminated within an L1 sequence. Since the two genes share a common exon 1 and are, therefore, regulated by a single promoter, a T2-to-T1 co-transcription model is proposed. We further demonstrate that the exonised 5'-UTR TE sequences could lead to the creation of upstream open reading frames resulting in translational repression. Conclusion Exonisation of TE sequences is a frequent event in the transcription of retrogenes during embryonic development and in the testis and may contribute to post-transcriptional regulation of expression of retrogenes.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science, School of Agriculture, Chinese Culture University, Yang-Ming-Shan, Taipei, Taiwan.
| | | | | | | |
Collapse
|
45
|
Shi L, Wu J. Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 2009; 7:59. [PMID: 19500360 PMCID: PMC2702308 DOI: 10.1186/1477-7827-7-59] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/05/2009] [Indexed: 12/11/2022] Open
Abstract
Preimplantation embryo development involves four stages: fertilization, cell cleavage, morula and blastocyst formation. During these stages, maternal and zygotic epigenetic factors play crucial roles. The gene expression profile is changed dramatically, chromatin is modified and core histone elements undergo significant changes. Each preimplantation embryo stage has its own characteristic epigenetic profile, consistent with the acquisition of the capacity to support development. Moreover, histone modifications such as methylation and acetylation as well as other epigenetic events can act as regulatory switches of gene transcription. Because the epigenetic profile is largely related to differentiation, epigenetic dysfunction can give rise to developmental abnormalities. Thus, epigenetic profiling of the embryo is of pivotal importance clinically. Given the importance of these aspects, this review will mainly focus on the epigenetic profile during preimplantation embryo development, as well as interactions between epigenetic and genetic regulation in these early developmental stages.
Collapse
Affiliation(s)
- Lingjun Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ji Wu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
46
|
Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod 2009; 81:525-30. [PMID: 19386991 DOI: 10.1095/biolreprod.109.077016] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The National Institutes of Health (NIH) miniature pig was developed specifically for xenotransplantation and has been extensively used as a large-animal model in many other biomedical experiments. However, the cloning efficiency of this pig is very low (<0.2%), and this has been an obstacle to the promising application of these inbred swine genetics for biomedical research. It has been demonstrated that increased histone acetylation in somatic cell nuclear transfer (SCNT) embryos, by applying a histone deacetylase (HDAC) inhibitor such as trichostatin A (TSA), significantly enhances the developmental competence in several species. However, some researchers also reported that TSA treatment had various detrimental effects on the in vitro and in vivo development of the SCNT embryos. Herein, we report that treatment with 500 nM 6-(1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide (termed scriptaid), a novel HDAC inhibitor, significantly enhanced the development of SCNT embryos to the blastocyst stage when NIH inbred fetal fibroblast cells (FFCs) were used as donors compared with the untreated group (21% vs. 9%, P < 0.05). Scriptaid treatment resulted in eight pregnancies from 10 embryo transfers (ETs) and 14 healthy NIH miniature pigs from eight litters, while no viable piglets (only three mummies) were obtained from nine ETs in the untreated group. Thus, scriptaid dramatically increased the cloning efficiency when using inbred genetics from 0.0% to 1.3%. In contrast, scriptaid treatment decreased the blastocyst rate in in vitro fertilization embryos (from 37% to 26%, P < 0.05). In conclusion, the extremely low cloning efficiency in the NIH miniature pig may be caused by its inbred genetic background and can be improved by alteration of genomic histone acetylation patterns.
Collapse
Affiliation(s)
- Jianguo Zhao
- National Swine Resource and Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Facucho-Oliveira JM, St John JC. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 2009; 5:140-58. [PMID: 19521804 DOI: 10.1007/s12015-009-9058-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/04/2009] [Indexed: 01/01/2023]
Abstract
Pluripotent blastomeres of mammalian pre-implantation embryos and embryonic stem cells (ESCs) are characterized by limited oxidative capacity and great reliance on anaerobic respiration. Early pre-implantation embryos and undifferentiated ESCs possess small and immature mitochondria located around the nucleus, have low oxygen consumption and express high levels of glycolytic enzymes. However, as embryonic cells and ESCs lose pluripotency and commit to a specific cell fate, the expression of mtDNA transcription and replication factors is upregulated and the number of mitochondria and mtDNA copies/cell increases. Moreover, upon cellular differentiation, mitochondria acquire an elongated morphology with swollen cristae and dense matrices, migrate into wider cytoplasmic areas and increase the levels of oxygen consumption and ATP production as a result of the activation of the more efficient, aerobic metabolism. Since pluripotency seems to be associated with anaerobic metabolism and a poorly developed mitochondrial network and differentiation leads to activation of mitochondrial biogenesis according to the metabolic requirements of the specific cell type, it is hypothesized that reprogramming of somatic cells towards a pluripotent state, by somatic cell nuclear transfer (SCNT), transcription-induced pluripotency or creation of pluripotent cell hybrids, requires acquisition of mitochondrial properties characteristic of pluripotent blastomeres and ESCs.
Collapse
Affiliation(s)
- J M Facucho-Oliveira
- The Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Warwick CV2 2DX, UK
| | | |
Collapse
|
48
|
Wilkerson DC, Sarge KD. RNA polymerase II interacts with the Hspa1b promoter in mouse epididymal spermatozoa. Reproduction 2009; 137:923-9. [PMID: 19336471 DOI: 10.1530/rep-09-0015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Hspa1b (Hsp70.1) gene is one of the first genes expressed after fertilization, with expression occurring during the minor zygotic genome activation (ZGA) in the absence of stress. This expression can take place in the male pronucleus as early as the one-cell stage of embryogenesis. The importance of HSPA1B for embryonic viability during times of stress is supported by studies showing that depletion of this protein results in a significant reduction in embryos developing to the blastocyte stage. Recently, we have begun addressing the mechanism responsible for allowing expression of Hspa1b during the minor ZGA and found that heat shock transcription factor (HSF) 1 and 2 bind the Hspa1b promoter during late spermatogenesis. In this report, we have extended those studies using western blots and chromatin immunoprecipitation assays and found that RNA polymerase II (Pol II) is present in epididymal spermatozoa and bound to the Hspa1b promoter. These present results, in addition to our previous results, support a model in which the binding of HSF1, HSF2, SP1, and Pol II to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.
Collapse
Affiliation(s)
- Donald C Wilkerson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
49
|
Maciejewska Z, Polanski Z, Kisiel K, Kubiak JZ, Ciemerych MA. Spindle assembly checkpoint-related failure perturbs early embryonic divisions and reduces reproductive performance of LT/Sv mice. Reproduction 2009; 137:931-42. [PMID: 19279200 DOI: 10.1530/rep-09-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The phenotype of the LT/Sv strain of mice is manifested by abnormalities in oocyte meiotic cell-cycle, spontaneous parthenogenetic activation, teratomas formation, and frequent occurrence of embryonic triploidy. These abnormalities lead to the low rate of reproductive success. Recently, metaphase I arrest of LT/Sv oocytes has been attributed to the inability to timely inactivate the spindle assembly checkpoint (SAC). As differences in meiotic and mitotic SAC functioning were described, it remains obscure whether this abnormality is limited to the meiosis or also impinges on the mitotic divisions of LT/Sv embryos. Here, we show that a failure to inactivate SAC affects mitoses during preimplantation development of LT/Sv embryos. This is manifested by the prolonged localization of MAD2L1 on kinetochores of mitotic chromosomes and abnormally lengthened early embryonic M-phases. Moreover, LT/Sv embryos exhibit elevated frequency of abnormal chromosome separation during the first mitotic division. These abnormalities participate in severe impairment of preimplantation development and significantly decrease the reproductive success of this strain of mice. Thus, the common meiosis and mitosis SAC-related failure participates in a complex LT/Sv phenotype.
Collapse
Affiliation(s)
- Zuzanna Maciejewska
- Department of Embryology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
50
|
Nonchev S, Cassoly E. The Pronuclei - 20 Years Later. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10817606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|