1
|
Kowalski K, Marciniak P, Rychlik L. Proteins from toad's parotoid macroglands: do they play a role in gland functioning and chemical defence? Front Zool 2023; 20:21. [PMID: 37328749 DOI: 10.1186/s12983-023-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Parotoid gland secretion of bufonid toads is a rich source of toxic molecules that are used against predators, parasites and pathogens. Bufadienolides and biogenic amines are the principal compounds responsible for toxicity of parotoid secretion. Many toxicological and pharmacological analyses of parotoid secretions have been performed, but little is known about the processes related to poison production and secretion. Therefore, our aim was to investigate protein content in parotoids of the common toad, Bufo bufo, to understand the processes that regulate synthesis and excretion of toxins as well as functioning of parotoid macroglands. RESULTS Applying a proteomic approach we identified 162 proteins in the extract from toad's parotoids that were classified into 11 categories of biological functions. One-third (34.6%) of the identified molecules, including acyl-CoA-binding protein, actin, catalase, calmodulin, and enolases, were involved in cell metabolism. We found many proteins related to cell division and cell cycle regulation (12.0%; e.g. histone and tubulin), cell structure maintenance (8.4%; e.g. thymosin beta-4, tubulin), intra- and extracellular transport (8.4%), cell aging and apoptosis (7.3%; e.g. catalase and pyruvate kinase) as well as immune (7.0%; e.g. interleukin-24 and UV excision repair protein) and stress (6.3%; including heat shock proteins, peroxiredoxin-6 and superoxide dismutase) response. We also identified two proteins, phosphomevalonate kinase and isopentenyl-diphosphate delta-isomerase 1, that are involved in synthesis of cholesterol which is a precursor for bufadienolides biosynthesis. STRING protein-protein interaction network predicted for identified proteins showed that most proteins are related to metabolic processes, particularly glycolysis, stress response and DNA repair and replication. The results of GO enrichment and KEGG analyses are also consistent with these findings. CONCLUSION This finding indicates that cholesterol may be synthesized in parotoids, and not only in the liver from which is then transferred through the bloodstream to the parotoid macroglands. Presence of proteins that regulate cell cycle, cell division, aging and apoptosis may indicate a high epithelial cell turnover in parotoids. Proteins protecting skin cells from DNA damage may help to minimize the harmful effects of UV radiation. Thus, our work extends our knowledge with new and important functions of parotoids, major glands involved in the bufonid chemical defence.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Institute of Biology, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Leszek Rychlik
- Department of Systematic Zoology, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
2
|
Shemarova IV, Nesterov VP. Molecular Basis of Cardioprotection in Ischemic Heart Disease. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019030013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Beckendorf J, van den Hoogenhof MMG, Backs J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 2018; 113:29. [PMID: 29905892 PMCID: PMC6003982 DOI: 10.1007/s00395-018-0688-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
In the cardiomyocyte, CaMKII has been identified as a nodal influencer of excitation-contraction and also excitation-transcription coupling. Its activity can be regulated in response to changes in intracellular calcium content as well as after several post-translational modifications. Some of the effects mediated by CaMKII may be considered adaptive, while effects of sustained CaMKII activity may turn into the opposite and are detrimental to cardiac integrity and function. As such, CaMKII has long been noted as a promising target for pharmacological inhibition, but the ubiquitous nature of CaMKII has made it difficult to target CaMKII specifically where it is detrimental. In this review, we provide a brief overview of the physiological and pathophysiological properties of CaMKII signaling, but we focus on the physiological and adaptive functions of CaMKII. Furthermore, special consideration is given to the emerging role of CaMKII as a mediator of inflammatory processes in the heart.
Collapse
Affiliation(s)
- Jan Beckendorf
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department for Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
4
|
Daniels LJ, Wallace RS, Nicholson OM, Wilson GA, McDonald FJ, Jones PP, Baldi JC, Lamberts RR, Erickson JR. Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovasc Diabetol 2018; 17:89. [PMID: 29903013 PMCID: PMC6001139 DOI: 10.1186/s12933-018-0732-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Calcium/calmodulin-dependent kinase II-delta (CaMKIIδ) activity is enhanced during hyperglycemia and has been shown to alter intracellular calcium handling in cardiomyocytes, ultimately leading to reduced cardiac performance. However, the effects of CaMKIIδ on cardiac contractility during type 2 diabetes are undefined. METHODS We examined the expression and activation of CaMKIIδ in right atrial appendages from non-diabetic and type 2 diabetic patients (n = 7 patients per group) with preserved ejection fraction, and also in right ventricular tissue from Zucker Diabetic Fatty rats (ZDF) (n = 5-10 animals per group) during early diabetic cardiac dysfunction, using immunoblot. We also measured whole heart function of ZDF and control rats using echocardiography. Then we measured contraction and relaxation parameters of isolated trabeculae from ZDF to control rats in the presence and absence of CaMKII inhibitors. RESULTS CaMKIIδ phosphorylation (at Thr287) was increased in both the diabetic human and animal tissue, indicating increased CaMKIIδ activation in the type 2 diabetic heart. Basal cardiac contractility and relaxation were impaired in the cardiac muscles from the diabetic rats, and CaMKII inhibition with KN93 partially restored contractility and relaxation. Autocamtide-2-related-inhibitor peptide (AIP), another CaMKII inhibitor that acts via a different mechanism than KN93, fully restored cardiac contractility and relaxation. CONCLUSIONS Our results indicate that CaMKIIδ plays a key role in modulating performance of the diabetic heart, and moreover, suggest a potential therapeutic role for CaMKII inhibitors in improving myocardial function during type 2 diabetes.
Collapse
Affiliation(s)
- Lorna J Daniels
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Rachel S Wallace
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Olivia M Nicholson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Genevieve A Wilson
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Peter P Jones
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - J Chris Baldi
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Jeffrey R Erickson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
5
|
Daniels L, Bell JR, Delbridge LMD, McDonald FJ, Lamberts RR, Erickson JR. The role of CaMKII in diabetic heart dysfunction. Heart Fail Rev 2016. [PMID: 26198034 DOI: 10.1007/s10741-015-9498-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is an increasing epidemic that places a significant burden on health services worldwide. The incidence of heart failure (HF) is significantly higher in diabetic patients compared to non-diabetic patients. One underlying mechanism proposed for the link between DM and HF is activation of calmodulin-dependent protein kinase (CaMKIIδ). CaMKIIδ mediates ion channel function and Ca(2+) handling during excitation-contraction and excitation-transcription coupling in the myocardium. CaMKIIδ activity is up-regulated in the myocardium of diabetic patients and mouse models of diabetes, where it promotes pathological signaling that includes hypertrophy, fibrosis and apoptosis. Pharmacological inhibition and knockout models of CaMKIIδ have shown some promise of a potential therapeutic benefit of CaMKIIδ inhibition, with protection against cardiac hypertrophy and apoptosis reported. This review will highlight the pathological role of CaMKIIδ in diabetes and discuss CaMKIIδ as a therapeutic target in DM, and also the effects of exercise on CaMKIIδ.
Collapse
Affiliation(s)
- Lorna Daniels
- Department of Physiology, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
It is well established that cardiac remodeling plays a pivotal role in the development of heart failure, a leading cause of death worldwide. Meanwhile, sympathetic hyperactivity is an important factor in inducing cardiac remodeling. Therefore, an in-depth understanding of beta-adrenoceptor signaling pathways would help to find better ways to reverse the adverse remodeling. Here, we reviewed five pathways, namely mitogen-activated protein kinase signaling, Gs-AC-cAMP signaling, Ca(2+)-calcineurin-NFAT/CaMKII-HDACs signaling, PI3K signaling and beta-3 adrenergic signaling, in cardiac remodeling. Furthermore, we constructed a cardiac-remodeling-specific regulatory network including miRNA, transcription factors and target genes within the five pathways. Both experimental and clinical studies have documented beneficial effects of beta blockers in cardiac remodeling; nevertheless, different blockers show different extent of therapeutic effect. Exploration of the underlying mechanisms could help developing more effective drugs. Current evidence of treatment effect of beta blockers in remodeling was also reviewed based upon information from experimental data and clinical trials. We further discussed the mechanism of how beta blockers work and why some beta blockers are more potent than others in treating cardiac remodeling within the framework of cardiac remodeling network.
Collapse
|
7
|
Zhang H, Fang W, Xiao W, Lu L, Jia X. Protective role of oligomeric proanthocyanidin complex against hazardous nodularin-induced oxidative toxicity in Carassius auratus lymphocytes. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:247-257. [PMID: 24794815 DOI: 10.1016/j.jhazmat.2014.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Nodularin (NOD) is a hazardous material widely detected in water blooms. Fish immune cells are extremely vulnerable to NOD-induced oxidative stress. Oligomeric proanthocyanidin complex (OPC), extracted from grapeseed, was used as an antioxidant to eliminate reactive oxygen species and prevent apoptotic effects. Carassius auratus lymphocytes were treated with different concentrations (0, 10, 100, and 1,000 μg/L) of OPC and a constant dose (100 μg/L) of NOD for 12h in vitro. OPC inhibited mitosis by decreasing intracellular levels of oxidative stress, regulating antioxidant enzymes (CAT, SOD, GPx, GR, and GST), mediating bcl-2 family proteins, and deactivating caspase-3. Glutathione (GSH) levels in group V (NOD 100 μg/L; OPC 1,000 μg/L) showed a twofold increase compared with corresponding levels in group II (NOD 100 μg/L). Structure parameters of NOD and NOD-GSH were calculated using SYBYL 7.1 software. ClogP and HINK logP values of NOD-GSH decreased by 10.4- and 2.3-fold, respectively, compared with corresponding values of NOD. OPC-stimulated GSH can lower the lipophilicity and polarity of NOD. OPC, as a protective agent, can alleviate NOD-induced toxicity in C. auratus lymphocytes by regulating oxidative stress and inducing NOD-GSH detoxification.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China.
| | - Wendi Fang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Wenfeng Xiao
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Liping Lu
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Xiuying Jia
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| |
Collapse
|
8
|
Simvastatin pretreatment protects cerebrum from neuronal injury by decreasing the expressions of phosphor-CaMK II and AQP4 in ischemic stroke rats. J Mol Neurosci 2014; 54:591-601. [PMID: 24752488 DOI: 10.1007/s12031-014-0307-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/08/2014] [Indexed: 01/08/2023]
Abstract
Excitotoxicity and cytotoxic edema are the two major factors resulting in neuronal injury during brain ischemia and reperfusion. Ca2+/calmodulin-dependent protein kinase II (CaMK II), the downstream signal molecular of N-methyl-D-aspartate receptors (NMDARs), is a mediator in the excitotoxicity. Aquaporin 4 (AQP4), expressed mainly in the brain, is an important aquaporin to control the flux of water. In a previous study, we had reported that pretreatment of simvastatin protected the cerebrum from ischemia and reperfusion injury by decreasing neurological deficit score and infarct area (Zhu et al. PLoS One 7:e51552, 2012). The present study used a middle cerebral artery occlusion (MCAO) model to further explore the pleiotropic effect of simvastatin via CaMK II and AQP4. The results showed that simvastatin reduced degenerated cells and brain edema while decreasing the protein expressions of phosphor-CaMK II and AQP4, and increasing the ratios of Bcl-2/Bax, which was independent of cholesterol-lowering effect. Immunocomplexes formed between the subunit of NMDARs-NR3A and AQP4 were detected for the first time. It was concluded that simvastatin could protect the cerebrum from neuronal excitotoxicity and cytotoxic edema by downregulating the expressions of phosphor-CaMK II and AQP4, and that the interaction between NR3A and AQP4 might provide the base for AQP4 involving in the signaling pathways mediated by NMDARs.
Collapse
|
9
|
Yuan FL, Wang HR, Zhao MD, Yuan W, Cao L, Duan PG, Jiang YQ, Li XL, Dong J. Ovarian cancer G protein-coupled receptor 1 is involved in acid-induced apoptosis of endplate chondrocytes in intervertebral discs. J Bone Miner Res 2014; 29:67-77. [PMID: 23821474 DOI: 10.1002/jbmr.2030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 11/06/2022]
Abstract
Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a receptor for protons. We investigated the role of proton-sensing G protein-coupled receptors in the apoptosis of endplate chondrocytes induced by extracellular acid. The expression of proton-sensing G protein-coupled receptors was examined in rat lumbar endplate chondrocytes. Knockdown of OGR1 was achieved by transfecting chondrocytes with specific short hairpin RNA (shRNA) for OGR1. Apoptotic changes were evaluated by DNA fragmentation ELISA, electron microscopy, and flow cytometry. Intracellular calcium ([Ca(2+) ]i) was analyzed with laser scanning confocal microscopy. The mechanism of OGR1 in acid-induced apoptosis of endplate chondrocytes was also investigated. We found that OGR1 was predominantly expressed in rat endplate chondrocytes, and its expression was highly upregulated in response to acidosis. Knocking down OGR1 with shRNAs effectively attenuated acid-induced apoptosis of endplate chondrocytes and increased [Ca(2+) ]i. Blocking OGR1-mediated [Ca(2+) ]i elevation inhibited acid-induced calcium-sensitive proteases such as calpain and calcineurin, and also inhibited the activation of Bid, Bad, and Caspase 3 and cleavage of poly (ADP-ribose) polymerase (PARP). OGR1-mediated [Ca(2+) ]i elevation has a crucial role in apoptosis of endplate chondrocytes by regulating activation of calcium-sensitive proteases and their downstream signaling.
Collapse
Affiliation(s)
- Feng-Lai Yuan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
11
|
Han F, Yan S, Shi Y. Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS One 2013; 8:e69340. [PMID: 23894451 PMCID: PMC3716639 DOI: 10.1371/journal.pone.0069340] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/08/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Our previous research indicated that apoptosis induced atrophy in the hippocampus of post-traumatic stress disorder (PTSD) rats. Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in the development of several disorder diseases. The aim of this study was to investigate whether endoplasmic reticulum-related pathway is involved in single-prolonged stress (SPS) induces apoptosis in the hippocampus of PTSD rats by examining the expression levels of three important indicators in the ER-related apoptotic pathway: Glucose-regulated protein (GRP) 78, caspase-12 and Ca(2+)/CaM/CaMkinaseIIα (CaMkIIα). METHODS Wistar rats were sacrificed at 1, 4 and 7 days after SPS. SPS is a reliable animal model of PTSD. The apoptotic cells in the hippocampus were assessed by TUNEL method and transmission electron microscopy (TEM). Free intracellular Ca(2+) concentration was measured. GRP78 expression was examined by immunohistochemistry, western blotting and RT-PCR. mRNA of caspase-12 and CaM/CaMkIIα were determined by RT-PCR. RESULTS Our results showed that apoptotic cells were increased in the SPS rats. TEM analysis revealed characteristic morphological changes of apoptosis in these cells. We observed that GRP78 was significantly up-regulated during early PTSD, and then recovered at 7 days after SPS. By RT-PCR, we observed that the change in caspase-12 expression level was similar to that in GRP78. Moreover, the free intracellular Ca(2+) concentration was significantly higher at 1 day after SPS and decreased in 7 days. CaM expression increased significantly, while CaMKIIα expression decreased significantly in the hippocampus at 1 day after SPS. CONCLUSION SPS induced change in the expression levels of GRP78, caspase-12 and Ca(2+)/CaM/CaMkIIα in the hippocampus of PTSD rats indicated that the endoplasmic reticulum pathway may be involved in PTSD-induced apoptosis.
Collapse
Affiliation(s)
- Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | - Shengnan Yan
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | - YuXiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Rauhala L, Hämäläinen L, Salonen P, Bart G, Tammi M, Pasonen-Seppänen S, Tammi R. Low dose ultraviolet B irradiation increases hyaluronan synthesis in epidermal keratinocytes via sequential induction of hyaluronan synthases Has1-3 mediated by p38 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling. J Biol Chem 2013; 288:17999-8012. [PMID: 23645665 DOI: 10.1074/jbc.m113.472530] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan, a major epidermal extracellular matrix component, responds strongly to different kinds of injuries. This also occurs by UV radiation, but the mechanisms involved are poorly understood. The effects of a single ultraviolet B (UVB) exposure on hyaluronan content and molecular mass, and expression of genes involved in hyaluronan metabolism were defined in monolayer and differentiated, organotypic three-dimensional cultures of rat epidermal keratinocytes. The signals regulating the response were characterized using specific inhibitors and Western blotting. In monolayer cultures, UVB increased hyaluronan synthase Has1 mRNA already 4 h postexposure, with a return to control level by 24 h. In contrast, Has2 and Has3 were persistently elevated from 8 h onward. Silencing of Has2 and especially Has3 decreased the UVB-induced accumulation of hyaluronan. p38 and Ca(2+)/calmodulin-dependent protein kinase II pathways were found to be involved in the UVB-induced up-regulation of Has2 and Has3 expression, respectively, and their inhibition reduced hyaluronan deposition. However, the expressions of the hyaluronan-degrading enzymes Hyal1 and Hyal2 and the hyaluronan receptor Cd44 were also up-regulated by UVB. In organotypic cultures, UVB treatment also resulted in increased expression of both Has and Hyal genes and shifted hyaluronan toward a smaller size range. Histochemical stainings indicated localized losses of hyaluronan in the epidermis. The data show that exposure of keratinocytes to acute, low dose UVB increases hyaluronan synthesis via up-regulation of Has2 and Has3. The simultaneously enhanced catabolism of hyaluronan demonstrates the complexity of the UVB-induced changes. Nevertheless, enhanced hyaluronan metabolism is an important part of the adaptation of keratinocytes to radiation injury.
Collapse
Affiliation(s)
- Leena Rauhala
- School of Medicine, Institute of Biomedicine/Anatomy, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ke Z, Liang D, Zeng Q, Ren Q, Ma H, Gui L, Chen S, Guo M, Xu Y, Gao W, Zhang S, Chen L. hsBAFF promotes proliferation and survival in cultured B lymphocytes via calcium signaling activation of mTOR pathway. Cytokine 2013; 62:310-21. [PMID: 23557796 DOI: 10.1016/j.cyto.2013.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/27/2013] [Accepted: 03/08/2013] [Indexed: 11/15/2022]
Abstract
B-cell activating factor of the TNF family (BAFF, also called BLyS, TALL-1, THANK, or zTNF4) has revealed its critical function in B lymphocyte proliferation and survival, as well as the pathogenesis of autoimmune disease. However, the molecular mechanisms of excess BAFF-extended aggressive B lymphocytes have not been completely defined. Here we show that excessive hsBAFF-elevated [Ca(2+)]i activated mammalian target of rapamycin (mTOR) signaling pathway, leading to proliferation and survival in B lymphocytes. This is supported by the findings that intracellular Ca(2+) chelator (BAPTA/AM) or mTOR inhibitor (rapamycin) abolished the events. Sequentially, we observed that preventing [Ca(2+)]i elevation using EGTA or 2-APB dramatically inhibited hsBAFF activation of mTOR signaling, as well as cell growth and survival, suggesting that hsBAFF-induced extracellular Ca(2+) influx and ER Ca(2+) release elevates [Ca(2+)]i contributing to B lymphocyte proliferation and survival via activation of mTOR signaling. Further, we noticed that pretreatment with BAPTA/AM, EGTA or 2-APB blocked hsBAFF-increased phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII), and inhibiting CaMKII with KN93 attenuated hsBAFF-activated mTOR signaling, as well as cell growth and survival, revealing that the effects of hsBAFF-elevated [Ca(2+)]i on mTOR signaling as well as proliferation and survival in B lymphocytes is through stimulating phosphorylation of CaMKII. The results indicate that hsBAFF activates mTOR pathway triggering B lymphocyte proliferation and survival by calcium signaling. Our findings suggest that manipulation of intracellular Ca(2+) level or CaMKII and mTOR activity may be exploited for the prevention of excessive BAFF-induced aggressive B lymphocyte disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Zhen Ke
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Banerjee C, Singh A, Raman R, Mazumder S. Calmodulin–CaMKII mediated alteration of oxidative stress: interplay of the cAMP/PKA–ERK 1/2-NF-κB–NO axis on arsenic-induced head kidney macrophage apoptosis. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx50026h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Swaminathan PD, Purohit A, Hund TJ, Anderson ME. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 2012; 110:1661-77. [PMID: 22679140 DOI: 10.1161/circresaha.111.243956] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the past decade supports a view that activation of the multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca(2+) or oxidation, upstream signals with the capacity to transition CaMKII into a Ca(2+) and calmodulin-independent constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca(2+) homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof-of-concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and for reducing arrhythmias. We review the molecular physiology of CaMKII and discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction, and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.
Collapse
Affiliation(s)
- Paari Dominic Swaminathan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
16
|
Swarnkar S, Goswami P, Kamat PK, Gupta S, Patro IK, Singh S, Nath C. Rotenone-induced apoptosis and role of calcium: a study on Neuro-2a cells. Arch Toxicol 2012; 86:1387-97. [PMID: 22526376 DOI: 10.1007/s00204-012-0853-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/05/2012] [Indexed: 12/21/2022]
Abstract
Rotenone causes cytotoxicity in astrocytic cell culture by glial activation, which is linked to free radical generation. The present study is an investigation to explore whether rotenone could also cause cellular toxicity in mouse neuroblastoma cells (Neuro-2a) under treatment similar to astroglial cells. The effect of rotenone (0.1, 1, and 10 μM) on mitochondrial dehydrogenase enzyme activity by MTT reduction assay, PI uptake, total reactive oxygen species (ROS)/superoxide levels, nitrite levels, extent of DNA damage (by comet assay), and nuclear morphological alteration by Hoechst staining was studied. Caspase-3 and Ca⁺²/calmodulin-dependent protein kinase II (CaMKIIα) gene expression was determined to evaluate the apoptotic cell death and calcium kinase, respectively. Calcium level was estimated fluorometrically using fura-2A stain. Rotenone decreased mitochondrial dehydrogenase enzyme activity and generated ROS, superoxide, and nitrite. Rotenone treatment impaired cell intactness and nuclear morphology as depicted by PI uptake and chromosomal condensation of Neuro-2a cells, respectively. In addition, rotenone resulted in increased intracellular Ca⁺² level, caspase-3, and CaMKIIα expression. Furthermore, co-exposure of melatonin (300 μM), an antioxidant to cell culture, significantly suppressed the rotenone-induced decreased mitochondrial dehydrogenase enzyme activity, elevated ROS and RNS. However, melatonin was found ineffective to counteract rotenone-induced increased PI uptake, altered morphological changes, DNA damage, elevated Ca⁺², and increased expression of caspase-3 and CaMKIIα. The study indicates that intracellular calcium rather than oxidative stress is a major factor for rotenone-induced apoptosis in neuronal cells.
Collapse
Affiliation(s)
- Supriya Swarnkar
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226001, UP, India
| | | | | | | | | | | | | |
Collapse
|
17
|
CaMKII-γ mediates phosphorylation of BAD at Ser170 to regulate cytokine-dependent survival and proliferation. Biochem J 2012; 442:139-49. [PMID: 22103330 DOI: 10.1042/bj20111256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphorylation of the BH3 (Bcl-2 homology domain 3)-only protein BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) can either directly disrupt its association with the pro-survival proteins Bcl-X(L) and/or Bcl-2, or cause association of BAD with 14-3-3 proteins. In the present study, we further characterize phosphorylation of BAD at Ser170, a unique site with unclear function. We provide further evidence that mutation of Ser170 to a phospho-mimetic aspartic acid residue (S170D) can have a profound inhibitory effect on the pro-apoptosis function of BAD. Furthermore, mutated BAD with an alanine substitution inhibited cell proliferation, slowing progression specifically through S-phase. We identify the kinase responsible for phosphorylation at this site as CaMKII-γ (γ isoform of Ca2+/calmodulin-dependent kinase II), but not the other three isoforms of CaMKII, revealing an extraordinary specificity among these closely related kinases. Furthermore, cytokine treatment increased BAD-Ser170-directed CaMKII-γ activity and phosphorylation of CaMKII-γ at an activating site, and CaMKII activity directed to the BAD-Ser170 site was elevated during S-phase. Treating cells with a selective inhibitor of CaMKII caused apoptosis in cells expressing BAD, but not in cells expressing the BAD-S170D mutant. The present study provides support for BAD-Ser170 phosphorylation playing a key role not only in regulating BAD's pro-apoptotic activity, but also in cell proliferation.
Collapse
|
18
|
Large T-antigen up-regulates Kv4.3 K⁺ channels through Sp1, and Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through activation of calcium/calmodulin-dependent protein kinase II. Biochem J 2012; 441:859-67. [PMID: 22023388 DOI: 10.1042/bj20111604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Down-regulation of Kv4.3 K⁺ channels commonly occurs in multiple diseases, but the understanding of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in pathological conditions are limited. HEK (human embryonic kidney)-293T cells are derived from HEK-293 cells which are transformed by expression of the large T-antigen. In the present study, by comparing HEK-293 and HEK-293T cells, we find that HEK-293T cells express more Kv4.3 K⁺ channels and more transcription factor Sp1 (specificity protein 1) than HEK-293 cells. Inhibition of Sp1 with Sp1 decoy oligonucleotide reduces Kv4.3 K⁺ channel expression in HEK-293T cells. Transfection of pN3-Sp1FL vector increases Sp1 protein expression and results in increased Kv4.3 K⁺ expression in HEK-293 cells. Since the ultimate determinant of the phenotype difference between HEK-293 and HEK-293T cells is the large T-antigen, we conclude that the large T-antigen up-regulates Kv4.3 K⁺ channel expression through an increase in Sp1. In both HEK-293 and HEK-293T cells, inhibition of Kv4.3 K⁺ channels with 4-AP (4-aminopyridine) or Kv4.3 small interfering RNA induces cell apoptosis and necrosis, which are completely rescued by the specific CaMKII (calcium/calmodulin-dependent protein kinase II) inhibitor KN-93, suggesting that Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through CaMKII activation. In summary, we establish: (i) the HEK-293 and HEK-293T cell model for Kv4.3 K⁺ channel study; (ii) that large T-antigen up-regulates Kv4.3 K⁺ channels through increasing Sp1 levels; and (iii) that Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through activating CaMKII. The present study provides deep insights into the mechanism of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in cell death.
Collapse
|
19
|
Chen S, Xu Y, Xu B, Guo M, Zhang Z, Liu L, Ma H, Chen Z, Luo Y, Huang S, Chen L. CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cell death. J Neurochem 2011; 119:1108-18. [PMID: 21933187 DOI: 10.1111/j.1471-4159.2011.07493.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Life Sciences, Nanjing Normal University, Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 2011; 91:889-915. [PMID: 21742790 DOI: 10.1152/physrev.00018.2010] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Pharmacology, University of California at Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Each normal heart beat is triggered by an electrical impulse emitted from a group of specialized cardiomyocytes that together form the sinoatrial node (SAN). In this issue of the JCI, Swaminathan and colleagues demonstrate a new molecular mechanism that can disrupt the normal beating of the heart: angiotensin II - typically found in increased levels in heart failure and hypertension - oxidizes and activates Ca2+/calmodulin-dependent kinase II via NADPH oxidase activation, causing SAN cell death. The loss of SAN cells produces an electrical imbalance termed the "source-sink mismatch," which may contribute to the SAN dysfunction that affects millions of people later in life and complicates a number of heart diseases.
Collapse
|
22
|
Abstract
Ischemic insults on neurons trigger excessive, pathological glutamate release that causes Ca²⁺ overload resulting in neuronal cell death (excitotoxicity). The Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of physiological excitatory glutamate signals underlying neuronal plasticity and learning. Glutamate stimuli trigger autophosphorylation of CaMKII at T286, a process that makes the kinase "autonomous" (partially active independent from Ca²⁺ stimulation) and that is required for forms of synaptic plasticity. Recent studies suggested autonomous CaMKII activity also as potential drug target for post-insult neuroprotection, both after glutamate insults in neuronal cultures and after focal cerebral ischemia in vivo. However, CaMKII and other members of the CaM kinase family have been implicated in regulation of both neuronal death and survival. Here, we discuss past findings and possible mechanisms of CaM kinase functions in excitotoxicity and cerebral ischemia, with a focus on CaMKII and its regulation.
Collapse
|
23
|
Kajihara R, Fukushige S, Shioda N, Tanabe K, Fukunaga K, Inui S. CaMKII phosphorylates serine 10 of p27 and confers apoptosis resistance to HeLa cells. Biochem Biophys Res Commun 2010; 401:350-5. [PMID: 20851109 DOI: 10.1016/j.bbrc.2010.09.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/13/2010] [Indexed: 01/12/2023]
Abstract
Protein phosphatase (PP) 6 is a serine threonine phosphatase which belongs to the PP2A subfamily of protein phosphatases. PP6 has been implicated in the control of apoptosis. A dominant negative form PP6 (DN-PP6) mutant cDNA was prepared and transfected into HeLa cells to investigate the regulation of apoptosis. HeLa cells expressing DN-PP6 showed increased resistance to apoptosis induced by TNF and cycloheximide. CaMKII phosphorylation and the expression of p27 were increased in DN-PP6 transfectants. Transient expression or activation of CaMKII increased the expression of p27. Furthermore, CaMKII phosphorylated serine 10 of p27, which induces the translocation of p27 from nucleus to cytoplasm and increases the stability of p27. Overexpression of wild type but not the S10A mutant p27 cDNA increased the expression of Bcl-xL and conferred apoptosis resistance to HeLa cells. These results indicated that PP6 and CaMKII regulated apoptosis by controlling the expression level of p27.
Collapse
Affiliation(s)
- Ryutaro Kajihara
- Department of Immunology and Hematology, Division of Health Sciences, Faculty of Life Sciences, Kumamoto University, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Schrader K, Huai J, Jöckel L, Oberle C, Borner C. Non-caspase proteases: triggers or amplifiers of apoptosis? Cell Mol Life Sci 2010; 67:1607-18. [PMID: 20169397 PMCID: PMC11115756 DOI: 10.1007/s00018-010-0287-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 02/06/2023]
Abstract
Caspases are the most important effectors of apoptosis, the major form of programmed cell death (PCD) in multicellular organisms. This is best reflected by the appearance of serious development defects in mice deficient for caspase-8, -9, and -3. Meanwhile, caspase-independent PCD, mediated by other proteases or signaling components has been described in numerous publications. Although we do not doubt that such cell death exists, we propose that it has evolved later during evolution and is most likely not designed to execute, but to amplify and speed-up caspase-dependent cell death. This review shall provide evidence for such a concept.
Collapse
Affiliation(s)
- Karen Schrader
- Institute of Molecular Medicine and Cell Research (ZBMZ), Albert Ludwigs University Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany
- Faculty of Biology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Jisen Huai
- Institute of Molecular Medicine and Cell Research (ZBMZ), Albert Ludwigs University Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany
| | - Lars Jöckel
- Institute of Molecular Medicine and Cell Research (ZBMZ), Albert Ludwigs University Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany
- Faculty of Biology, Albert Ludwigs University Freiburg, Freiburg, Germany
- Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Albertstr. 19a, 79104 Freiburg, Germany
| | - Carolin Oberle
- Institute of Molecular Medicine and Cell Research (ZBMZ), Albert Ludwigs University Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany
- Present Address: Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, PO Box 3640, 76021 Karlsruhe, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research (ZBMZ), Albert Ludwigs University Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany
- Faculty of Biology, Albert Ludwigs University Freiburg, Freiburg, Germany
- Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Albertstr. 19a, 79104 Freiburg, Germany
- Centre for Biological Signaling Studies (Bioss), Albert Ludwigs University Freiburg, Albertstrasse 19, 79104 Freiburg, Germany
| |
Collapse
|
25
|
Qiu W, Wei R, Zhang C, Zhang C, Leng W, Wang W. A glycine site-specific NMDA receptor antagonist protects retina ganglion cells from ischemic injury by modulating apoptotic cascades. J Cell Physiol 2010; 223:819-26. [PMID: 20333677 DOI: 10.1002/jcp.22118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glutamate neurotoxicity is one of the causative factors leading to neural degeneration including retina. Inhibition of NMDA receptors has been shown neuroprotective effects. However, specifically inhibition of glycine subunit in NMDA receptors and its effects on retina neural protection has not been tested. In this study, using a glycine site-specific NMDA receptor antagonist, we investigated its neuroprotective effects on rat retinal ganglion cells (RGCs) from a transient ischemic injury and its possible underlying mechanisms. Following an ischemia/reperfusion injury the structural damages of rat retinas were assessed by an immunofluorescence method and the apoptosis of retinal neural cells was evaluated by using a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method. The survived RGCs were labeled by retrograde manner and counted on whole-mounted retinas. In the presence of glycine site-specific NMDA receptor antagonist, the thickness of retina was sustained, especially in the inner nuclear layers compared with mock controls. While a significantly higher numbers of TUNEL-positive apoptotic cells and fewer of RGCs were observed in the retina without the glycine antagonist, indicating its strong protective roles. Some apoptotic factors such as Bax, Bcl-2, CAMK II, COX1, COX4, Caspase-3, and GRIN1 gene have been tested from retinal samples with or without the glycine antagonist. A significantly lower of expressions of Bax, CAMK II, COX1, COX4, Caspase-3, and GRIN1 have been shown in the retinas with the antagonist. Bcl-2/Bax ratio was significantly higher with the antagonist, suggested that the glycine site-specific NMDA receptor antagonist protecting RGC death might through inhibition of apoptotic signaling.
Collapse
Affiliation(s)
- Weiqiang Qiu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
26
|
Peng W, Zhang Y, Zheng M, Cheng H, Zhu W, Cao CM, Xiao RP. Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 2009; 106:102-10. [PMID: 19910575 DOI: 10.1161/circresaha.109.210914] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Ca2+/calmodulin-dependent protein kinase (CaMK)II is a multifunctional kinase involved in vital cellular processes such as Ca(2+) handling and cell fate regulation. In mammalian heart, 2 primary CaMKII isoforms, deltaB and deltaC, localize in nuclear and cytosolic compartments, respectively. Although previous studies have established an essential role of CaMKII-deltaC in cardiomyocyte apoptosis, the functional role of the more abundant isoform, CaMKII-deltaB, remains elusive. OBJECTIVE Here, we determined the potential role of CaMKII-deltaB in regulating cardiomyocyte viability and explored the underlying mechanism. METHODS AND RESULTS In cultured neonatal rat cardiomyocytes, the expression of CaMKII-deltaB and CaMKII-deltaC was inversely regulated in response to H2O2-induced oxidative stress with a profound reduction of the former and an increase of the later. Similarly, in vivo ischemia/reperfusion (IR) led to an opposite regulation of these CaMKII isoforms in a rat myocardial IR model. Notably, overexpression of CaMKII-deltaB protected cardiomyocytes against oxidative stress-, hypoxia-, and angiotensin II-induced apoptosis, whereas overexpression of its cytosolic counterpart promoted apoptosis. Using cDNA microarray, real-time PCR and Western blotting, we demonstrated that overexpression of CaMKII-deltaB but not CaMKII-deltaC elevated expression of heat shock protein (HSP)70 family members, including inducible (i)HSP70 and its homolog (Hst70). Moreover, overexpression of CaMKII-deltaB led to phosphorylation and activation of heat shock factor (HSF)1, the primary transcription factor responsible for HSP70 gene regulation. Importantly, gene silencing of iHSP70, but not Hst70, abolished CaMKII-deltaB-mediated protective effect, indicating that only iHSP70 was required for CaMKII-deltaB elicited antiapoptotic signaling. CONCLUSIONS We conclude that cardiac CaMKII-deltaB and CaMKII-deltaC were inversely regulated in response to oxidative stress and IR injury, and that in contrast to CaMKII-deltaC, CaMKII-deltaB serves as a potent suppressor of cardiomyocyte apoptosis triggered by multiple death-inducing stimuli via phosphorylation of HSF1 and subsequent induction of iHSP70, marking both CaMKII-delta isoforms as promising therapeutic targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Wei Peng
- Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Yoo B, Lemaire A, Mangmool S, Wolf MJ, Curcio A, Mao L, Rockman HA. Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 2009; 297:H1377-86. [PMID: 19633206 DOI: 10.1152/ajpheart.00504.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The beta-adrenergic receptor (betaAR) signaling system is one of the most powerful regulators of cardiac function and a key regulator of Ca(2+) homeostasis. We investigated the role of betaAR stimulation in augmenting cardiac function and its role in the activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII) using various betaAR knockouts (KO) including beta(1)ARKO, beta(2)ARKO, and beta(1)/beta(2)AR double-KO (DKO) mice. We employed a murine model of left anterior descending coronary artery ligation to examine the differential contributions of specific betaAR subtypes in the activation of CaMKII in vivo in failing myocardium. Cardiac inotropy, chronotropy, and CaMKII activity following short-term isoproterenol stimulation were significantly attenuated in beta(1)ARKO and DKO compared with either the beta(2)ARKO or wild-type (WT) mice, indicating that beta(1)ARs are required for catecholamine-induced increases in contractility and CaMKII activity. Eight weeks after myocardial infarction (MI), beta(1)ARKO and DKO mice showed a significant attenuation in fractional shortening compared with either the beta(2)ARKO or WT mice. CaMKII activity after MI was significantly increased only in the beta(2)ARKO and WT hearts and not in the beta(1)ARKO and DKO hearts. The border zone of the infarct in the beta(2)ARKO and WT hearts demonstrated significantly increased apoptosis by TUNEL staining compared with the beta(1)ARKO and DKO hearts. Taken together, these data show that cardiac function and CaMKII activity are mediated almost exclusively by the beta(1)AR. Moreover, it appears that beta(1)AR signaling is detrimental to cardiac function following MI, possibly through activation of CaMKII.
Collapse
Affiliation(s)
- ByungSu Yoo
- Departments of Medicine, Cell Biology and Molecular Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Little GH, Saw A, Bai Y, Dow J, Marjoram P, Simkhovich B, Leeka J, Kedes L, Kloner RA, Poizat C. Critical role of nuclear calcium/calmodulin-dependent protein kinase IIdeltaB in cardiomyocyte survival in cardiomyopathy. J Biol Chem 2009; 284:24857-68. [PMID: 19602725 DOI: 10.1074/jbc.m109.003186] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in cardiac contractility and heart disease. However, the specific role of alternatively spliced variants of CaMKII in cardiac disease and apoptosis remains poorly explored. Here we report that the deltaB subunit of CaMKII (CaMKIIdeltaB), which is the predominant nuclear isoform of calcium/calmodulin-dependent protein kinases in heart muscle, acts as an anti-apoptotic factor and is a novel target of the antineoplastic and cardiomyopathic drug doxorubicin (Dox (adriamycin)). Hearts of rats that develop cardiomyopathy following chronic treatment with Dox also show down-regulation of CaMKIIdeltaB mRNA, which correlates with decreased cardiac function in vivo, reduced expression of sarcomeric proteins, and increased tissue damage associated with Dox cardiotoxicity. Overexpression of CaMKIIdeltaB in primary cardiac cells inhibits Dox-mediated apoptosis and prevents the loss of the anti-apoptotic protein Bcl-2. Specific silencing of CaMKIIdeltaB by small interfering RNA prevents the formation of organized sarcomeres and decreases the expression of Bcl-2, which all mimic the effect of Dox. CaMKIIdeltaB is required for GATA-4-mediated co-activation and binding to the Bcl-2 promoter. These results reveal that CaMKIIdeltaB plays an essential role in cardiomyocyte survival and provide a mechanism for the protective role of CaMKIIdeltaB. These results suggest that selective targeting of CaMKII in the nuclear compartment might represent a strategy to regulate cardiac apoptosis and to reduce Dox-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Gillian H Little
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kobayashi D, Ahmed S, Ishida M, Kasai S, Kikuchi H. Calcium/calmodulin signaling elicits release of cytochrome c during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in the human lymphoblastic T-cell line, L-MAT. Toxicology 2009; 258:25-32. [DOI: 10.1016/j.tox.2009.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/28/2008] [Accepted: 01/05/2009] [Indexed: 11/26/2022]
|
30
|
Abstract
PURPOSE To determine the distribution and glutamate-mediated activation of nuclear factor (NF) kappaB members in the retina and pan-purified retinal ganglion cells (RGCs) and to characterize steps in the signal transduction events that lead to NFkappaB activation. METHODS Retinal expression patterns and RGCs were evaluated for five NFkappaB proteins with the aid of immunohistochemistry. Retinal explants or RGCs were treated with glutamate with or without the presence of the NDMA receptor antagonist memantine, the calcium chelator EGTA, or a specific inhibitor for calcium/calmodulin-dependent protein kinase-II (CaMKII). Characterizations of NFkappaB activation were performed with the aid of electrophoretic mobility shift assays and supershift assays. RESULTS All five NFkappaB proteins were present in the retina and in the pan-purified RGCs. In response to a glutamate stimulus, all NFkappaB proteins except c-Rel were activated. P65 was unique in that it was not constitutively active but showed a glutamate-inducible activation in the retina and in the cultured RGCs. Memantine, EGTA, or autocamtide-2-related inhibitory peptide (AIP) inhibited NFkappaB activation in the retina. Furthermore, AIP significantly reduced the level of glutamate-induced degradation of IkappaBs. CONCLUSIONS These data indicate that glutamate activates distinct NFkappaB proteins in the retina. P65 activation may be especially important with regard to RGC responses to glutamate given that its activity is induced by conditions known to lead to the death of these cells. The NMDA receptor-Ca(2+)-CaMKII signaling pathway is involved in glutamate-induced NFkappaB activation. Because AIP blocks the degradation of IkappaB, its regulation is clearly downstream of CaMKII.
Collapse
Affiliation(s)
- Wei Fan
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine. 500 S. Preston St., Louisville, Kentucky
| | - Nigel G. F. Cooper
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine. 500 S. Preston St., Louisville, Kentucky
- Ophthalmology and Visual Sciences, University of Louisville School of Medicine. 500 S. Preston St., Louisville, Kentucky
| |
Collapse
|
31
|
Olofsson MH, Havelka AM, Brnjic S, Shoshan MC, Linder S. Charting calcium-regulated apoptosis pathways using chemical biology: role of calmodulin kinase II. BMC CHEMICAL BIOLOGY 2008; 8:2. [PMID: 18673549 PMCID: PMC2518916 DOI: 10.1186/1472-6769-8-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 08/01/2008] [Indexed: 12/31/2022]
Abstract
BACKGROUND Intracellular free calcium ([Ca2+]i) is a key element in apoptotic signaling and a number of calcium-dependent apoptosis pathways have been described. We here used a chemical biology strategy to elucidate the relative importance of such different pathways. RESULTS A set of 40 agents ("bioprobes") that induce apoptosis was first identified by screening of a chemical library. Using p53, AP-1, NFAT and NF-kappaB reporter cell lines, these bioprobes were verified to induce different patterns of signaling. Experiments using the calcium chelator BAPTA-AM showed that Ca2+ was involved in induction of apoptosis by the majority of the bioprobes and that Ca2+ was in general required several hours into the apoptosis process. Further studies showed that the calmodulin pathway was an important mediator of the apoptotic response. Inhibition of calmodulin kinase II (CaMKII) resulted in more effective inhibition of apoptosis compared to inhibition of calpain, calcineurin/PP2B or DAP kinase. We used one of the bioprobes, the plant alkaloid helenalin, to study the role of CaMKII in apoptosis. Helenalin induced CaMKII, ASK1 and Jun-N-terminal kinase (JNK) activity, and inhibition of these kinases inhibited apoptosis. CONCLUSION Our study shows that calcium signaling is generally not an early event during the apoptosis process and suggests that a CaMKII/ASK1 signaling mechanism is important for sustained JNK activation and apoptosis by some types of stimuli.
Collapse
Affiliation(s)
- Maria Hägg Olofsson
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institute, S-171 76 Stockholm, Sweden
| | - Aleksandra Mandic Havelka
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institute, S-171 76 Stockholm, Sweden
| | - Slavica Brnjic
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institute, S-171 76 Stockholm, Sweden
| | - Maria C Shoshan
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institute, S-171 76 Stockholm, Sweden
| | - Stig Linder
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institute, S-171 76 Stockholm, Sweden
| |
Collapse
|
32
|
O'Connell AR, Stenson-Cox C. A more serine way to die: defining the characteristics of serine protease-mediated cell death cascades. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1491-9. [PMID: 17888529 DOI: 10.1016/j.bbamcr.2007.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/11/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
The morphological features observed by Kerr, Wylie and Currie in 1972 define apoptosis, necrosis and autophagy. An appreciable number of alternative systems do not fall neatly under these categories, warranting a review of alternative proteolytic machinery and its contribution to cell death. This review aims to pinpoint key molecular features of serine protease-mediated pro-apoptotic signalling. The profile created will contribute to a standard set of biochemical criteria that can serve in differentiating within cell death subtypes.
Collapse
Affiliation(s)
- A R O'Connell
- National Centre for Biomedical and Engineering Science, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
33
|
Han JH, Kim YJ, Han ES, Lee CS. Prevention of 7-ketocholesterol-induced mitochondrial damage and cell death by calmodulin inhibition. Brain Res 2006; 1137:11-9. [PMID: 17224136 DOI: 10.1016/j.brainres.2006.12.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 11/26/2006] [Accepted: 12/14/2006] [Indexed: 12/31/2022]
Abstract
Oxysterols such as 7-ketocholesterol and 25-hydroxycholesterol formed under enhanced oxidative stress in the brain are suggested to induce neuronal cell death. The present study investigated the effect of calmodulin antagonists (trifluoperazine, W-7 and calmidazolium) against the cytotoxicity of 7-ketocholesterol in relation to the mitochondria-mediated cell death process and oxidative stress. PC12 cells exposed to 7-ketocholesterol revealed nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species and depletion of GSH. N-Acetylcysteine, trolox, carboxy-PTIO and Mn-TBAP reduced the cytotoxic effect of 7-ketocholesterol. Calmodulin antagonists attenuated the 7-ketocholesterol-induced nuclear damage, formation of the mitochondrial permeability transition and cell viability loss in PC12 cells. The results suggest that calmodulin antagonists may prevent the 7-ketocholesterol-induced viability loss in PC12 cells by suppressing formation of the mitochondrial permeability transition, leading to the release of cytochrome c and subsequent activation of caspase-3. The effects seem to be ascribed to their depressant action on the formation of reactive oxygen species and depletion of GSH. The findings suggest that calmodulin inhibition may exhibit a protective effect against the neurotoxicity of 7-ketocholesterol.
Collapse
Affiliation(s)
- Jeong Ho Han
- Department of Neurology, Seoul Veterans Hospital, Seoul 134-791, South Korea
| | | | | | | |
Collapse
|
34
|
Lee CS, Park WJ, Han ES, Bang H. Differential Modulation of 7-Ketocholesterol Toxicity Against PC12 Cells by Calmodulin Antagonists and Ca2+ Channel Blockers. Neurochem Res 2006; 32:87-98. [PMID: 17151911 DOI: 10.1007/s11064-006-9230-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 11/16/2006] [Indexed: 12/24/2022]
Abstract
The present study assessed the influence of intracellular Ca2+ and calmodulin against the neurotoxicity of oxysterol 7-ketocholesterol in relation to the mitochondria-mediated cell death process and oxidative stress in PC12 cells. Calmodulin antagonists calmidazolium and W-7 prevented the 7-ketocholesterol-induced mitochondrial damage, leading to caspase-3 activation and cell death, whereas Ca2+ channel blocker nicardipine, mitochondrial Ca2+ uptake inhibitor ruthenium red, and cell permeable Ca2+ chelator BAPTA-AM did not reduce it. Exposure of PC12 cells to 7-ketocholesterol caused elevation of intracellular Ca2+ levels. Unlike cell injury, calmodulin antagonists, nicardipine, and BAPTA-AM prevented the 7-ketocholesterol-induced elevations of intracellular Ca2+ levels. The results show that the cytotoxicity of 7-ketocholesterol seems to be modulated by calmodulin rather than changes in intracellular Ca2+ levels. Calmodulin antagonists may prevent the cytotoxicity of 7-ketocholesterol by suppressing the mitochondrial permeability transition formation, which is associated with the increased formation of reactive oxygen species and the depletion of GSH.
Collapse
Affiliation(s)
- Chung Soo Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea.
| | | | | | | |
Collapse
|
35
|
Shemarova IV, Nesterov VP. Role of Ca2+ and transmitters of the sympathetic nervous system in transduction of stress signal in cardiomyocytes. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Zheng M, Zhu W, Han Q, Xiao RP. Emerging concepts and therapeutic implications of β-adrenergic receptor subtype signaling. Pharmacol Ther 2005; 108:257-68. [PMID: 15979723 DOI: 10.1016/j.pharmthera.2005.04.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 12/31/2022]
Abstract
The stimulation of beta-adrenergic receptor (betaAR) plays a pivotal role in regulating myocardial function and morphology in the normal and failing heart. Three genetically and pharmacologically distinct betaAR subtypes, beta1AR, beta2AR, and beta3AR, are identified in various types of cells. While both beta1AR and beta2AR, the predominant betaAR subtypes expressed in the heart of many mammalian species including human, are coupled to the Gs-adenylyl cyclase-cAMP-PKA pathway, beta2AR dually activates pertussis toxin-sensitive Gi proteins. During acute stimulation, beta2AR-Gi coupling partially inhibits the Gs-mediated positive contractile and relaxant effects via a Gi-Gbetagamma-phosphoinositide 3-kinase (PI3K)-dependent mechanism in adult rodent cardiomyocytes. More importantly, persistent beta1AR stimulation evokes a multitude of cardiac toxic effects, including myocyte apoptosis and hypertrophy, via a calmodulin-dependent protein kinase II (CaMKII)-, rather than cAMP-PKA-, dependent mechanism in rodent heart in vivo and cultured cardiomyocytes. In contrast, persistent beta2AR activation protects myocardium by a cell survival pathway involving Gi, PI3K, and Akt. In this review, we attempt to highlight the distinct functionalities and signaling mechanisms of these betaAR subtypes and discuss how these subtype-specific properties of betaARs might affect the pathogenesis of congestive heart failure (CHF) and the therapeutic effectiveness of certain beta-blockers in the treatment of congestive heart failure.
Collapse
Affiliation(s)
- Ming Zheng
- Institute of Cardiovascular Sciences, Peking University, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Krakstad C, Herfindal L, Gjertsen BT, Bøe R, Vintermyr OK, Fladmark KE, Døskeland SO. CaM-kinaseII-dependent commitment to microcystin-induced apoptosis is coupled to cell budding, but not to shrinkage or chromatin hypercondensation. Cell Death Differ 2005; 13:1191-202. [PMID: 16311514 DOI: 10.1038/sj.cdd.4401798] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The protein phosphatase inhibitor microcystin-LR (MC) induced hepatocyte apoptosis mediated by the calcium-calmodulin-dependent multifunctional protein kinase II (CaMKII). CaMKII antagonists were added at various times after MC to define for how long the cells depended on CaMKII activity to be committed to execute the various parameters of death. Shrinkage and nonpolarized budding were reversible and not coupled to commitment. A critical commitment step was observed 15-20 min after MC (0.5 microM) addition. After this, CaMKII inhibitors no longer protected against polarized budding, DNA fragmentation, lost protein synthesis capability, and cell disruption. Commitment to chromatin hypercondensation occurred 40 min after MC addition. In conclusion, irreversible death commitment was coupled to polarized budding, but not to shrinkage or chromatin condensation. Antioxidant prevented chromatin condensation when given after the CaMKII-dependent commitment point, suggesting that CaMKII had mediated the accumulation of a second messenger of reactive oxygen species nature.
Collapse
Affiliation(s)
- C Krakstad
- Cell Biology Research Group, Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
38
|
Micoli KJ, Mamaeva O, Piller SC, Barker JL, Pan G, Hunter E, McDonald JM. Point mutations in the C-terminus of HIV-1 gp160 reduce apoptosis and calmodulin binding without affecting viral replication. Virology 2005; 344:468-79. [PMID: 16229872 PMCID: PMC1489811 DOI: 10.1016/j.virol.2005.08.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/01/2005] [Accepted: 08/22/2005] [Indexed: 11/21/2022]
Abstract
One hallmark of AIDS progression is a decline in CD4+ T lymphocytes, though the mechanism is poorly defined. There is ample evidence that increased apoptosis is responsible for some, if not all, of the decline. Prior studies have shown that binding of cellular calmodulin to the envelope glycoprotein (Env) of HIV-1 increases sensitivity to fas-mediated apoptosis and that calmodulin antagonists can block this effect. We show that individual mutation of five residues in the C-terminal calmodulin-binding domain of Env is sufficient to significantly reduce fas-mediated apoptosis in transfected cells. The A835W mutation in the cytoplasmic domain of gp41 eliminated co-immunoprecipitation of Env with calmodulin in studies with stably transfected cells. Four point mutations (A835W, A838W, A838I, and I842R) and the corresponding region of HIV-1 HXB2 were cloned into the HIV-1 proviral vector pNL4-3 with no significant effect on viral production or envelope expression, although co-immunoprecipitation of calmodulin and Env was decreased in three of these mutant viruses. Only wild-type envelope-containing virus induced significantly elevated levels of spontaneous apoptosis by day 5 post-infection. Fas-mediated apoptosis levels positively correlated with the degree of calmodulin co-immunoprecipitation, with the lowest apoptosis levels occurring in cells infected with the A835W envelope mutation. While spontaneous apoptosis appears to be at least partially calmodulin-independent, the effects of HIV-1 Env on fas-mediated apoptosis are directly related to calmodulin binding.
Collapse
Affiliation(s)
- Keith J. Micoli
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Olga Mamaeva
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sabine C. Piller
- Westmead Millennium Institute, University of Sydney, Westmead, NSW 2145, Australia
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer L. Barker
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - George Pan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Hunter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jay M. McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran’s Administration Medical Center, Birmingham, AL 35233, USA
- * Corresponding author. Department of Pathology, University of Alabama at Birmingham, 701 19th Street South LHRB 509 Birmingham, AL 35294-0007, USA. Fax: +1 205 975 9927. E-mail address: (J.M. McDonald)
| |
Collapse
|
39
|
Fan W, Agarwal N, Kumar MD, Cooper NGF. Retinal ganglion cell death and neuroprotection: Involvement of the CaMKIIα gene. ACTA ACUST UNITED AC 2005; 139:306-16. [PMID: 16023257 DOI: 10.1016/j.molbrainres.2005.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 05/26/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
The purpose of this study is to determine if calcium/calmodulin-dependent protein kinase-II (CaMKII) plays a role in neuronal cell death and if inhibition of this kinase affords some neuroprotection in the RGC-5 retinal ganglion cell line. The RGC-5 cells were treated with glutamate at various concentrations for increasing increments of time. Cytotoxicity was assayed by measuring the lactate dehydrogenase (LDH) leakage from non-viable cells and TUNEL assays. The involvement of caspase-3, Bcl-2 and caspase-8 in glutamate-induced cytotoxicity was determined by immunoblots and/or real time RT-PCR. In addition, the autocamtide-2-related inhibitory peptide (AIP), a specific inhibitor of CaMKII, was used to determine the involvement of CaMKII in glutamate-induced RGC-5 cell death. Application of increasing concentrations of glutamate to RGC-5 cells caused a dose-dependent increase in the level of cell death after 24 h. There was a glutamate-stimulated increase in the expression of caspase-8 and caspase-3 and a corresponding decrease in Bcl-2. The active fragment of caspase-3 increased in glutamate-treated cells. An early transient increase in the expression of CaMKIIalpha(B) gene and a corresponding CaMKIIalpha nuclear translocation was found in glutamate-treated cells. Treatment with AIP blocked the activation of caspase-3 and protected RGC from glutamate-mediated cell death but did not alter the glutamate-enhanced expression levels of caspase-8 or caspase-3. This report shows the likely involvement of a transcript of the CaMKIIalpha gene in the cytotoxicity response of RGC-5 cells similar to previous reports in the neural retina. AIP is shown to be a neuroprotectant for RGC-5 cells as was reported for the neural retina.
Collapse
Affiliation(s)
- Wei Fan
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 S. Preston Street, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
40
|
Rosignoli F, Roca V, Meiss R, Pregi N, Leirós CP. Inhibition of calcium-calmodulin kinase restores nitric oxide production and signaling in submandibular glands of a mouse model of salivary dysfunction. Br J Pharmacol 2004; 143:1058-65. [PMID: 15533891 PMCID: PMC1575950 DOI: 10.1038/sj.bjp.0705952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/13/2004] [Indexed: 11/08/2022] Open
Abstract
Nitric oxide is an intracellular and diffusible messenger of neurotransmitters involved in salivary secretion, as well as an inflammatory mediator in salivary gland diseases. It is synthesized by three different isoforms of nitric oxide synthase (NOS), each subject to a fine transcriptional, post-transcriptional and/or post-translational regulation. Our purpose was to study the possible mechanisms leading to NOS downregulation in submandibular glands of normal mice and in the nonobese diabetic (NOD) mouse model of salivary dysfunction with lower NOS activity. NOS activity and cGMP accumulation were determined by radioassays in submandibular glands of both mice in the presence of the protein kinase inhibitors KN-93 and bisindolylmaleimide. NOS I mRNA and protein expression and localization were assessed by RT-PCR, Western blot and immunohistochemistry. A downregulatory effect of calcium-calmodulin kinase II (CaMK II) on NOS activity in submandibular glands of both NOD and BALB/c mice was observed. Our results are consistent with a physiological regulation of NOS activity by this kinase but not by PKC in normal BALB/c mice. They are also supportive of a role for CaMK II in the lack of detectable NOS activity in submandibular glands of NOD mice. KN-93 also restored cGMP accumulation in NOD submandibular glands. The downregulation of NOS in NOD mice seems to be mainly mediated by this kinase rather than the result of a lower expression or different cellular localization of the enzyme. It was not related to different substrate or cofactors availability either.
Collapse
Affiliation(s)
- Florencia Rosignoli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Argentina
| | - Valeria Roca
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Argentina
| | - Roberto Meiss
- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Nicolás Pregi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Argentina
| | - Claudia Pérez Leirós
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Argentina
| |
Collapse
|
41
|
Bernstein H, Payne CM, Kunke K, Crowley-Weber CL, Waltmire CN, Dvorakova K, Holubec H, Bernstein C, Vaillancourt RR, Raynes DA, Guerriero V, Garewal H. A proteomic study of resistance to deoxycholate-induced apoptosis. Carcinogenesis 2004; 25:681-92. [PMID: 14729586 DOI: 10.1093/carcin/bgh072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The development of apoptosis resistance appears to be an important factor in colon carcinogenesis. To gain an understanding of the molecular pathways altered during the development of apoptosis resistance, we selected three cell lines for resistance to induction of apoptosis by deoxycholate, an important etiologic agent in colon cancer. We then evaluated gene expression levels for 825 proteins in these resistant lines, compared with a parallel control line not subject to selection. Eighty-two proteins were identified as either over-expressed or under-expressed in at least two of the resistant lines, compared with the control. Thirty-five of the 82 proteins (43%) proved to have a known role in apoptosis. Of these 35 proteins, 21 were over-expressed and 14 were under-expressed. Of those that were over-expressed 18 of 21 (86%) are anti-apoptotic in some circumstances, of those that were under-expressed 11 of 14 (79%) are pro-apoptotic in some circumstances. This finding suggests that apoptosis resistance during selection among cultured cells, and possibly in the colon during progression to cancer, may arise by constitutive over-expression of multiple anti-apoptotic proteins and under-expression of multiple pro-apoptotic proteins. The major functional groups in which altered expression levels were found are post-translational modification (19 proteins), cell structure (cytoskeleton, microtubule, actin, etc.) (17 proteins), regulatory processes (11 proteins) and DNA repair and cell cycle checkpoint mechanisms (10 proteins). Our findings, overall, bear on mechanisms by which apoptosis resistance arises during progression to colon cancer and suggest potential targets for cancer treatment. In addition, assays of normal-appearing mucosa of colon cancer patients, for over- or under-expression of genes found to be altered in our resistant cell lines, may allow identification of early biomarkers of colon cancer risk.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Microbiology and Immunology, Arizona Cancer Center, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen W, Chen Y, Cui G. Effect of N-tosyl-L-phenylalanylchloromethyl ketone on tumor necrosis factor-alpha -induced NF-kappaB activation and apoptosis in U937 cell line. Curr Med Sci 2004; 24:569-71. [PMID: 15791843 DOI: 10.1007/bf02911357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Indexed: 11/29/2022]
Abstract
To investigate the effect of N-tosyl-L-phenylalanylchloromethyl ketone (TPCK) on tumor necrosis factor-alpha-induced NF-kappaB activation and apoptosis in U937 cell line, changes and subcellular localization of NF-kappaB/p65 and IkappaB-alpha were observed by fluorescencemicroscopy and expression and degradation of IkappaB-alpha by flow cytometry. The apoptosis of U937 cells was measured by flow cytometry and electrophoresis of DNA. Immunolfluorescence assay showed that NF-kappaB/p65, IkappaB-alpha only localized in cytoplasm. After TNF-alpha stimulation, p65 was localized only in nuclei, and IkappaB-alpha was only localized in cytoplasm and decreased. The changes of TNF-alpha stimulation were specifically inhibited by TPCK. Flow cytometry also revealed the downregulation of IkappaB-alpha protein during TNF-alpha-induced apoptosis and the down-regulation was specifically inhibited by TPCK. Flow cytometry also showed the apoptosis of U937 cells after TNF-alpha induction. DNA ladder can be detected in cells treated by TNF-alpha. It is concluded that degradation of IkappaB-alpha protein and NF-kappaB/p65 translocation occur during TNF-alpha-induced apoptosis of U937 cells, suggesting the activation of NF-kappaB TPCK-sensitive protease plays an important role in the degradation of IkappaB-alpha protein induced by TNF-alpha in U937 cells. TPCK sensitive protease also plays an important role in the apoptosis of U937 cells induced by TNF-alpha.
Collapse
Affiliation(s)
- Weihua Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | |
Collapse
|
43
|
Ahn EY, Pan G, Oh JH, Tytler EM, McDonald JM. The combination of calmodulin antagonists and interferon-gamma induces apoptosis through caspase-dependent and -independent pathways in cholangiocarcinoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:2053-63. [PMID: 14578204 DOI: 10.1016/s0002-9440(10)63563-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Calmodulin (CaM) antagonists have been shown to inhibit tumor cell invasion and metastasis and to induce apoptosis in various tumor models, but the molecular mechanism of CaM antagonist-mediated apoptosis is poorly understood. Here, we demonstrate that interferon (IFN)-gamma induces susceptibility to CaM antagonist-mediated apoptosis in human cholangiocarcinoma cells weakly expressing Fas (Fas-low cells). During CaM antagonist-mediated apoptosis in IFN-gamma-pretreated Fas-low cells, cleavage of caspases-8, -9, and -3 and Bid, release of cytochrome c from the mitochondria and an increase in the free cytosolic calcium concentration were observed. CaM antagonists also caused depolarization of the mitochondrial membrane independent of caspase activation. Although a broad-range caspase inhibitor partially blocked CaM antagonist-mediated apoptosis, the neutralizing Fas antibody had no effect, suggesting that CaM antagonist-mediated apoptosis does not require interaction between CaM antagonists and surface Fas. CaM antagonists induce apoptosis via mechanisms other than inhibition of CaM-dependent protein kinase II and calcineurin, as their inhibitors, KN93 and cyclosporine A, had no effect on apoptosis. Taken together, these results indicate that CaM antagonists induce apoptosis in both caspase-dependent and -independent manners, and that susceptibility to CaM antagonists is modulated by IFN-gamma. The combination of IFN-gamma and CaM antagonists, including tamoxifen, may be a potential therapeutic modality for cholangiocarcinoma and possibly other malignancies.
Collapse
Affiliation(s)
- Eun-Young Ahn
- Department of Pathology, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0007, USA
| | | | | | | | | |
Collapse
|
44
|
Sandal T, Aumo L, Hedin L, Gjertsen BT, Døskeland SO. Irod/Ian5: an inhibitor of gamma-radiation- and okadaic acid-induced apoptosis. Mol Biol Cell 2003; 14:3292-304. [PMID: 12925764 PMCID: PMC181568 DOI: 10.1091/mbc.e02-10-0700] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein phosphatase-directed toxins such as okadaic acid (OA) are general apoptosis inducers. We show that a protein (inhibitor of radiation- and OA-induced apoptosis, Irod/Ian5), belonging to the family of immune-associated nucleotide binding proteins, protected Jurkat T-cells against OA- and gamma-radiation-induced apoptosis. Unlike previously described antiapoptotic proteins Irod/Ian5 did not protect against anti-Fas, tumor necrosis factor-alpha, staurosporine, UV-light, or a number of chemotherapeutic drugs. Irod antagonized a calmodulin-dependent protein kinase II-dependent step upstream of activation of caspase 3. Irod has predicted GTP-binding, coiled-coil, and membrane binding domains. Irod localized to the centrosomal/Golgi/endoplasmic reticulum compartment. Deletion of either the C-terminal membrane binding domain or the N-terminal GTP-binding domain did not affect the antiapoptotic function of Irod, nor the centrosomal localization. The middle part of Irod, containing the coiled-coil domain, was therefore responsible for centrosomal anchoring and resistance toward death. Being widely expressed and able to protect also nonimmune cells, the function of Irod may not be limited to the immune system. The function and localization of Irod indicate that the centrosome and calmodulin-dependent protein kinase II may have important roles in apoptosis signaling.
Collapse
Affiliation(s)
- Tone Sandal
- Department of Anatomy and Cell Biology, Medical faculty, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
45
|
Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP. Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A–independent activation of Ca2+/calmodulin kinase II. J Clin Invest 2003. [DOI: 10.1172/jci200316326] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 2003; 111:617-25. [PMID: 12618516 PMCID: PMC151893 DOI: 10.1172/jci16326] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
beta(1)-adrenergic receptor (beta(1)AR) stimulation activates the classic cAMP/protein kinase A (PKA) pathway to regulate vital cellular processes from the change of gene expression to the control of metabolism, muscle contraction, and cell apoptosis. Here we show that sustained beta(1)AR stimulation promotes cardiac myocyte apoptosis by activation of Ca(2+)/calmodulin kinase II (CaMKII), independently of PKA signaling. beta(1)AR-induced apoptosis is resistant to inhibition of PKA by a specific peptide inhibitor, PKI14-22, or an inactive cAMP analogue, Rp-8-CPT-cAMPS. In contrast, the beta(1)AR proapoptotic effect is associated with non-PKA-dependent increases in intracellular Ca(2+) and CaMKII activity. Blocking the L-type Ca(2+) channel, buffering intracellular Ca(2+), or inhibiting CaMKII activity fully protects cardiac myocytes against beta(1)AR-induced apoptosis, and overexpressing a cardiac CaMKII isoform, CaMKII-deltaC, markedly exaggerates the beta(1)AR apoptotic effect. These findings indicate that CaMKII constitutes a novel PKA-independent linkage of beta(1)AR stimulation to cardiomyocyte apoptosis that has been implicated in the overall process of chronic heart failure.
Collapse
Affiliation(s)
- Wei-Zhong Zhu
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kumar KA, Babu PP. CaM kinase II-alpha activity, levels and Ca/calmodulin dependent phosphorylation of substrate proteins in mice brain during fatal murine cerebral malaria. Neurosci Lett 2003; 336:121-5. [PMID: 12499055 DOI: 10.1016/s0304-3940(02)01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activity and levels of CaM kinase II-alpha was investigated in the cytosolic and membrane fraction of mice cerebral cortex and cerebellum using an experimental model of fatal murine cerebral malaria (FMCM). In parallel, Ca(2+)/Calmodulin dependent phosphorylation of target substrate proteins was studied using syntide-2 as substrate. Pathology of FMCM resulted in decreased CaM kinase-II activity in both cortex and cerebellum though western analysis revealed no appreciable changes in the levels of CaM kinase-II alpha in cytosol and membrane fractions from control and cerebral malaria infected brain. Given the abundant expression of Cam kinase-II in neuronal tissue, its significance in neurotransmitter release and synthesis and signal transduction during apoptosis, decreased levels of enzyme activity and altered phosphorylation of substrate proteins by CaM kinase II may serve as important cues in understanding the CaM kinase signal transduction events central to neurological disorders during FMCM.
Collapse
Affiliation(s)
- Kota Arun Kumar
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad -500 046, India
| | | |
Collapse
|
48
|
Fladmark KE, Brustugun OT, Mellgren G, Krakstad C, Boe R, Vintermyr OK, Schulman H, Doskeland SO. Ca2+/calmodulin-dependent protein kinase II is required for microcystin-induced apoptosis. J Biol Chem 2002; 277:2804-11. [PMID: 11713251 DOI: 10.1074/jbc.m109049200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potent natural toxins microcystin, nodularin, and okadaic acid act rapidly to induce apoptotic cell death. Here we show that the apoptosis correlates with protein phosphorylation events and can be blocked by protein kinase inhibitors directed against the multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). The inhibitors used comprised a battery of cell-permeable protein kinase antagonists and CaMKII-directed peptide inhibitors introduced by microinjection or enforced expression. Furthermore, apoptosis could be induced by enforced expression of active forms of CaMKII but not with inactive CaMKII. It is concluded that the apoptogenic toxins, presumably through their known ability to inhibit serine/threonine protein phosphatases, can cause CaMKII-dependent phosphorylation events leading to cell death.
Collapse
Affiliation(s)
- Kari E Fladmark
- Department of Anatomy and Cell Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tan KM, Chan SL, Tan KO, Yu VC. The Caenorhabditis elegans sex-determining protein FEM-2 and its human homologue, hFEM-2, are Ca2+/calmodulin-dependent protein kinase phosphatases that promote apoptosis. J Biol Chem 2001; 276:44193-202. [PMID: 11559703 DOI: 10.1074/jbc.m105880200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Caenorhabditis elegans, fem-1, fem-2, and fem-3 play pivotal roles in sex determination. Recently, a mammalian homologue of the C. elegans sex-determining protein FEM-1, F1Aalpha, has been described. Although there is little evidence to link F1Aalpha to sex determination, F1Aalpha and FEM-1 both promote apoptosis in mammalian cells. Here we report the identification and characterization of a human homologue of the C. elegans sex-determining protein FEM-2, hFEM-2. Similar to FEM-2, hFEM-2 exhibited PP2C phosphatase activity and associated with FEM-3. hFEM-2 shows striking similarity (79% amino acid identity) to rat Ca(2+)/calmodulin (CaM)-dependent protein kinase phosphatase (rCaMKPase). hFEM-2 and FEM-2, but not PP2Calpha, were demonstrated to dephosphorylate CaM kinase II efficiently in vitro, suggesting that hFEM-2 and FEM-2 are specific phosphatases for CaM kinase. Furthermore, hFEM-2 and FEM-2 associated with F1Aalpha and FEM-1 respectively. Overexpression of hFEM-2, FEM-2, or rCaMKPase all mediated apoptosis in mammalian cells. The catalytically active, but not the inactive, forms of hFEM-2 induced caspase-dependent apoptosis, which was blocked by Bcl-XL or a dominant negative mutant of caspase-9. Taken together, our data suggest that hFEM-2 and rCaMKPase are mammalian homologues of FEM-2 and they are evolutionarily conserved CaM kinase phosphatases that may have a role in apoptosis signaling.
Collapse
Affiliation(s)
- K M Tan
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | |
Collapse
|
50
|
Kruidering M, Schouten T, Evan GI, Vreugdenhil E. Caspase-mediated cleavage of the Ca2+/calmodulin-dependent protein kinase-like kinase facilitates neuronal apoptosis. J Biol Chem 2001; 276:38417-25. [PMID: 11479289 DOI: 10.1074/jbc.m103471200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study was designed to identify the role of a recently identified Ca(2+)/calmodulin-dependent protein kinase (CaMK)-like kinase (CaMKLK) in neuronal apoptosis. For this purpose, we studied proteolytic cleavage of CaMKLK by caspases in vitro and in neuronal NG108 cells. In addition, we have investigated the effect of overexpression of wild type and mutant CaMKLK proteins on staurosporine- and serum deprivation-induced apoptosis of NG108 cells. We found that CaMKLK is a substrate for caspase-3 and -8, both in vitro and in NG108 cells during staurosporine- and serum withdrawal-induced apoptosis. Substitution of an aspartic acid residue at position 62 in an asparagine residue within a putative caspase cleavage site completely blocked cleavage of CaMKLK, strongly indicating that (59)DEND(62) is the caspase recognition site. Overexpression of an Asp(62) --> Asn CaMKLK mutant protected NG108 cells from staurosporine-induced apoptosis to a similar extent as Bcl-x(L). In contrast, overexpression of wild type CaMKLK did not lead to protection. Moreover, microinjection of Asp(62) --> Asn CaMKLK protected NG108 cells from serum deprivation-induced apoptosis, while overexpression of a caspase-generated noncatalytic N-terminal CaMKLK fragment exacerbated apoptosis. Together, our data suggest that cleavage of CaMKLK and generation of the noncatalytic N-terminal domain of CaMKLK facilitate neuronal apoptosis.
Collapse
Affiliation(s)
- M Kruidering
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research/Leiden University Medical Center, Leiden University, P.O. Box 9503, 2300 RA, Leiden, The Netherlands
| | | | | | | |
Collapse
|