1
|
Keane JA, Ealy AD. An Overview of Reactive Oxygen Species Damage Occurring during In Vitro Bovine Oocyte and Embryo Development and the Efficacy of Antioxidant Use to Limit These Adverse Effects. Animals (Basel) 2024; 14:330. [PMID: 38275789 PMCID: PMC10812430 DOI: 10.3390/ani14020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The in vitro production (IVP) of bovine embryos has gained popularity worldwide and in recent years and its use for producing embryos from genetically elite heifers and cows has surpassed the use of conventional superovulation-based embryo production schemes. There are, however, several issues with the IVP of embryos that remain unresolved. One limitation of special concern is the low efficiency of the IVP of embryos. Exposure to reactive oxygen species (ROS) is one reason why the production of embryos with IVP is diminished. These highly reactive molecules are generated in small amounts through normal cellular metabolism, but their abundances increase in embryo culture because of oocyte and embryo exposure to temperature fluctuations, light exposure, pH changes, atmospheric oxygen tension, suboptimal culture media formulations, and cryopreservation. When uncontrolled, ROS produce detrimental effects on the structure and function of genomic and mitochondrial DNA, alter DNA methylation, increase lipid membrane damage, and modify protein activity. Several intrinsic enzymatic pathways control ROS abundance and damage, and antioxidants react with and reduce the reactive potential of ROS. This review will focus on exploring the efficiency of supplementing several of these antioxidant molecules on oocyte maturation, sperm viability, fertilization, and embryo culture.
Collapse
Affiliation(s)
| | - Alan D. Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| |
Collapse
|
2
|
Nagai T. How I overcame problems in in vitro fertilisation of livestock animals. Reprod Fertil Dev 2023; 36:27-33. [PMID: 38064191 DOI: 10.1071/rd23162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
In my research life of 35years, growing with IETS as a researcher of in vitro maturation and fertilisation (IVM/IVF) of porcine and cattle oocytes, I suffered from hard times related to solving problems that prevented the progress of my research and conferment of my degrees. Many researchers may have similar problems. Thus, I would like to address a few examples of how I overcame these problems related to IVF and help young researchers with similar troubles. There were four main problems to be solved in my experiments. Problem 1: Establishment of IVF using only defined medium in pigs. Problem 2: Establishment of successful in vitro culture (IVC) of IVM/IVF bovine oocytes in defined medium. Problem 3: Low rate of male pronucleus formation in IVM porcine oocytes after IVF. Problem 4: Sedimentation of Ca2+ in the sperm capacitation solution for IVF in pigs. Problem 1 was solved by a lucky accident, in which a sperm suspension that would have otherwise been discarded happened to be successfully used for IVF in pigs. Problems 2, 3 and 4 were solved by communication with scientists whose fields were different from mine, where similar problems had been solved already. Young researchers are encouraged to transcend the boundaries of their research fields and solve problems by interacting with researchers in different fields. There are many good connections or answers around us that may be effective in resolving the problems that are hindering the progress of pending research.
Collapse
Affiliation(s)
- Takashi Nagai
- 104 Universe Tsukuba, 2-32-7 Umezono, Tsukuba, Ibaraki 305-0045, Japan
| |
Collapse
|
3
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
4
|
Cai Y, Yang Z. Ferroptosis and Its Role in Epilepsy. Front Cell Neurosci 2021; 15:696889. [PMID: 34335189 PMCID: PMC8319604 DOI: 10.3389/fncel.2021.696889] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is one of the most common symptoms of many neurological disorders. The typical excessive, synchronous and aberrant firing of neurons originating from different cerebral areas cause spontaneous recurrent epileptic seizures. Prolonged epilepsy can lead to neuronal damage and cell death. The mechanisms underlying epileptic pathogenesis and neuronal death remain unclear. Ferroptosis is a newly defined form of regulated cell death that is characterized by the overload of intracellular iron ions, leading to the accumulation of lethal lipid-based reactive oxygen species (ROS). To date, studies have mainly focused on its role in tumors and various neurological disorders, including epilepsy. Current research shows that inhibition of ferroptosis is likely to be an effective therapeutic approach for epilepsy. In this review, we outline the pathogenesis of ferroptosis, regulatory mechanisms of ferroptosis, related regulatory molecules, and their effects on epilepsy, providing a new direction for discovering new therapeutic targets in epilepsy.
Collapse
Affiliation(s)
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Zeng Y, Shinada K, Hano K, Sui L, Yang T, Li X, Himaki T. Effects of tris (2-carboxyethyl) phosphine hydrochloride treatment on porcine oocyte in vitro maturation and subsequent in vitro fertilized embryo developmental capacity. Theriogenology 2021; 162:32-41. [PMID: 33444914 DOI: 10.1016/j.theriogenology.2020.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022]
Abstract
Oocyte in vitro maturation (IVM) is a crucial process that determines subsequent in vitro embryo production. The present study investigated the effects of the antioxidant tris (2-carboxyethyl) phosphine hydrochloride (TCEP-HCL) on the in vitro maturation of porcine oocytes and in vitro developmental competence of fertilized embryos. Oocytes were matured in IVM medium based on four concentration groups of TCEP-HCL (0, 50, 100, and 200 μM) treatment. 100 μM TCEP-HCL treatment significantly increased the oocyte first polar body extrusion rate, monospermy rate and subsequent in vitro fertilized embryo developmental capacity (cleavage rate, blastocyst formation rate, and blastocyst total cell number) compared to those in the control group. Furthermore, 100 μM TCEP-HCL treatment significantly reduced the levels of reactive oxygen species, significantly increased glutathione levels and mitochondrial content compared to those in the control group. Moreover, 100 μM TCEP-HCL treatment significantly decreased the oocyte apoptosis, blastocyst apoptosis compared to that in the controls. In summary, these results indicate that 100 μM TCEP-HCL treatment improves the quality and developmental capacity of in vitro-fertilized embryos by decreasing oxidative stress in porcine oocytes.
Collapse
Affiliation(s)
- Yiren Zeng
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Kohei Shinada
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuki Hano
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Takehiro Himaki
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
6
|
Zhang JH, Zhang ZT, Ou YJ, Zhang F, Meng J, Wang G, Fang ZL, Li Y. Red-emitting GSH-Cu NCs as a triplet induced quenched fluorescent probe for fast detection of thiol pollutants. NANOSCALE 2020; 12:19429-19437. [PMID: 32959864 DOI: 10.1039/d0nr04645k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thiol compounds exist widely on the Earth and have certain significance in the fields of the circulation of the sulfur element and industrial production. However, the odor and biological toxicity of thiol compounds make them pollutants that seriously threaten the environmental safety and the living quality of human. In this study, a novel triplet induced fluorescence "turn-off" strategy was designed for the detection of thiol pollutants via a glutathione-stabilized copper nanocluster (GSH-Cu NC) probe. The as-prepared GSH-Cu NCs not only have small size and good water-solubility, but also exhibit strong red-emitting fluorescence at 630 nm, which could be quenched quantitatively with the increase of the concentration of thiol pollutants. So they were employed to detect thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), 2-mercaptoethanol (ME) and 2-(diethylamino)ethanethiol (2-AT) in a wide linear range of 1-100 μM with detection limits of 0.73 μM, 0.43 μM, 0.37 μM, and 0.69 μM, respectively. This method was successfully applied to detect the above thiol pollutants in lake water with good recoveries. Moreover, their further application was also expanded as luminous test strips based on the excellent fluorescence characteristics of GSH-Cu NCs for fast real-time detection of thiol pollutants.
Collapse
Affiliation(s)
- Jun-Hua Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zi-Tong Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yang-Jing Ou
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Fei Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Jie Meng
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zhao-Lin Fang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yan Li
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
7
|
Long Non-Coding RNA and mRNA Profiling in Early-Stage Bovine Embryos Treated with Glutathione. Antioxidants (Basel) 2020; 9:antiox9050402. [PMID: 32397280 PMCID: PMC7278749 DOI: 10.3390/antiox9050402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/13/2023] Open
Abstract
We measured differential expression profiles of genes and long non-coding RNA (lncRNA) using RNA sequencing in bovine embryos with or without glutathione (GSH) treatment. Bovine embryos fertilized in vitro were treated with GSH to blastocyst. Embryos at the 8-16-cell and morula stages were collected, with embryos without GSH treatment as the control. RNA was isolated, amplified, and sequenced. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) were identified and bioinformatic analyses carried out. Transcript levels were confirmed using quantitative RT-PCR. A total of 4100 DEGs were identified, of which 3952 were in GSH-treated morulae and 884 in untreated morulae. More gene ontology (GO) terms were associated with GSH treatment than with control conditions. KEGG analysis showed that glutathione metabolism, citrate cycle, and metabolic pathways involving glycine, serine, and threonine were observed only in GSH-treated embryos. Among 4273 DElncRNAs identified, 59 were potentially important in GSH-treated embryo development, including 14 involved in glutathione metabolism. The 59 DElncRNAs co-expressed with protein-coding mRNAs involved similar GO terms and pathways as the DEGs. This appears to be the first comprehensive profiling of DEGs and DElncRNAs in bovine embryos fertilized in vitro with or without GSH, and the first systematic screen of potential lncRNAs in bovine embryos.
Collapse
|
8
|
Artesunate Affects T Antigen Expression and Survival of Virus-Positive Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12040919. [PMID: 32283634 PMCID: PMC7225937 DOI: 10.3390/cancers12040919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/01/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive skin cancer with frequent viral etiology. Indeed, in about 80% of cases, there is an association with Merkel cell polyomavirus (MCPyV); the expression of viral T antigens is crucial for growth of virus-positive tumor cells. Since artesunate—a drug used to treat malaria—has been reported to possess additional anti-tumor as well as anti-viral activity, we sought to evaluate pre-clinically the effect of artesunate on MCC. We found that artesunate repressed growth and survival of MCPyV-positive MCC cells in vitro. This effect was accompanied by reduced large T antigen (LT) expression. Notably, however, it was even more efficient than shRNA-mediated downregulation of LT expression. Interestingly, in one MCC cell line (WaGa), T antigen knockdown rendered cells less sensitive to artesunate, while for two other MCC cell lines, we could not substantiate such a relation. Mechanistically, artesunate predominantly induces ferroptosis in MCPyV-positive MCC cells since known ferroptosis-inhibitors like DFO, BAF-A1, Fer-1 and β-mercaptoethanol reduced artesunate-induced death. Finally, application of artesunate in xenotransplanted mice demonstrated that growth of established MCC tumors can be significantly suppressed in vivo. In conclusion, our results revealed a highly anti-proliferative effect of the approved and generally well-tolerated anti-malaria compound artesunate on MCPyV-positive MCC cells, suggesting its potential usage for MCC therapy.
Collapse
|
9
|
Hansen JM, Jones DP, Harris C. The Redox Theory of Development. Antioxid Redox Signal 2020; 32:715-740. [PMID: 31891515 PMCID: PMC7047088 DOI: 10.1089/ars.2019.7976] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: The geological record shows that as atmospheric O2 levels increased, it concomitantly coincided with the evolution of metazoans. More complex, higher organisms contain a more cysteine-rich proteome, potentially as a means to regulate homeostatic responses in a more O2-rich environment. Regulation of redox-sensitive processes to control development is likely to be evolutionarily conserved. Recent Advances: During early embryonic development, the conceptus is exposed to varying levels of O2. Oxygen and redox-sensitive elements can be regulated to promote normal development, defined as changes to cellular mass, morphology, biochemistry, and function, suggesting that O2 is a developmental morphogen. During periods of O2 fluctuation, embryos are "reprogrammed," on the genomic and metabolic levels. Reprogramming imparts changes to particular redox couples (nodes) that would support specific post-translational modifications (PTMs), targeting the cysteine proteome to regulate protein function and development. Critical Issues: Major developmental events such as stem cell expansion, proliferation, differentiation, migration, and cell fate decisions are controlled through oxidative PTMs of cysteine-based redox nodes. As such, timely coordinated redox regulation of these events yields normal developmental outcomes and viable species reproduction. Disruption of normal redox signaling can produce adverse developmental outcomes. Future Directions: Furthering our understanding of the redox-sensitive processes/pathways, the nature of the regulatory PTMs involved in development and periods of activation/sensitivity to specific developmental pathways would greatly support the theory of redox regulation of development, and would also provide rationale and direction to more fully comprehend poor developmental outcomes, such as dysmorphogenesis, functional deficits, and preterm embryonic death.
Collapse
Affiliation(s)
- Jason M. Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Dean P. Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Craig Harris
- Toxicology Program, Department of Environmental Sciences, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Maside C, Martinez CA, Cambra JM, Lucas X, Martinez EA, Gil MA, Rodriguez-Martinez H, Parrilla I, Cuello C. Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reprod Domest Anim 2020; 54 Suppl 4:72-77. [PMID: 31625244 DOI: 10.1111/rda.13486] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 11/29/2022]
Abstract
The coenzyme Q10 (CoQ10) is a potent antioxidant with critical protection role against cell oxidative stress, caused by the mitochondrial dysfunction. This study evaluated the effects of CoQ10 supplementation to in vitro maturation (IVM) or embryo culture media on the maturation, fertilization and subsequent embryonic development of pig oocytes and embryos. Maturation (Experiment 1) or embryo culture (Experiment 2) media were supplemented with 0 (control), 10, 25, 50 and 100 μM CoQ10. The addition of 10-50 μM CoQ10 to the IVM medium did not affect the percentage of MII oocytes nor the fertilization or the parameters of subsequent embryonic development. Exogenous CoQ10 in the culture medium neither did affect the development to the 2-4-cell stage nor rates of blastocyst formation. Moreover, the highest concentration of CoQ10 (100 μM) in the maturation medium negatively affected blastocyst rates. In conclusion, exogenous CoQ10 supplementation of maturation or embryo culture media failed to improve the outcomes of our in vitro embryo production system and its use as an exogenous antioxidant should not be encouraged.
Collapse
Affiliation(s)
- Carolina Maside
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain.,SaBio IREC (CSIC-UCLM-JCCM), Albacete, Spain
| | - Cristina A Martinez
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain.,Department of Clinical & Experimental Medicine (IKE), BHK/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | - Josep M Cambra
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - María Antonia Gil
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Clinical & Experimental Medicine (IKE), BHK/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | - Inmaculada Parrilla
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Cristina Cuello
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Ishii T, Kawano K, Tanaka N, Tomita K, Saito N, Yamada M. Mild hypothermia promotes the viability of in vitro-produced bovine blastocysts and their transcriptional expression of the cold-inducible transcription factor Rbm3 during in vitro culture. J Reprod Dev 2019; 65:275-280. [PMID: 30905884 PMCID: PMC6584183 DOI: 10.1262/jrd.2018-142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/11/2019] [Indexed: 11/25/2022] Open
Abstract
In this study, we evaluated the effects of holding in vitro-produced bovine blastocysts under mild hypothermia (33°C or 35°C), by examining viability and hatching rates of day 7 blastocysts (day 0: in vitro fertilization) cultured for 6 days and transcriptional expression of cold-inducible transcription factors Cirp and Rbm3, implicated in mild hypothermia-induced cellular protection against various types of stress. In the normothermic control (38.5°C), viability of the embryos decreased rapidly after day 10, and most samples were degenerated on day 13. However, mild hypothermia, particularly at 33°C, resulted in maintenance of high embryonic survival rates until day 13 (77.1% on day 13) and significant increases in transcriptional expression of Rbm3 in day 11 embryos compared with those at 38.5°C. Thus, our results suggested that upregulation of Rbm3 may occur in response to mild hypothermia in many bovine embryos, providing insights into the effects of mild hypothermia on embryo quality.
Collapse
Affiliation(s)
- Toshimichi Ishii
- Department of Livestock Improvement and Reproduction, Mie Prefectural Livestock Research Center, Matsusaka 515-2324, Japan
| | - Koga Kawano
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nobumasa Tanaka
- Department of Livestock Improvement and Reproduction, Mie Prefectural Livestock Research Center, Matsusaka 515-2324, Japan
| | - Kensuke Tomita
- Department of Livestock Improvement and Reproduction, Mie Prefectural Livestock Research Center, Matsusaka 515-2324, Japan
| | - Naohiko Saito
- Department of Livestock Improvement and Reproduction, Mie Prefectural Livestock Research Center, Matsusaka 515-2324, Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Ashibe S, Miyamoto R, Kato Y, Nagao Y. Detrimental effects of oxidative stress in bovine oocytes during intracytoplasmic sperm injection (ICSI). Theriogenology 2019; 133:71-78. [PMID: 31071617 DOI: 10.1016/j.theriogenology.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 11/25/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is an essential technology in animal and human reproduction. However, the developmental competence and pregnancy rate of embryos derived from ICSI are still lower than that from the conventional in vitro fertilization technique. In this report, we focused on reactive oxygen species (ROS) as a potential detrimental factor for ICSI. Experiment 1 was conducted to evaluate the effect of oxidative stress by two different oxygen concentrations (20%: control vs. 5%) in ICSI on the developmental competence (blastocyst rate: day 7, DNA fragmentation rate: day 4) and, ROS concentration and mitochondrial membrane potential of oocytes in ICSI. In the 5% O2 group, the blastocyst rate (29.5%) was higher and DNA fragmentation rate (4.8 ± 1.0%) was lower than those in the control group significantly (12.7% and 18.2 ± 2.4%, respectively, P < 0.05). Also, ROS concentration in the 5% O2 group (12.8 ± 0.7) was significantly lower than that in the control group (47.8 ± 6.9, P < 0.05). In experiment 2, we examined the supplementation of media with reduced glutathione (GSH) during ICSI procedure in an attempt to reduce the oxidative stress. The addition of GSH to the culture medium improved the blastocyst rate (17.6% vs. 30.4%, P < 0.05), and decreased the ROS levels in the oocytes (70.0 ± 7.4 vs. 23.9 ± 4.0, P < 0.05). In conclusion, our present study revealed that oocytes are under oxidative stress in ICSI procedure. Reduction of the oxygen concentration to 5% in the culture environment, or the addition of GSH in to the medium during ICSI procedure can promote the normal embryo development following the ICSI.
Collapse
Affiliation(s)
- Shiori Ashibe
- Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; University Farm, Faculty of Agriculture, Utsunomiya University, 443 Shimokomoriya, Mohka, Tochigi 321-4415, Japan
| | - Rui Miyamoto
- University Farm, Faculty of Agriculture, Utsunomiya University, 443 Shimokomoriya, Mohka, Tochigi 321-4415, Japan
| | - Yoku Kato
- University Farm, Faculty of Agriculture, Utsunomiya University, 443 Shimokomoriya, Mohka, Tochigi 321-4415, Japan
| | - Yoshikazu Nagao
- Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; University Farm, Faculty of Agriculture, Utsunomiya University, 443 Shimokomoriya, Mohka, Tochigi 321-4415, Japan.
| |
Collapse
|
13
|
Qasim M, Jin JX, Lee S, Taweechaipaisankul A, Setyawan EMN, Kim GA, Lee BC. Effects of manganese on maturation of porcine oocytes in vitro and their subsequent embryo development after parthenogenetic activation and somatic cell nuclear transfer. J Reprod Dev 2019; 65:259-265. [PMID: 30905887 PMCID: PMC6584182 DOI: 10.1262/jrd.2019-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study was carried out to examine the effects of manganese (Mn) on the developmental competence of porcine oocytes during in vitro maturation (IVM) after
parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Upon treatment of porcine oocytes with different concentrations (0, 3, 6, and 12 ng/ml) of Mn during IVM, PA was
performed to determine the optimum concentration. Following PA, the rate of blastocyst formation was higher significantly in treated porcine oocytes at 6 ng/ml of Mn than in other groups (P
< 0.05). However, there was no substantial difference in the cleavage rate and total blastocyst cell numbers among all groups. SCNT was performed using the optimal concentration of Mn
from PA, which showed an improved blastocyst formation rate in treated oocytes compared to that in control group (P < 0.05). However, the cleavage rate and total cell numbers per
blastocyst were not different between the control and the Mn treated groups after SCNT. Additionally, oocyte nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species
(ROS) levels were assessed. There was no significant difference observed in nuclear maturation among all the groups. However, enhanced intracellular GSH levels while lower levels of ROS were
seen in the Mn treated group compared to the control group (P < 0.05). Thus, these results indicate that Mn supplementation can improve the developmental competence of porcine PA and SCNT
embryos by increasing GSH and decreasing ROS levels.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agriculture University, Heilongjiang 150030, China
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Republic of Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Nohalez A, Martinez C, Parrilla I, Roca J, Gil M, Rodriguez-Martinez H, Martinez E, Cuello C. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology 2018; 113:113-119. [DOI: 10.1016/j.theriogenology.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 01/30/2023]
|
15
|
Handlogten MW, Lee-O'Brien A, Roy G, Levitskaya SV, Venkat R, Singh S, Ahuja S. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Biotechnol Bioeng 2017; 115:126-138. [DOI: 10.1002/bit.26460] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/19/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Allison Lee-O'Brien
- Cell Culture and Fermentation Sciences; MedImmune LLC; Gaithersburg Maryland
| | - Gargi Roy
- Antibody Discovery and Protein Engineering; MedImmune LLC; Gaithersburg Maryland
| | | | - Raghavan Venkat
- Cell Culture and Fermentation Sciences; MedImmune LLC; Gaithersburg Maryland
| | - Shailendra Singh
- Biologics Development and Commercialization; West Point Pennsylvania
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences; MedImmune LLC; Gaithersburg Maryland
| |
Collapse
|
16
|
Tu C, Xu R, Koleti M, Zoldan J. Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis. Stem Cell Res 2017; 23:182-187. [DOI: 10.1016/j.scr.2017.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023] Open
|
17
|
GOEL PUJA, GOEL AK, BHATIA AK, KHARCHE SD. Influence of exogenous supplementation of IGF-I, cysteamine and their combination on in vitro caprine blastocyst development. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i2.67707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The present study was carried out to investigate the putative beneficial effects of insulin-like growth factor-I (IGF-I) and cysteamine supplementation alone or their combination on in vitro embryo development competence of fertilized goat oocytes. Presumptive zygotes (18 h post insemination) were randomly assigned for in vitro embryo development in embryo development medium (EDM) supplemented with IGF-I (Gr. 1), Cysteamine (Gr. 2), IGF- I + Cysteamine (Gr. 3) and Control containing only EDM (Gr. 4). Statistically non-significant difference was observed in cleavage rate among all the treated groups. Morula formation rate was significantly higher in IGF-I supplemented group compared to IGF-I + cysteamine supplemented and non-supplemented (control) groups. Furthermore, supplementation of IGF-I, cysteamine and IGF-I + cysteamine in embryo culture medium significantly improved blastocyst formation rate compared to control. However, a nonsignificant difference in blastocyst formation was observed among the supplemented groups. These findings lead to the conclusion that under in vitro conditions, supplementation of IGF-I and cysteamine alone or combination in IVC media were equally effective in embryo development and blastocyst production, however, this effect was significantly higher as compared to non- supplemented group (control).
Collapse
|
18
|
Pradieé J, Cardoso T, Silva E, Gonçalves A, Gastal G, Rosa C, Mondadori R, Pegoraro L, Vieira A, Lucia Jr. T. Effect of β-mercaptoetanol and cysteine on post-thawing quality and oxidative activity of ram sperm and on the viability of vitrified sheep embryos. ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-8479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The effects of β-mercaptoethanol (BME) and cysteine on the viability and oxidative activity of ram sperm after thawing and on development in vitro and viability of vitrified sheep embryos were evaluated. Ejaculates from four rams were pooled and extended, composing six treatments: no antioxidants; 2mM BME; 5mM BME; 2mM BME and 5mM cysteine; 5mM BME and 5mM cysteine; and 5mM cysteine. Sperm motility, membrane and acrosome integrity, mitochondrial functionality, production of reactive oxygen species and total antioxidant capacity were similar across treatments (P>0.05). A medium with no antioxidant presented cleavage and blastocyst development rates (60.3% and 33.6%, respectively) similar (P>0.05) to those of a medium with 50μM BME and 600μM cysteine (64.3% and 36.6%, respectively). Post-thawing viability of vitrified embryos was similar between media (P>0.05). Cysteine and BME had no influence on the post-thawing viability and oxidative activity of ram sperm and on the viability of vitrified sheep embryos.
Collapse
Affiliation(s)
- J. Pradieé
- ReproPel, Brazil; Faculdade de Veterinária, Brazil
| | - T.F. Cardoso
- ReproPel, Brazil; Centro de Desenvolvimento Tecnológico, Brazil
| | - E.F. Silva
- ReproPel, Brazil; Centro de Desenvolvimento Tecnológico, Brazil
| | | | | | - C.E. Rosa
- Universidade Federal do Rio Grande, Brazil
| | - R.G. Mondadori
- ReproPel, Brazil; Universidade Federal de Pelotas, Brazil
| | | | - A.D. Vieira
- ReproPel, Brazil; Faculdade de Veterinária, Brazil
| | - T. Lucia Jr.
- ReproPel, Brazil; Faculdade de Veterinária, Brazil
| |
Collapse
|
19
|
Sun WJ, Pang YW, Liu Y, Hao HS, Zhao XM, Qin T, Zhu HB, Du WH. Exogenous glutathione supplementation in culture medium improves the bovine embryo development after in vitro fertilization. Theriogenology 2015; 84:716-23. [DOI: 10.1016/j.theriogenology.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/21/2015] [Accepted: 05/03/2015] [Indexed: 11/28/2022]
|
20
|
Hansen JM, Harris C. Glutathione during embryonic development. Biochim Biophys Acta Gen Subj 2014; 1850:1527-42. [PMID: 25526700 DOI: 10.1016/j.bbagen.2014.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glutathione (GSH) is a ubiquitous, non-protein biothiol in cells. It plays a variety of roles in detoxification, redox regulation and cellular signaling. Many processes that can be regulated through GSH are critical to developing systems and include cellular proliferation, differentiation and apoptosis. Understanding how GSH functions in these aspects can provide insight into how GSH regulates development and how during periods of GSH imbalance how these processes are perturbed to cause malformation, behavioral deficits or embryonic death. SCOPE OF REVIEW Here, we review the GSH system as it relates to events critical for normal embryonic development and differentiation. MAJOR CONCLUSIONS This review demonstrates the roles of GSH extend beyond its role as an antioxidant but rather GSH acts as a mediator of numerous processes through its ability to undergo reversible oxidation with cysteine residues in various protein targets. Shifts in GSH redox potential cause an increase in S-glutathionylation of proteins to change their activity. As such, redox potential shifts can act to modify protein function on a possible longer term basis. A broad group of targets such as kinases, phosphatases and transcription factors, all critical to developmental signaling, is discussed. GENERAL SIGNIFICANCE Glutathione regulation of redox-sensitive events is an overlying theme during embryonic development and cellular differentiation. Various stresses can change GSH redox states, we strive to determine developmental stages of redox sensitivity where insults may have the most impactful damaging effect. In turn, this will allow for better therapeutic interventions and preservation of normal developmental signaling. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, United States.
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 40109-2029, United States
| |
Collapse
|
21
|
Click RE. A review: alteration of in vitro reproduction processes by thiols -emphasis on 2-mercaptoethanol. J Reprod Dev 2014; 60:399-405. [PMID: 25087867 PMCID: PMC4284312 DOI: 10.1262/jrd.2014-055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/18/2014] [Indexed: 11/20/2022] Open
Abstract
Descriptions of organosulfurs altering biologically relevant cellular functions began some 40 years ago when murine in vitro cell mediated and humoral immune responses were shown to be dramatically enhanced by any of four xenobiotic, sulfhydryl compounds-2-mercaptoethanol (2ME), dithiothreitol (DTT), glutathione, and L-cysteine; the most effective were 2ME and DTT. These findings triggered a plethora of reports defining 2ME benefits for a multitude of immunological processes. This in turn led to investigations on 2ME alterations of (a) immune functions in other species, (b) activities of other cell-types, and (c) in vivo diseases. In addition, these early findings preceded the identification of previously undefined anticarcinogenic chemicals in specific foods as organosulfurs. Taken all together, there is little doubt that organosulfur compounds have enormous benefits for cellular functions and for a multitude of diseases. Issues of importance still to be resolved are (a) clarification of mechanisms that underlie alteration of in vitro and in vivo processes and perhaps more importantly, (b) which if any in vitro alterations are relevant for (i) alteration of in vivo diseases and (ii) identification of other diseases that might therapeutically benefit from organosulfurs. As one means to address these questions, reviews of different processes impacted by thiols could be informative. Therefore, the present review on alterations of in vitro fertilization processes by thiols (mainly 2ME, since cysteamine alterations have been reviewed) was undertaken. Alterations found to occur in medium supplemented with 2ME were enhancement, no effect, or inhibition. Parameters associated with which are discussed as they relate to postulated thiol mechanisms.
Collapse
Affiliation(s)
- Robert E Click
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, USA, Retired
| |
Collapse
|
22
|
Park SH, Cho HS, Yu IJ. Effect of bovine follicular fluid on reactive oxygen species and glutathione in oocytes, apoptosis and apoptosis-related gene expression of in vitro-produced blastocysts. Reprod Domest Anim 2014; 49:370-7. [PMID: 24592966 DOI: 10.1111/rda.12281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/30/2013] [Indexed: 01/19/2023]
Abstract
The reactive oxygen species (ROS) generated during the in vitro maturation of oocytes affect oocyte maturation and subsequent embryonic development. Bovine follicular fluid (bFF) has an effective antioxidant capacity. This study was conducted to investigate the effects of supplementing oocyte maturation media with bFF from different size classes (3-8 and 9-13 mm) on the glutathione (GSH) and ROS levels of oocytes. Embryonic development and apoptosis, as well as the relative abundance of INFτ, BAX, BCL2 and HSP70 transcripts in blastocysts, were also monitored. Oocytes collected from ovaries were matured in TCM-199 with FBS (control) and 10% 3-8 mm (M), 9-13 mm (L) or a mixture of 3-8 mm and 9-13 mm (M + L) bFF. Glutathione and ROS levels in oocytes after 24 h were assessed by Cell Tracker Blue CMF2HC and DCHFDA staining, respectively. Apoptosis in day-8 blastocysts was assessed by TUNEL staining. The relative abundance of BAX, BCL2, HSP70 and INFτ transcripts was assessed using quantitative real-time polymerase chain reaction (PCR). The GSH level was significantly higher in the L group compared to the other groups (p < 0.05), while the ROS levels in the M group were significantly higher than in the other groups (p < 0.05). The apoptosis levels of blastocysts in the FBS group were significantly higher than those in the M + L group (p < 0.05), although the embryonic development did not differ between the groups. The HSP70 and INFτ expression levels in group M were significantly greater than in the controls (p < 0.05). There was no significant difference in BAX expression between the groups. Supplementation with bFF from various sizes of follicles into the maturation medium was capable of supporting oocyte cytoplasmic maturation by decreasing the ROS. Moreover, bFF subsequently affected antioxidative gene expression, increasing HSP70 and INFτ expressions.
Collapse
Affiliation(s)
- S-H Park
- Laboratory of Theriogenology and Reproductive Biotechnologies, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, Korea
| | | | | |
Collapse
|
23
|
Sikalidis AK, Mazor KM, Lee JI, Roman HB, Hirschberger LL, Stipanuk MH. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits. Amino Acids 2014; 46:1285-96. [PMID: 24557597 DOI: 10.1007/s00726-014-1687-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser(51) phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent.
Collapse
Affiliation(s)
- Angelos K Sikalidis
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | | | | | |
Collapse
|
24
|
Su J, Wang Y, Li W, Gao M, Ma Y, Hua S, Quan F, Zhang Y. Effects of 3-hydroxyflavone on the cellular and molecular characteristics of bovine embryos produced by somatic-cell nuclear transfer. Mol Reprod Dev 2014; 81:257-69. [DOI: 10.1002/mrd.22293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yongsheng Wang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Wenzhe Li
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Mingqing Gao
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yefei Ma
- Department of Gynecology and Obstetrics; Tangdu Hospital; The Fourth Military Medical University; Xi'an Shaanxi Province PR China
| | - Song Hua
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Fusheng Quan
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| | - Yong Zhang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province PR China
- Key Laboratory of Animal Biotechnology; the Ministry of Agriculture; PR China
| |
Collapse
|
25
|
Effects of gaseous atmosphere and antioxidants on the development and cryotolerance of bovine embryos at different periods of in vitro culture. ZYGOTE 2013; 23:159-68. [PMID: 24040954 DOI: 10.1017/s0967199413000361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study examined the effects of antioxidant supplementation and O2 tension on embryo development, cryotolerance and intracellular reactive oxygen species (ROS) levels. The antioxidant supplementation consisted of 0.6 mM cysteine (CYST); 0.6 mM cysteine + 100 μM cysteamine (C+C); 100 IU catalase (CAT) or 100 μM β-mercaptoethanol (β-ME) for 3 or 7 days of in vitro culture (IVC). Two O2 tensions (20% O2 [5% CO2 in air] or 7% O2, 5% CO2 and 88% N2 [gaseous mixture]) were examined. After 7 days of antioxidant supplementation, the blastocyst frequencies were adversely affected (P < 0.05) by CYST (11.2%) and C+C (1.44%), as well as by low O2 tension (17.2% and 11.11% for 20% and 7% O2, respectively) compared with the control (26.6%). The blastocyst re-expansion rates were not affected (P > 0.05) by the treatments (range, 66-100%). After 3 days of antioxidant supplementation, the blastocyst frequencies were not affected (P > 0.05) by any of the antioxidants (range, 43.6-48.5%), but they were reduced by low O2 tension (P < 0.05) (52.1% and 38.4% for 20% and 7% O2, respectively). The intracellular ROS levels, demonstrated as arbitrary fluorescence units, were not affected (P > 0.05) by antioxidant treatment (range, 0.78 to 0.95) or by O2 tension (0.86 and 0.88 for 20% and 7% O2, respectively). The re-expansion rates were not affected (P > 0.05) by any of the treatments (range, 63.6-93.3%). In conclusion, intracellular antioxidant supplementation and low O2 tension throughout the entire IVC period were deleterious to embryo development. However, antioxidant supplementation up to day 3 of IVC did not affect the blastocyst frequencies or intracellular ROS levels.
Collapse
|
26
|
Choi JY, Kang JT, Park SJ, Kim SJ, Moon JH, Saadeldin IM, Jang G, Lee BC. Effect of 7,8-dihydroxyflavone as an antioxidant on in vitro maturation of oocytes and development of parthenogenetic embryos in pigs. J Reprod Dev 2013; 59:450-6. [PMID: 23748647 PMCID: PMC3934122 DOI: 10.1262/jrd.2012-134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One of the factors that impairs in vitro produced porcine embryos
is the oxidative stress that is mainly caused by the imbalance between reactive
oxygen species (ROS) generation and antioxidants activity, especially that of
glutathione (GSH). Here, we examined the effect of 7,8-dihydroxyflavone (7,8-DHF), a
kind of flavonoid antioxidant, on porcine oocyte maturation and its developmental
competence. Porcine oocytes were cultured in media supplemented with 0, 1, 5 and 10
μM 7,8-DHF during both in vitro maturation (IVM) and in
vitro culture (IVC) after parthenogenetic activation. Maturation of
oocytes was evaluated based on first polar body (PB) extrusion and intracellular GSH
level, and developmental competence was assessed through observing cleavage and
blastocyst formation. In each step, the levels of intracellular GSH and ROS were
assessed by fluorescence intensity, and the apoptosis-related gene expression was
examined using semiquantitative RT-PCR. The group treated with 1 μM 7,8-DHF during
IVM and IVC showed increased cytoplasmic maturation and reached the blastocysts stage
(36.1%) at a higher rate than the other groups (24.7, 16.0 and 10.3% for 0, 5 and 10
μM, P<0.05). In that group, the intracellular GSH level was significantly
increased while ROS generation was significantly decreased after IVM and IVC
(P<0.05). Moreover, it showed high expression of an anti-apoptotic gene
(BCL2L1) and low expression of a pro-apoptotic gene
(BAK1) (P<0.05). In conclusion, treatment with 1 μM 7,8-DHF
during IVM and IVC showed an anti-apoptotic effect by increasing intracellular GSH
synthesis and scavenging ROS and therefore improved the developmental competence of
porcine embryos.
Collapse
Affiliation(s)
- Ji-Yei Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jeon Y, Kwak SS, Cheong SA, Seong YH, Hyun SH. Effect of trans-ε-viniferin on in vitro porcine oocyte maturation and subsequent developmental competence in preimplantation embryos. J Vet Med Sci 2013; 75:1277-86. [PMID: 23698084 PMCID: PMC3942939 DOI: 10.1292/jvms.12-0105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trans-ε-viniferin is a naturally occurring polyphenol belonging to the stilbenoid family
that has been isolated from Vitis amurensis, one of the most common wild
grapes in Asia. We investigated the effects of trans-ε-viniferin on in
vitro maturation (IVM) and developmental competence after in
vitro fertilization (IVF) or parthenogenesis (PA). We observed that
trans-ε-viniferin treatment during IVM did not improve nuclear maturation rates of oocytes
in any group, but significantly increased (P<0.05) intracellular
glutathione (GSH) levels and reduced reactive oxygen species (ROS) levels in the 0.5
µM treatment group. Trans-ε-viniferin treatment during IVM of recipient
oocytes promoted higher (P<0.05) expression of DNA methyltransferase-1
(DNMT1) mRNA in the 0.5 µM treatment group as compared with the control
group. However, the expression of essential transcriptional and apoptosis-related genes
did not significantly differ from that of the control. In cumulus cells, pro-apoptosis
gene expressions were changed as apoptosis decreased. Oocytes treated with
trans-ε-viniferin during IVM did not have significantly different cleavage rates or
blastocyst formation rates after PA, but total cell numbers were significantly higher
(P<0.05) in the 0.5 and 5.0 µM treatment groups
compared with those in the control group. IVF embryos showed similar results. In
conclusion, these results indicate that trans-ε-viniferin treatment during porcine IVM
increased the total cell number of blastocysts, possibly by increasing intracellular GSH
synthesis, reducing ROS levels, increasing DNMT1 gene expression of oocytes and decreasing
pro-apoptosis gene expressions of cumulus cells.
Collapse
Affiliation(s)
- Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Aono A, Nagatomo H, Takuma T, Nonaka R, Ono Y, Wada Y, Abe Y, Takahashi M, Watanabe T, Kawahara M. Dynamics of intracellular phospholipid membrane organization during oocyte maturation and successful vitrification of immature oocytes retrieved by ovum pick-up in cattle. Theriogenology 2013; 79:1146-1152.e1. [DOI: 10.1016/j.theriogenology.2013.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 11/25/2022]
|
29
|
Mira A, Gimenez EM, Bolzán AD, Bianchi MS, López-Larraza DM. Effect of thiol compounds on bleomycin-induced DNA and chromosome damage in human cells. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2013; 68:107-116. [PMID: 23428061 DOI: 10.1080/19338244.2012.658120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Non-protein thiols are considered radioprotectors, preventing DNA damage by ionizing radiation. As bleomycin (BLM) is a radiomimetic agent it was proposed that thiols may prevent DNA damage produced by this antibiotic. However, results obtained with thiols and BLM-combined treatments in living cells are contradictory. The goal of this work was to assess the influence of five non-protein thiols of different electrical charge and chemical composition, on the DNA damage, DNA repair, chromosomal aberrations and cell killing induced by BLM. We found that, at the chromosomal level and cell killing, Glutathione, β-Mercaptoethanol and cysteine showed a protective effect, while ditiothreitol and cysteamine increased them, whereas at the DNA level all thiols potentiated the DNA damage induced by BLM, most probably due to a reactivation of the BLM complex.
Collapse
Affiliation(s)
- Anabela Mira
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular IMBICE, CCT-CONICET La Plata-Comisiôn de Investigaciones Cientîficas de la Provinincia de Buenos Aires, La Plata, Argentina
| | | | | | | | | |
Collapse
|
30
|
Takahashi M. Oxidative stress and redox regulation on in vitro development of mammalian embryos. J Reprod Dev 2012; 58:1-9. [PMID: 22450278 DOI: 10.1262/jrd.11-138n] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many factors affect development of mammalian preimplantation embryos in vitro. It is well known that in vitro development of bovine embryos is highly affected by culture condition including energy source, growth factors, pH or gas environment. Many efforts have been made towards the suitable environments which can successfully support embryo development in vitro. For a rapid growth and differentiation, embryo requires energy by utilizing ATP, NADPH with oxygen molecules. These energy substrates are produced from the electron transport chain in the mitochondria. In addition to energy production, reactive oxygen species (ROS) are also generated as by-product of such energy production system. ROS production is sensitively controlled by the balance of oxidizing and reducing status and affected by several antioxidant enzymes such as superoxide dismutase (SOD), Catalase, glutathione peroxidase (GPx) or low molecular weight thiols such as glutathione (GSH). Imbalance of oxidation and reduction causes production of excess ROS, which causes the developmental arrest, physical DNA damage, apoptosis induction or lipid peroxidation. Environmental oxygen condition during embryo culture also highly affects embryo development as well as intracellular redox balance. Several studies have revealed that regulation of intra- and extra- cellular reducing environment by reducing excess ROS by using antioxidants, reducing oxygen concentration are effective for improving embryo development. Also, recent studies have demonstrated the difference in gene expression affected by oxidative stress. This review briefly summarizes the effects of ROS and the role of redox balance on preimplantation embryos for improving the efficiency of in vitro production of mammalian embryos.
Collapse
Affiliation(s)
- Masashi Takahashi
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto 861-1192, Japan.
| |
Collapse
|
31
|
Media composition: antioxidants/chelators and cellular function. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 912:129-59. [PMID: 22829373 DOI: 10.1007/978-1-61779-971-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protection of embryos against oxidative insults during culture is necessary to maintain viability. Generation of excessive levels of reactive oxygen species (ROS) is triggered by various components of the in vitro environment, most of which embryos do not normally encounter in vivo. To compensate for these deficiencies in the culture environment, antioxidants and chelators are often used to control or suppress ROS levels as embryos develop. However, there is no consensus regarding dosage, time of exposure, or appropriate combinations of antioxidants and chelators in embryo culture. In order to elucidate this aspect of an embryo's chemical surroundings in vitro, we present the current knowledge on the function and effect of each antioxidant or chelator that is often included in an embryo culture medium.
Collapse
|
32
|
Takahashi M. Heat stress on reproductive function and fertility in mammals. Reprod Med Biol 2011; 11:37-47. [PMID: 29699104 DOI: 10.1007/s12522-011-0105-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/07/2011] [Indexed: 01/29/2023] Open
Abstract
In most mammalian species including cattle, heat stress has deleterious effects on nutritional, physiological and reproductive functions. Exposure of animals to a hot environment causes an increase in body temperature in mammals, including domestic animals. High ambient temperature also causes a decrease in the length and intensity of estrus by disturbing ovarian function as well as decreasing pregnancy rate after artificial insemination. Therefore, it is important to understand the effects of heat stress on reproductive function in order to improve the production of domestic animals. Heat stress decreases appetite, weight gain, and milk yield in dairy cattle. It also adversely affects the reproductive performance of both sexes. In males, it reduces spermatogenic activity, while in females it adversely impacts oogenesis, oocyte maturation, fertilization development and implantation rate. Detection and evaluation of the deteriorating effects of heat stress on reproductive organs and cells can help to design measures to prevent them and improve reproductive functions. In this review, we discuss the impacts of heat stress on reproductive functions.
Collapse
Affiliation(s)
- Masashi Takahashi
- National Agricultural Research Center for Kyushu Okinawa Region Suya 2421 861-1192 Koshi Kumamoto Japan
| |
Collapse
|
33
|
Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. ZYGOTE 2011; 20:199-207. [DOI: 10.1017/s0967199411000190] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryMelatonin secreted from the mammalian pineal gland is a free-radical scavenger that protects tissues from cell damage. The present study examined the effects of addition of melatonin to the culture medium on the developmental potential of parthenogenetic and somatic cell nuclear-transferred (SCNT) porcine oocytes. Supplementation of the maturation medium with melatonin did not increase the maturation rate, the proportion of oocytes that cleaved and developed into blastocysts after parthenogenetic activation, or the blastocyst cell number compared to controls. When 10−7 M melatonin was added to the culture medium, the proportion of parthenogenetic oocytes that developed to the 2-cell and 4-cell stages was significantly higher than that of controls. The potential of melatonin-treated oocytes to develop into blastocysts was high but not significantly different from that of controls. The addition of 10−7 M melatonin to the culture medium did not increase the preimplantation development of SCNT oocytes. Melatonin treatment significantly reduced the levels of reactive oxygen species in 4-cell parthenogenetic and SCNT embryos, but did not reduce the proportion of apoptotic cells in parthenogenetic and SCNT blastocysts. Although the results indicated that parthenogenetic and SCNT melatonin -treated embryos had significantly lower levels of reactive oxygen species than controls, the potential of melatonin-treated embryos to develop into blastocysts was not significantly higher than that of controls, in contrast to previous reports. The beneficial effects of melatonin on the developmental potential of oocytes might depend on the culture conditions.
Collapse
|
34
|
Bain NT, Madan P, Betts DH. The early embryo response to intracellular reactive oxygen species is developmentally regulated. Reprod Fertil Dev 2011; 23:561-75. [DOI: 10.1071/rd10148] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/17/2010] [Indexed: 12/28/2022] Open
Abstract
In vitro embryo production (IVP) suffers from excessive developmental failure. Its inefficiency is linked, in part, to reactive oxygen species (ROS) brought on by high ex vivo oxygen (O2) tensions. To further delineate the effects of ROS on IVP, the intracellular ROS levels of early bovine embryos were modulated by: (1) varying O2 tension; (2) exogenous H2O2 treatment; and (3) antioxidant supplementation. Although O2 tension did not significantly affect blastocyst frequencies (P > 0.05), 20% O2 accelerated the rate of first cleavage division and significantly decreased and increased the proportion of permanently arrested 2- to 4-cell embryos and apoptotic 9- to 16-cell embryos, respectively, compared with embryos cultured in 5% O2 tension. Treatment with H2O2, when applied separately to oocytes, zygotes, 2- to 4-cell embryos or 9- to 16-cell embryos, resulted in a significant (P < 0.05) dose-dependent decrease in blastocyst development in conjunction with a corresponding increase in the induction of either permanent embryo arrest or apoptosis in a stage-dependent manner. Polyethylene glycol–catalase supplementation reduced ROS-induced embryo arrest and/or death, resulting in a significant (P < 0.05) increase in blastocyst frequencies under high O2 culture conditions. Together, these results indicate that intracellular ROS may be signalling molecules that, outside an optimal range, result in various developmentally regulated modes of embryo demise.
Collapse
|
35
|
Berland M, Frei M, Peralta O, Ratto M. Time exposure period of bovine oocytes to sperm in relation to embryo development rate and quality. ISRN VETERINARY SCIENCE 2011; 2011:257627. [PMID: 23738096 PMCID: PMC3658476 DOI: 10.5402/2011/257627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/04/2011] [Indexed: 11/25/2022]
Abstract
The objective of the study was to determine the effect of different bovine gamete coincubation times on fertilization and embryo development performance. In vitro matured COCs were co-incubated with sperm at a concentration of 1.5 × 106 spermatozoa/ml in TALP medium for 3 hours (T 3, n = 362), 6 hours (T 6, n = 358), or 18 hours (T 18, n = 350). At the end of the coincubation period COCs from times 3 and 6 groups were post-incubated in a new well of fertilization medium without sperm for additional 15 and 12 h, respectively. Cumulus Oocyte Complexes from the T 18 were co-incubated with the sperm suspension for 18 hours. Presumptive zygotes were cultured for 9 days and embryo development was evaluated on days 2, 8, and 9. Thirty blastocysts from each group were stained and total number of nuclei was recorded. The mean (± SEM) percentages of zygotes to develop into ≥2 cell stage were 71.9 ± 5.0; 72.5 ± 5.3 and 81.2 ± 6.1 % for T 3, 6, and 18, respectively, on day 2 and they did not differ (P = .3) among groups. The mean percentage of blastocysts developed on day 8 (25.6 ± 2.8; 24.2 ± 3.3; 28.4 ± 4.2 % for T 3, 6, and 18, resp.) did not differ (P = .4) among groups. The total number of embryonic nuclei was greater (P < .05) for the blastocysts produced from the shortest co-incubation time (T 3).
Collapse
Affiliation(s)
- Marco Berland
- Laboratory of Animal Reproduction, Veterinary School, Faculty of Natural Resources, Catholic University of Temuco, P.O. Box 4780000, Temuco, Chile
| | | | | | | |
Collapse
|
36
|
You J, Kim J, Lim J, Lee E. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 2010; 74:777-85. [DOI: 10.1016/j.theriogenology.2010.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 04/02/2010] [Accepted: 04/04/2010] [Indexed: 01/01/2023]
|
37
|
Choe C, Shin YW, Kim EJ, Cho SR, Kim HJ, Choi SH, Han MH, Han J, Son DS, Kang D. Synergistic effects of glutathione and β-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J Reprod Dev 2010; 56:575-82. [PMID: 20657156 DOI: 10.1262/jrd.09-214h] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various methods have been used to remove reactive oxygen species (ROS) generated from in vitro culture (IVC) conditions that can cause cell injury or death, including the application of low oxygen (O(2)) tension and the addition of antioxidants. The beneficial effects of antioxidants and O(2) tension on IVC of porcine embryos, however, are controversial among researchers. In this study, we sought to determine the effects and optimal concentrations of antioxidants for the development of porcine embryos in an IVC system. Specifically, we examined the synergistic effects of antioxidants on development to the blastocyst stage in a culture system supplemented with L-cysteine during IVM. Of the antioxidants tested (melatonin, glutathione (GSH), β-mercaptoethanol (β-ME), N-acetylcysteine (NAC) and dithiothreitol (DTT)), addition of GSH (1 mM) or β-ME (25 µM) significantly increased development to the blastocyst stage compared with the controls without antioxidant treatment (22.2 ± 4.2% for 1 mM GSH, 25.9 ± 2.2% for 25 µM β-ME and 12-13% for the control, P<0.05). In addition, the mean cell number per blastocyst was increased by approximately 1.7-fold in the presence of GSH or β -ME. These GSH- and β-ME-induced increases in development to the blastocyst stage and total cell number, however, were not mimicked by melatonin, NAC or DTT, all of which are ROS scavengers. The combination of GSH or β-ME with L-cysteine significantly reduced high O(2) tension-induced ROS production (P<0.05). These results suggest that a combination of 1 mM GSH or 25 µM β-ME with 1 mM L-cysteine could be used for production of high quality porcine blastocysts in IVC systems.
Collapse
Affiliation(s)
- Changyong Choe
- Republic of Korea Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Namekawa T, Ikeda S, Sugimoto M, Kume S. Effects of Astaxanthin-containing Oil on Development and Stress-related Gene Expression of Bovine Embryos Exposed to Heat Stress. Reprod Domest Anim 2010; 45:e387-91. [DOI: 10.1111/j.1439-0531.2010.01584.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Bagis H, Akkoc T, Taskin C, Arat S. Comparison of Different Cryopreservation Techniques: Higher Survival and Implantation Rate of Frozen-Thawed Mouse Pronuclear Embryos in the Presence of Beta-Mercaptoethanol in Post-Thaw Culture. Reprod Domest Anim 2010; 45:e332-7. [DOI: 10.1111/j.1439-0531.2009.01570.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Curnow EC, Ryan JP, Saunders DM, Hayes ES. Developmental potential of bovine oocytes following IVM in the presence of glutathione ethyl ester. Reprod Fertil Dev 2010; 22:597-605. [DOI: 10.1071/rd09228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 09/28/2009] [Indexed: 11/23/2022] Open
Abstract
Glutathione (GSH) is synthesised during oocyte maturation and represents the oocyte’s main non-enzymatic defence against oxidative stress. Inadequate defence against oxidative stress may be related to poor embryo quality and viability. In the present study, bovine oocytes were matured in vitro in the presence of GSH ethyl ester (GSH-OEt), a cell permeable GSH donor, and its effects on subsequent fertilisation and embryo development were assessed. GSH-OEt significantly increased the GSH content of IVM oocytes without affecting fertilisation or Day 3 cleavage rates. Maturation in the presence of GSH-OEt did not significantly increase the blastocyst rate compared with control oocytes. However, 5 mM GSH-OEt treatment resulted in significantly higher blastocyst total cell number. The GSH level of IVM oocytes was significantly decreased in the absence of cumulus cells and when cumulus–oocyte complexes were cultured in the presence of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis. The addition of GSH-OEt to cumulus-denuded or BSO-treated oocytes increased the GSH content of bovine oocytes and restored the rate of normal fertilisation, but not embryo development, to levels seen in control oocytes. Thus, GSH-OEt represents a novel approach for effective in vitro elevation of bovine oocyte GSH and improvement in blastocyst cell number.
Collapse
|
41
|
Antioxidant supplementation of culture medium during embryo development and/or after vitrification-warming; which is the most important? J Assist Reprod Genet 2009; 26:355-64. [PMID: 19543824 DOI: 10.1007/s10815-009-9317-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To determine the most optimal stage for antioxidant supplementation of culture medium to improve developmental competence, cryotolerance and DNA-fragmentation of bovine embryos. METHODS Presumptive zygotes were first cultured in presence or absence of beta-mercaptoethanol (beta-ME), for 8 days. Subsequently, half of the expanded blastocysts developed in both groups were vitrified, warmed within 30 min and post-warming embryos along with their corresponding non-vitrified embryos were cultured for two further days in presence or absence of (100 microM) betaME. RESULTS For vitrified and non-vitrified embryos, the best effect was found when betaME was added from day 1 of in vitro culture in continuation with post-warming culture period. Day 1-8 supplementation significantly increased the rates of cleavage, day 7 and day 8 blastocyst production. For non-vitrified embryos, betaME addition during day 1-8 and/or 9-10 of embryo culture improved both hatching rate and quality of hatched embryos. For vitrified embryos, however, the percentage of DNA-fragmentation (18.5%) was significantly higher (p < or = 0.05) than that of embryos developed in absence of betaME but supplemented with betaME during post-warming period (13.5%). CONCLUSIONS Exogenous antioxidant increases the chance of embryos, even those of fair-quality, to develop to blastocyst. However, antioxidant inclusion during in vitro embryo development is not sufficient to maintain the redox state of these embryos during the critical period of post-warming embryo culture, and therefore, there should be a surplus source of exogenous antioxidant during post-warming embryo culture.
Collapse
|
42
|
Maeda H. Controlling oxidative stress: therapeutic and delivery strategies. Preface. Adv Drug Deliv Rev 2009; 61:285-6. [PMID: 19236897 DOI: 10.1016/j.addr.2009.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Takahashi T, Itoh R, Nagai T. Effects of N, N-dimethylglycine on the development of in vitro produced bovine embryos. J Reprod Dev 2009; 55:339-42. [PMID: 19305128 DOI: 10.1262/jrd.20124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the effects of N, N-Dimethylglycine (DMG) on the development of in vitro produced (IVP) bovine embryos. IVP embryos were obtained by in vitro fertilization of in vitro matured oocytes for 6 h. In Experiment 1, IVP embryos were cultured in mSOFaa supplemented with bovine serum albumin but without glucose (SOF1) for 4 days, transferred to mSOFaa (with 5% fetal bovine serum and 1.5 mM glucose; SOF2) supplemented with 0 (control), 0.1,1 or 10 microM DMG and cultured for an additional 7 days (11 days in total) to assess their development in vitro. When cultured in the medium with 0.1 microM DMG, a significantly higher number of IVP embryos developed to the blastocyst and hatched blastocyst stages (40.3 and 40.8%, respectively) compared with the other groups (18.7-31.0% and 15.0-28.7%, respectively; P<0.05, analysis of variance). In Experiment 2, IVP embryos were cultured in SOF1 with or without 0.1 microM DMG for 4 days, transferred to SOF2 with or without 0.1 microM DMG and further cultured as in Experiment 1; DMG was added to either SOF1 or SOF2 and to both of them to assess its exposure effects on embryo development. When cultured continuously with DMG for 11 days, significantly higher rates of IVP embryos developed into blastocyst and hatched blastocyst stages (39.0 and 47.7%, respectively) compared with the other groups (31.0-32.2% and 29.5-31.0%, respectively; P<0.05). In Experiment 3, we examined developmental speed of IVP embryos cultured with or without addition of 0.1 microM DMG to IVC medium after 7 days of IVC. When DMG was added to IVC medium, the ratio of embryos developed to advanced developmental stages (No. of embryos developed to the blastocyst and expanded blastocyst stages/No. of embryos developed to the morula stage) was 28.7% (86/3) and 7 times higher than that of those cultured without DMG, 4.0% (52/13). These results suggest that addition of 0.1 microM DMG to mSOFaa during IVC of IVP bovine embryos has a promoting effect on their development.
Collapse
Affiliation(s)
- Toshikiyo Takahashi
- Livestock Experiment Station, Akita Prefectural Agriculture Forestry and Fisheries Research Center.
| | | | | |
Collapse
|
44
|
George F, Kerschen D, Van Nuffel A, Rees JF, Donnay I. Plant protein hydrolysates (plant peptones) as substitutes for animal proteins in embryo culture medium. Reprod Fertil Dev 2009; 21:587-98. [DOI: 10.1071/rd08147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 02/06/2009] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to improve the sanitary quality of in vitro-produced bovine embryos by using plant protein hydrolysates (plant peptones) as substitutes for animal proteins. Peptones were compared with bovine serum albumin (BSA) as the protein source in synthetic oviduct fluid medium and the quality of the resulting embryos was determined. Two batches of peptones (wheat and cotton) were selected on the basis of their anti-oxidant properties. When added to the culture medium, both peptones (at 0.56 mg mL–1 for cotton peptone and at 0.18 mg mL–1 for wheat peptone) led to similar developmental and hatching rates compared with 4 mg mL–1 BSA and embryos were equally resistant to freezing and able to elongate after transfer. Surprisingly, a significant decrease in reduced glutathione (GSH) content was observed when embryos were produced with plant peptone instead of BSA. Supplementation of the culture medium with precursors of GSH (cysteine and β-mercaptoethanol) significantly increased the GSH content. A shift of the sex ratio towards male embryos was seen for Day 8 embryos cultured with wheat peptone, whereas no shift was observed for embryos cultured in the presence of BSA or polyvinylpyrrolidone. In conclusion, culture with plant peptones enables embryos to be obtained at a similar rate and of similar quality to that seen following the use of BSA. The use of the plant peptones increased the sanitary quality of the embryos and decreased the cost of embryo production.
Collapse
|
45
|
Gupta PSP, Nandi S. Viability and growth of buffalo preantral follicles and their corresponding oocytes in vitro: effect of growth factors and beta mercaptoethanol. Reprod Domest Anim 2008; 45:147-54. [PMID: 19032426 DOI: 10.1111/j.1439-0531.2008.01292.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The present study was undertaken to isolate buffalo preantral follicles (PFs), to test the viability and sizes of buffalo PFs and to examine the effect of various growth factors (insulin-like growth factor, fibroblast growth factor) and an antioxidant (beta mercaptoethanol) on the in vitro growth, survival and antrum formation rates of buffalo PFs and growth rates of oocytes in cultured PFs. Preantral follicles from slaughtered buffalo ovaries were recovered by a combined mechanical and enzymatic method. The recovery rates of >40-100, 101-200, 201-300, 301-400 and 401-500 microm PFs were 5.1, 3.2, 3.1, 6.3 and 5.1 per ovary, respectively. The corresponding viability rates were 76.1%, 78.1%, 85.2%, 92.5% and 92.6%, respectively. There was a positive correlation (r = 0.73) between oocyte size and the follicular size. However, there was no significant correlation between the size of oocyte and its viability at the time of its retrieval from ovary. Insulin-like growth factor and fibroblast growth factor improved the survival of buffalo PFs and regulated their growth in culture. The growth factors and beta mercaptoethanol in association synergically improved the growth and survival of buffalo PFs.
Collapse
Affiliation(s)
- P S P Gupta
- National Institute of Animal Nutrition and Physiology, Bangalore, India
| | | |
Collapse
|
46
|
Sakatani M, Yamanaka K, Kobayashi S, Takahashi M. Heat shock-derived reactive oxygen species induce embryonic mortality in in vitro early stage bovine embryos. J Reprod Dev 2008; 54:496-501. [PMID: 18762719 DOI: 10.1262/jrd.20017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock is known to increase the mortality of early stage embryos, but the exact mechanism is unclear. In the present study, we investigated the possibility that the increased mortality is caused by heat shock-generated reactive oxygen species (ROS). The level of ROS was controlled by using beta-mercaptoethanol (beta-ME), a scavenger of ROS. In vitro-produced 8-cell stage embryos were cultured at 38.5 C or heat-shocked by exposure to 41 C for 6 h with 0, 10 and 50 microM beta-ME. Intracellular ROS levels were measured by a fluorescent dye, 2',7'-dichlorodihydrofluorescein diacetate (DCHFDA), and intracellular reduced form of glutathione (GSH) contents were estimated by another fluorescent dye, 4-chloromethyl-6,8-difluoro-7-hydroxycoumarin. Total glutathione content was estimated by the glutathione recycling assay. On day 8 after insemination, heat shock decreased the percentage of embryos that developed to the blastocyst stage and increased intracellular ROS levels, but there was no significant effect on the GSH and total glutathione contents. In contrast, beta-ME significantly decreased ROS levels in heat-shocked embryos and increased the GSH and total glutathione concentrations. Ten microM beta-ME significantly improved the viability of heat-shocked embryos. beta-ME caused no detrimental effects when it was added at normal culture temperature (38.5 C). These results indicate that ROS is the primary cause of increased embryonic mortality in heat-shocked early stage embryos.
Collapse
Affiliation(s)
- Miki Sakatani
- National Agricultural Research Center for Kyushu Okinawa Region, Kumamoto, Japan.
| | | | | | | |
Collapse
|
47
|
de Castro e Paula LA, Hansen PJ. Modification of actions of heat shock on development and apoptosis of cultured preimplantation bovine embryos by oxygen concentration and dithiothreitol. Mol Reprod Dev 2008; 75:1338-50. [PMID: 18246528 DOI: 10.1002/mrd.20866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preimplantation embryos exposed to elevated temperatures have reduced developmental competence. The involvement of reactive oxygen species in these effects has been controversial. Here we tested hypotheses that (1) heat shock effects on development and apoptosis would be greater when embryos were cultured in a high oxygen environment (air; oxygen concentration = approximately 20.95%, v/v) than in a low oxygen environment (5% oxygen) and (2) that these effects would be reversed by addition of the antioxidant dithiothreitol (DTT). Heat shock of 41 degrees C for 9 hr reduced development of two-cell embryos and Day 5 embryos to the blastocyst stage embryos when in high oxygen. There was no effect of heat shock on development when embryos were in low oxygen. Furthermore, induction of TUNEL-positive cells in Day 5 embryos by heat shock only occurred when embryos were in high oxygen. Addition of DTT to two-cell embryos either did not reduce effects of a heat shock of 41 degrees C for 15 hr on development or caused slight protection only. In contrast, treatment of Day 5 embryos with DTT reduced effects of heat shock on development and apoptosis. In summary, oxygen tension was shown to be a major determinant of the effects of heat shock on development and apoptosis in preimplantation bovine embryos. Protective effects of the antioxidant DTT were stage specific and more pronounced at later stages of development.
Collapse
|
48
|
Choi J, Park SM, Lee E, Kim JH, Jeong YI, Lee JY, Park SW, Kim HS, Hossein MS, Jeong YW, Kim S, Hyun SH, Hwang WS. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol Reprod Dev 2008; 75:1127-35. [DOI: 10.1002/mrd.20861] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Papis K, Poleszczuk O, Wenta-Muchalska E, Modlinski JA. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J Pineal Res 2007; 43:321-6. [PMID: 17910599 DOI: 10.1111/j.1600-079x.2007.00479.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin promotes mouse embryo development in vitro. An effect of melatonin on bovine embryo development is described here. Slaughterhouse derived oocytes were subjected to standard in vitro maturation and fertilization procedures. Presumptive zygotes were cultured for 2 days in CR1aaLA medium supplemented with melatonin (10(-4) m) or without melatonin (control). Culture was performed under two different gas atmospheres containing physiological (7%) or atmospheric (20%) oxygen concentrations (2x2 factorial analysis). After day 2, embryos from each treatment group developed to at least four-cell stage, were cultured without melatonin until day 10 at optimum 7% O2 atmosphere. Blastocyst formation rates of presumptive zygotes and of four-cell embryos were calculated for each group. Significant interactions between oxygen tension and the melatonin treatment were found. Out of four-cell embryos put into in vitro culture after initial incubation in medium containing melatonin, decreased blastocyst rate was observed in melatonin group (47.7%) compared with control (67.7%; P=0.0327) when lower oxygen concentration was applied. A beneficial effect of melatonin was observed in 20% O2: out of 61 embryos, 42 (68.9%) developed to the blastocyst stage after treatment in melatonin versus 32 of 63 (50.8%; P=0.0458) blastocysts that developed in control group. In conclusion, beneficial or harmful effects of melatonin on bovine embryo development in vitro were observed, depending on the oxygen tension during the treatment.
Collapse
Affiliation(s)
- Krzysztof Papis
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland.
| | | | | | | |
Collapse
|
50
|
Velez-Pardo C, Morales AT, Del Rio MJ, Olivera-Angel M. Endogenously generated hydrogen peroxide induces apoptosis via mitochondrial damage independent of NF-kappaB and p53 activation in bovine embryos. Theriogenology 2007; 67:1285-96. [PMID: 17353043 DOI: 10.1016/j.theriogenology.2007.01.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/01/2007] [Indexed: 11/30/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) has been implicated as a key molecule in arresting embryonic development; however, its mechanism of action is not fully established. The aim of the present study was to determine the chronological generation of H(2)O(2) from oocyte to morula, and to examine the relationship of H(2)O(2) with loss of mitochondrial membrane potential, nuclear factor kappa-B (NF-kappaB), p53, caspase-3 activation, and cell death in bovine embryos in vitro. Accordingly, superoxide anion radicals were detected between 32 and 120 h after in vitro fertilization, but higher percentages of oxygen radicals were found in non-competent embryos (n=73, 22 to 34%) than in competent embryos (n=73, 0 to 1%; P<0.005). Similarly, H(2)O(2) levels were higher in non-competent embryos (n=249, 39 to 71%) than in competent embryos (n=278, 0 to 3.4%) at all developmental stages tested (P<0.005). The percentage of cells with apoptotic morphology were higher in non-competent embryos (n=411, 3 to 54%) than in competent embryos (n=306, 0 to 0.6%; P<0.005). Based on assessment of mitochondrial membrane potential, competent embryos (n=305) had the highest percentages of JC-1 staining (31 to 50%) when compared with non-competent embryos (n=411; 1 to 15%, P<0.005). The percentage of activation of general caspases was different in non-competent embryos (n=291, 15 to 57%) when compared to competent embryos (n=304, 0 to 0.5%; P<0.005). Pharmacological inhibition of caspase-3, NF-kappaB and p53 triggered aberrant embryo cytoplasmic fragmentation with and without nuclei. We concluded that the sequential mechanism of O(2)(-) and H(2)O(2) generation, mitochondrial damage, caspase activation, and apoptotic morphology might be responsible for the developmental arrest of preimplantation embryos.
Collapse
Affiliation(s)
- Carlos Velez-Pardo
- School of Medicine, Department of Internal Medicine, Neuroscience Research Group, University of Antioquia, Calle 62 #52-59, SIU-Lab 411/412, Medellin, Colombia.
| | | | | | | |
Collapse
|