1
|
Wang G, Mohanty B, Williams ML, Doak BC, Dhouib R, Totsika M, McMahon R, Sharma G, Zheng D, Bentley MR, Chin YKY, Horne J, Chalmers DK, Heras B, Scanlon MJ. Selective binding of small molecules to Vibrio cholerae DsbA offers a starting point for the design of novel antibacterials. ChemMedChem 2022; 17:e202100673. [PMID: 34978144 PMCID: PMC9305425 DOI: 10.1002/cmdc.202100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Indexed: 11/25/2022]
Abstract
DsbA enzymes catalyze oxidative folding of proteins that are secreted into the periplasm of Gram‐negative bacteria, and they are indispensable for the virulence of human pathogens such as Vibrio cholerae and Escherichia coli. Therefore, targeting DsbA represents an attractive approach to control bacterial virulence. X‐ray crystal structures reveal that DsbA enzymes share a similar fold, however, the hydrophobic groove adjacent to the active site, which is implicated in substrate binding, is shorter and flatter in the structure of V. cholerae DsbA (VcDsbA) compared to E. coli DsbA (EcDsbA). The flat and largely featureless nature of this hydrophobic groove is challenging for the development of small molecule inhibitors. Using fragment‐based screening approaches, we have identified a novel small molecule, based on the benzimidazole scaffold, that binds to the hydrophobic groove of oxidized VcDsbA with a KD of 446±10 μM. The same benzimidazole compound has ∼8‐fold selectivity for VcDsbA over EcDsbA and binds to oxidized EcDsbA, with KD>3.5 mM. We generated a model of the benzimidazole complex with VcDsbA using NMR data but were unable to determine the structure of the benzimidazole bound EcDsbA using either NMR or X‐ray crystallography. Therefore, a structural basis for the observed selectivity is unclear. To better understand ligand binding to these two enzymes we crystallized each of them in complex with a known ligand, the bile salt sodium taurocholate. The crystal structures show that taurocholate adopts different binding poses in complex with VcDsbA and EcDsbA, and reveal the protein‐ligand interactions that stabilize the different modes of binding. This work highlights the capacity of fragment‐based drug discovery to identify inhibitors of challenging protein targets. In addition, it provides a starting point for development of more potent and specific VcDsbA inhibitors that act through a novel anti‐virulence mechanism.
Collapse
Affiliation(s)
- Geqing Wang
- La Trobe University - Bundoora Campus: La Trobe University, Department of Biochemistry and Genetics, AUSTRALIA
| | | | - Martin L Williams
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Bradley C Doak
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Rabeb Dhouib
- Queensland University of Technology, School of Biomedical Sciences, AUSTRALIA
| | - Makrina Totsika
- Queensland University of Technology, School of Biomedical Sciences, AUSTRALIA
| | - Roisin McMahon
- Griffith University, Griffith Institute for Drug Discovery, AUSTRALIA
| | - Gaurav Sharma
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Dan Zheng
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Matthew R Bentley
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Yanni Ka-Yan Chin
- The University of Queensland, Cantre for Advanced Imaging, AUSTRALIA
| | - James Horne
- University of Tasmania, Central Science Laboratory, AUSTRALIA
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Begoña Heras
- La Trobe University, Department of Biochemistry and Genetics, AUSTRALIA
| | - Martin Joseph Scanlon
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, Medicinal Chemistry, 381 Royal Parade, Monash University, 3052, Parkville, AUSTRALIA
| |
Collapse
|
2
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|