1
|
Jenkins SV, Shruti Shah, Jamshidi-Parsian A, Mortazavi A, Kristian H, Boysen G, Vang KB, Griffin RJ, Rajaram N, Dings RP. Acquired Radiation Resistance Induces Thiol-dependent Cisplatin Cross-resistance. Radiat Res 2024; 201:174-187. [PMID: 38329819 PMCID: PMC10993299 DOI: 10.1667/rade-23-00005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024]
Abstract
Resistance to radiation remains a significant clinical challenge in non-small cell lung carcinoma (NSCLC). It is therefore important to identify the underlying molecular and cellular features that drive acquired resistance. We generated genetically matched NSCLC cell lines to investigate characteristics of acquired resistance. Murine Lewis lung carcinoma (LLC) and human A549 cells acquired an approximate 1.5-2.5-fold increase in radiation resistance as compared to their parental match, which each had unique intrinsic radio-sensitivities. The radiation resistance (RR) was reflected in higher levels of DNA damage and repair marker γH2AX and reduced apoptosis induction after radiation. Morphologically, we found that radiation resistance A549 (A549-RR) cells exhibited a greater nucleus-to-cytosol (N/C) ratio as compared to its parental counterpart. Since the N/C ratio is linked to the differentiation state, we next investigated the epithelial-to-mesenchymal transition (EMT) phenotype and cellular plasticity. We found that A549 cells had a greater radiation-induced plasticity, as measured by E-cadherin, vimentin and double-positive (DP) modulation, as compared to LLC. Additionally, migration was suppressed in A549-RR cells, as compared to A549 cells. Subsequently, we confirmed in vivo that the LLC-RR and A549-RR cells are also more resistance to radiation than their isogenic-matched counterpart. Moreover, we found that the acquired radiation resistance also induced resistance to cisplatin, but not carboplatin or oxaliplatin. This cross-resistance was attributed to induced elevation of thiol levels. Gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine (BSO) sensitized the resistant cells to cisplatin by decreasing the amount of thiols to levels prior to obtaining acquired radiation resistance. By generating radiation-resistance genetically matched NSCLC we were able to identify and overcome cisplatin cross-resistance. This is an important finding arguing for combinatorial treatment regimens including glutathione pathway disruptors in patients with the potential of improving clinical outcomes in the future.
Collapse
Affiliation(s)
- Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Shruti Shah
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Amir Mortazavi
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Hailey Kristian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gunnar Boysen
- Environment Health Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kieng B. Vang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Narasimhan Rajaram
- Department for Biomedical Engineering, University of Arkansas, University of Arkansas at Fayetteville, Fayetteville, Arkansas 72701
| | - Ruud P.M. Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
2
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
3
|
Immunoregulatory signal networks and tumor immune evasion mechanisms: insights into therapeutic targets and agents in clinical development. Biochem J 2022; 479:2219-2260. [DOI: 10.1042/bcj20210233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Through activation of immune cells, the immune system is responsible for identifying and destroying infected or otherwise damaged cells including tumorigenic cells that can be recognized as foreign, thus maintaining homeostasis. However, tumor cells have evolved several mechanisms to avoid immune cell detection and killing, resulting in tumor growth and progression. In the tumor microenvironment, tumor infiltrating immune cells are inactivated by soluble factors or tumor promoting conditions and lose their effects on tumor cells. Analysis of signaling and crosstalk between immune cells and tumor cells have helped us to understand in more detail the mechanisms of tumor immune evasion and this forms basis for drug development strategies in the area of cancer immunotherapy. In this review, we will summarize the dominant signaling networks involved in immune escape and describe the status of development of therapeutic strategies to target tumor immune evasion mechanisms with focus on how the tumor microenvironment interacts with T cells.
Collapse
|
4
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
5
|
Miller MC, Zheng Y, Suylen D, Ippel H, Cañada FJ, Berbís MA, Jiménez-Barbero J, Tai G, Gabius HJ, Mayo KH. Targeting the CRD F-face of Human Galectin-3 and Allosterically Modulating Glycan Binding by Angiostatic PTX008 and a Structurally Optimized Derivative. ChemMedChem 2020; 16:713-723. [PMID: 33156953 DOI: 10.1002/cmdc.202000742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/31/2020] [Indexed: 12/25/2022]
Abstract
Calix[4]arene PTX008 is an angiostatic agent that inhibits tumor growth in mice by binding to galectin-1, a β-galactoside-binding lectin. To assess the affinity profile of PTX008 for galectins, we used 15 N,1 H HSQC NMR spectroscopy to show that PTX008 also binds to galectin-3 (Gal-3), albeit more weakly. We identified the contact site for PTX008 on the F-face of the Gal-3 carbohydrate recognition domain. STD NMR revealed that the hydrophobic phenyl ring crown of the calixarene is the binding epitope. With this information, we performed molecular modeling of the complex to assist in improving the rather low affinity of PTX008 for Gal-3. By removing the N-dimethyl alkyl chain amide groups, we produced PTX013 whose reduced alkyl chain length and polar character led to an approximately eightfold stronger binding than PTX008. PTX013 also binds Gal-1 more strongly than PTX008, whereas neither interacts strongly, if at all, with Gal-7. In addition, PTX013, like PTX008, is an allosteric inhibitor of galectin binding to the canonical ligand lactose. This study broadens the scope for galectin targeting by calixarene-based compounds and opens the perspective for selective galectin blocking.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yi Zheng
- School of Life Science, Northeast Normal University, 130024, Changchun, People's Republic of China
| | - Dennis Suylen
- Department of Biochemistry and CARIM, Maastricht University, 6229HX, Maastricht, The Netherlands
| | - Hans Ippel
- Department of Biochemistry and CARIM, Maastricht University, 6229HX, Maastricht, The Netherlands
| | - F Javier Cañada
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - M Alvaro Berbís
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jesús Jiménez-Barbero
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain.,CIC bioGUNE, Bizkaia Technological Park, Building 801 A, 48160, Derio, Spain.,Ikerbasque, Basque Foundation for Science, 28009, Bilbao, Spain
| | - Guihua Tai
- School of Life Science, Northeast Normal University, 130024, Changchun, People's Republic of China
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximillians-University, 80539, Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
6
|
Pan X, Xu J, Jia X. Research Progress Evaluating the Function and Mechanism of Anti-Tumor Peptides. Cancer Manag Res 2020; 12:397-409. [PMID: 32021452 PMCID: PMC6970611 DOI: 10.2147/cmar.s232708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors cause a high mortality rate worldwide, and they severely threaten human health and negatively affect the economy. Despite the advancements in tumor-related molecular genetics and effective new processes in anti-tumor drug development, the anti-tumor drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for curing cancer. The peptide has become a suitable agent due to its exact molecular weight between whole protein and small molecule, and it has high targeting ability, high penetrability, low immunogenicity, and is convenient to synthesize and easy to modify. Because of these advantages, peptides have excellent prospect for application as anti-tumor agents. This article reviews the recent research progress evaluating anti-tumor peptides and their anti-tumor mechanisms, and may act as a reference for the future development and clinical application of anti-tumor peptides. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/snZy3e6sVio
Collapse
Affiliation(s)
- Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Zhang H, Ippel H, Miller MC, Wong TJ, Griffioen AW, Mayo KH, Pieters RJ. Hybrid ligands with calixarene and thiodigalactoside groups: galectin binding and cytotoxicity. ORGANIC CHEMISTRY FRONTIERS : AN INTERNATIONAL JOURNAL OF ORGANIC CHEMISTRY 2019; 6:2981-2990. [PMID: 34912566 PMCID: PMC8612729 DOI: 10.1039/c9qo00810a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
Galectins have diverse functions and are involved in many biological processes because of their complex intra- and extracellular activities. Selective and potent inhibitors for galectins will be valuable tools to investigate the biological functions of these proteins. Therefore, we describe here the synthesis of galectin inhibitors with a potential "chelate effect". These compounds are designed to bind to two different binding sites on galectins simultaneously. In this paper a series of asymmetric "hybrid" compounds are prepared, which combine two galectin ligands (1) a substituted thiodigalactoside derivative and (2) an antagonist calixarene-based therapeutic agent. NMR spectroscopy was used to evaluate the interactions of these compounds with Galectin-1 and -3. In addition, cellular experiments were conducted to compare the cytotoxic effects of the hybrids with those of a calixarene derivative. While only the thiodigalactoside part of the hybrids showed strong binding, the calixarene part was responsible for observed cytoxoxicity effects, suggesting that the calixarene moiety may also be addressing a non-galectin target.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University P.O. Box 80082 NL-3508 TB Utrecht The Netherlands
| | - Hans Ippel
- Department of Biochemistry and the Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Maastricht The Netherlands
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Minneapolis MN 55455 USA
| | - Tse J Wong
- Angiogenesis Laboratory, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam Amsterdam The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam Amsterdam The Netherlands
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Minneapolis MN 55455 USA
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University P.O. Box 80082 NL-3508 TB Utrecht The Netherlands
| |
Collapse
|
8
|
Jenkins SV, Nedosekin DA, Shaulis BJ, Wang T, Jamshidi-Parsian A, Pollock ED, Chen J, Dings RP, Griffin RJ. Enhanced Photothermal Treatment Efficacy and Normal Tissue Protection via Vascular Targeted Gold Nanocages. Nanotheranostics 2019; 3:145-155. [PMID: 31008023 PMCID: PMC6470343 DOI: 10.7150/ntno.32395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
A major challenge in photothermal treatment is generating sufficient heat to eradicate diseased tissue while sparing normal tissue. Au nanomaterials have shown promise as a means to achieve highly localized photothermal treatment. Toward that end, the synthetic peptide anginex was conjugated to Au nanocages. Anginex binds to galectin-1, which is highly expressed in dividing endothelial cells found primarily in the tumor vasculature. The skin surface temperature during a 10 min laser exposure of subcutaneous murine breast tumors did not exceed 43°C and no normal tissue damage was observed, yet a significant anti-tumor effect was observed when laser was applied 24 h post-injection of targeted nanocages. Untargeted particles showed little effect in immunocompetent, tumor-bearing mice under these conditions. Photoacoustic, photothermal, and ICP-MS mapping of harvested tissue showed distribution of particles near the vasculature throughout the tumor. This uptake pattern within the tumor combined with a minimal overall temperature rise were nonetheless sufficient to induce marked photothermal efficacy and evidence of tumor control. Importantly, this evidence suggests that bulk tumor temperature during treatment does not correlate with treatment outcome, which implies that targeted nanomedicine can be highly effective when closely bound/distributed in and around the tumor endothelium and extensive amounts of direct tumor cell binding may not be a prerequisite of effective photothermal approaches.
Collapse
Affiliation(s)
- Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR,✉ Corresponding author: Dr. Samir V. Jenkins, , Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham, Mail Slot #771, Little Rock, AR 72205, USA
| | - Dmitry A. Nedosekin
- Department of Otolaryngology and Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Barry J. Shaulis
- Trace Element and Radiogenic Isotope Lab, University of Arkansas, Fayetteville, AR
| | - Tengjiao Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Erik D. Pollock
- Trace Element and Radiogenic Isotope Lab, University of Arkansas, Fayetteville, AR
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR
| | - Ruud P.M. Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
9
|
Oncofoetal insulin receptor isoform A marks the tumour endothelium; an underestimated pathway during tumour angiogenesis and angiostatic treatment. Br J Cancer 2018; 120:218-228. [PMID: 30559346 PMCID: PMC6342959 DOI: 10.1038/s41416-018-0347-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022] Open
Abstract
Background In a genomic screen for determinants of the tumour vasculature, we identified insulin receptor (INSR) to mark the tumour endothelium. As a functional role for insulin/INSR in cancer has been suggested and markers of the tumour endothelium may be attractive therapeutic targets, we investigated the role of INSR in angiogenesis. Methods In a genomic screen for determinants of the tumour vasculature we identified insulin receptor to mark the tumour endothelium. Results The current report demonstrates the following: (i) the heavy overexpression of INSR on angiogenic vasculature in human tumours and the correlation to short survival, (ii) that INSR expression in the tumour vasculature is mainly representing the short oncofoetal and non-metabolic isoform INSR-A, (iii) the angiogenic activity of insulin on endothelial cells (EC) in vitro and in vivo, (iv) suppression of proliferation and sprouting of EC in vitro after antibody targeting or siRNA knockdown, and (v) inhibition of in vivo angiogenesis in the chicken chorioallantoic membrane (CAM) by anti-INSR antibodies. We additionally show, using preclinical mouse as well as patient data, that treatment with the inhibitor sunitinib significantly reduces the expression of INSR-A. Conclusions The current study underscores the oncogenic impact of INSR and suggests that targeting the INSR-A isoform should be considered in therapeutic settings.
Collapse
|
10
|
Zhao K, Yang S, Geng J, Gong X, Gong W, Shen L, Ning B. Combination of anginex gene therapy and radiation decelerates the growth and pulmonary metastasis of human osteosarcoma xenografts. Cancer Med 2018; 7:2518-2529. [PMID: 29659181 PMCID: PMC6010866 DOI: 10.1002/cam4.1476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023] Open
Abstract
Investigate whether rAAV-anginex gene therapy combined with radiotherapy could decrease growth and pulmonary metastasis of osteosarcoma in mice and examine the mechanisms involved in this therapeutic strategy. During in vitro experiment, multiple treatment regimes (rAAV-eGFP, radiotherapy, rAAV-anginex, combination therapy) were applied to determine effects on proliferation of endothelial cells (ECs) and G-292 osteosarcoma cells. During in vivo analysis, the same multiple treatment regimes were applied to osteosarcoma tumor-bearing mice. Use microcomputed tomography to evaluate tumor size. Eight weeks after tumor cell inoculation, immunohistochemistry was used to assess the therapeutic efficacy according to microvessel density (MVD), proliferating cell nuclear antigen (PCNA), and terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assays. Metastasis of lungs was also evaluated by measuring number of metastatic nodules and wet weight of metastases. The proliferation of ECs and the tumor volumes in combination therapy group were inhibited more effectively than the other three groups at end point (P < 0.05). Cell clone assay showed anginex had radiosensitization effect on ECs. Immunohistochemistry showed tumors from mice treated with combination therapy exhibited the lowest MVD and proliferation rate, with highest apoptosis rate, as confirmed by IHC staining for CD34 and PCNA and TUNEL assays (P < 0.05). Combination therapy also induced the fewest metastatic nodules and lowest wet weights of the lungs (P < 0.05). rAAV-anginex combined with radiotherapy induced apoptosis of osteosarcoma cells and inhibited tumor growth and pulmonary metastasis on the experimental osteosarcoma models. We conclude that the primary mechanism of this process may be due to sensitizing effect of anginex to radiotherapy.
Collapse
Affiliation(s)
- Kai Zhao
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| | - Shang‐You Yang
- Department of Surgery, OrthopedicsUniversity of Kansas School of Medicine‐WichitaWichita67214Kansas
| | - Jun Geng
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| | - Xuan Gong
- Department of Surgery, OrthopedicsUniversity of Kansas School of Medicine‐WichitaWichita67214Kansas
| | - Weiming Gong
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| | - Lin Shen
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| | - Bin Ning
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| |
Collapse
|
11
|
Huang EY, Peng CT, Wang CC. Effects of radiation response modifiers given after lethal whole-abdominal irradiation. Int J Radiat Biol 2018; 94:289-294. [PMID: 29355463 DOI: 10.1080/09553002.2018.1431698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Although radiation is used to treat cancer and generate electricity, radiotherapy-induced complications and nuclear disasters are issues of great concern. The small bowel and bone marrow are the two major organs injured by radiation, especially that from nuclear disasters. The development of effective drugs to alleviate radiation injuries is very important. We tested potential radiation response modifiers given after irradiation to alleviate radiation injuries and mortality. MATERIALS AND METHODS Xenografts of C33A tumor cells with or without galectin-1 expression were implanted in SCID mice. Local tumor irradiation (6 Gy) was used to study radiosensitivity. The rate and time of tumor growth to 2 cm were observed using the Kaplan-Meier method. C57BL/6N mice were used to study the effects of whole-abdominal or whole-body irradiation. Drug administration was as follows: (1) vehicle; (2) interleukin 6 (IL-6) (50 ng/day); (3) anginex (10 mg/kg/day) (galectin-1 antagonist); or (4) flagellin (0.2 mg/kg) (Toll-like receptor 5 agonist). These treatments were compared for tumor size and survival time. RESULTS The median time of tumor growth delay after 6 Gy irradiation was one week in tumors without galectin-1 expression, regardless of anginex administration. Anginex did not prolong the survival time after 18 Gy whole-abdominal irradiation. Flagellin did not prolong survival time after 18 Gy whole-abdominal irradiation. IL-6 prolonged the survival time after 18 Gy whole-abdominal irradiation, with 5% survival. This was the best result in treating lethal 18 Gy whole-abdominal irradiation. Other than IL-6, no drugs decreased the survival rate after 7.5 Gy whole-body irradiation. CONCLUSIONS Anginex has no protective effects against radiation injury and no radiosensitized effects on tumors. IL-6 is a potential agent for treating radiation-induced lethal injuries to the small bowel. However, it is not suitable for treating bone marrow damage after whole-body irradiation.
Collapse
Affiliation(s)
- Eng-Yen Huang
- a Department of Radiation Oncology , Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine , Kaohsiung , Taiwan.,b School of Traditional Chinese Medicine , Chang Gung University College of Medicine , Taoyuan , Taiwan
| | - Chen-Tzu Peng
- a Department of Radiation Oncology , Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Chung-Chih Wang
- a Department of Radiation Oncology , Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| |
Collapse
|
12
|
Upreti M, Jyoti A, Johnson SE, Swindell EP, Napier D, Sethi P, Chan R, Feddock JM, Weiss HL, O'Halloran TV, Evers BM. Radiation-enhanced therapeutic targeting of galectin-1 enriched malignant stroma in triple negative breast cancer. Oncotarget 2018; 7:41559-41574. [PMID: 27223428 PMCID: PMC5173078 DOI: 10.18632/oncotarget.9490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/04/2016] [Indexed: 12/14/2022] Open
Abstract
Currently there are no FDA approved targeted therapies for Triple Negative Breast Cancer (TNBC). Ongoing clinical trials for TNBC have focused primarily on targeting the epithelial cancer cells. However, targeted delivery of cytotoxic payloads to the non-transformed tumor associated-endothelium can prove to be an alternate approach that is currently unexplored. The present study is supported by recent findings on elevated expression of stromal galectin-1 in clinical samples of TNBC and our ongoing findings on stromal targeting of radiation induced galectin-1 by the anginex-conjugated arsenic-cisplatin loaded liposomes using a novel murine tumor model. We demonstrate inhibition of tumor growth and metastasis in response to the multimodal nanotherapeutic strategy using a TNBC model with orthotopic tumors originating from 3D tumor tissue analogs (TTA) comprised of tumor cells, endothelial cells and fibroblasts. The ‘rigorous’ combined treatment regimen of radiation and targeted liposomes is also shown to be well tolerated. More importantly, the results presented provide a means to exploit clinically relevant radiation dose for concurrent receptor mediated enhanced delivery of chemotherapy while limiting overall toxicity. The proposed study is significant as it falls in line with developing combinatorial therapeutic approaches for stroma-directed tumor targeting using tumor models that have an appropriate representation of the TNBC microenvironment.
Collapse
Affiliation(s)
- Meenakshi Upreti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Amar Jyoti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Sara E Johnson
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Elden P Swindell
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Dana Napier
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Pallavi Sethi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Ryan Chan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jonathan M Feddock
- Department of Radiation Medicine, University of Kentucky Chandler Hospital, Lexington, KY, USA
| | - Heidi L Weiss
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Thomas V O'Halloran
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - B Mark Evers
- Department of Pathology, University of Kentucky, Lexington, KY, USA.,Department of Surgery, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Abstract
The recombinant kringle domain of urokinase (UK1) has been shown to inhibit angiogenesis and brain tumor growth in vivo. To avoid limitations in application due to mass production of recombinant protein, we attempted to develop a novel peptide inhibitor from UK1 sequence consisting of 83 amino acids that contains α-helices, loops and β-sheets. We dissected UK1 sequence to seven peptides based on structure and amino acid characteristics, and examined the anti-angiogenic activities for the constructed peptides. Among the tested peptides, UP-7 most potently inhibited the proliferation and migration of endothelial cells (ECs) in vitro, and also potently inhibited in vivo angiogenesis in the mouse matrigel plug assay. Such anti-angiogenic activities were not exerted by the scrambled peptide. At molecular level, UP-7 inhibited growth factor-induced phosphorylation of FAK and ERK1/2. It also suppressed formation of stress fibers and focal adhesions and also inhibited the attachment and spreading of ECs onto immobilized fibronectin. In a lung cancer animal model xenografted with non-UP-7-sensitive NCI-H460 cells, systemic treatment of UP-7 effectively suppressed tumor growth through inhibition of angiogenesis. Interestingly, breast cancer cells such as LM-MDA-MB-231 cells were moderately sensitive to UP-7 in proliferation differently from other cancer cells. UP-7 also inhibited migration, invasion and FAK phosphorylation of LM-MDA-MB-231 cells. Accordingly, UP-7 potently inhibited lung metastatic growth of LM-MDA-MB-231 cells in an experimental metastasis model. Taken together, these results suggest that novel peptide UP-7 can be effectively used for treatment of breast cancer metastatic growth through inhibition of angiogenesis and invasion.
Collapse
|
14
|
Jenkins SV, Nedosekin DA, Miller EK, Zharov VP, Dings RPM, Chen J, Griffin RJ. Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy. Int J Hyperthermia 2017; 34:19-29. [PMID: 28540812 DOI: 10.1080/02656736.2017.1317845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To demonstrate delivery of Au nanocages to cells using the galectin-1 binding peptide anginex (Ax) and to demonstrate the value of this targeting for selective in vitro photothermal cell killing. MATERIALS AND METHODS Au nanocages were synthesised, coated with polydopamine (PDA), and conjugated with Ax. Tumour and endothelial cell viability was measured with and without laser irradiation. Photoacoustic (PA) mapping and PA flow cytometry were used to confirm cell targeting in vitro and in tissue slices ex vivo. RESULTS Cell viability was maintained at ≥50% at 100 pM suggesting low toxicity of the nanocage alone. Combining the targeted construct (25 pM) with low power 808 nm laser irradiation for 10-20 min (a duration previously shown to induce rapid and sustained heating of Au nanocages [AuNC] in solution), resulted in over 50% killing of endothelial and tumour cells. In contrast, the untargeted construct combined with laser irradiation resulted in negligible cell killing. We estimate approximately 6 × 104 peptides were conjugated to each nanocage, which also resulted in inhibition of cell migration. Binding of the targeted nanocage reached a plateau after three hours, and cell association was 20-fold higher than non-targeted nanocages both in vitro and ex vivo on tumour tissue slices. A threefold increase in tumour accumulation was observed in preliminary in vivo studies. CONCLUSIONS These studies demonstrate Ax's potential as an effective targeting agent for Au-based theranostics to tumour and endothelial cells, enabling photothermal killing. This platform further suggests potential for multimodal in vivo therapy via next-generation drug-loaded nanocages.
Collapse
Affiliation(s)
| | - Dmitry A Nedosekin
- b Otolaryngology and Phillips Classic Laser and Nanomedicine Laboratories , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Emily K Miller
- c Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , AR , USA
| | - Vladimir P Zharov
- b Otolaryngology and Phillips Classic Laser and Nanomedicine Laboratories , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | | | - Jingyi Chen
- c Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , AR , USA
| | | |
Collapse
|
15
|
Ma K, Wang C, Geng Q, Fan Y, Ning J, Yang H, Dong X, Dong D, Guo Y, Wei X, Li E, Wu Y. Recombinant adeno-associated virus-delivered anginex inhibits angiogenesis and growth of HUVECs by regulating the Akt, JNK and NF-κB signaling pathways. Oncol Rep 2016; 35:3505-13. [PMID: 27035232 DOI: 10.3892/or.2016.4711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022] Open
Abstract
Anginex is an artificial synthetic small molecule β-sheet-forming peptide shown to have anti-angiogenesis and antitumor effects in various solid tumors. However, its molecular mechanism remains largely unclear and efficient delivery methods for anginex remains to be developed. We report on the development of recombinant adeno-associated virus (rAAV2)-delivered anginex and the underlying mechanism of anti-angiogenesis and antitumor effects of anginex. We have successfully developed the rAAV2 vector to efficiently express anginex (rAAV2‑anginex). Transduction of rAAV2-anginex significantly induced apoptosis, and inhibited the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells in vitro. Western blot analysis revealed that rAAV2‑anginex inhibited the phosphorylation of Akt, while inducing the phosphorylation of JNK and activation of the NF-κB signaling pathway. In an in vivo CAM assay and xenograft model of SKOV3, rAAV2-anginex significantly reduced microvessel density (MVD) and vascular endothelial growth factor 165 (VEGF165), as demonstrated by immunohistochemistry analysis. Importantly, rAAV2-anginex inhibited tumor growth in an ovarian cancer SKOV3 cell nude mouse xenograft model. Our results suggest that rAAV2-anginex may inhibit tumor angiogenesis and growth through regulating Akt, JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ke Ma
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chuying Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qianqian Geng
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yangwei Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Ning
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Haixia Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xuyuan Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Danfeng Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuyan Guo
- Department of Medical Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Wei
- Department of Medical Oncology, Shaanxi Province People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yinying Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Blanchard H, Bum-Erdene K, Bohari MH, Yu X. Galectin-1 inhibitors and their potential therapeutic applications: a patent review. Expert Opin Ther Pat 2016; 26:537-54. [PMID: 26950805 DOI: 10.1517/13543776.2016.1163338] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Galectins have affinity for β-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics. AREAS COVERED This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site. EXPERT OPINION Significant evidence implicates galectin-1's involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence similarity of the carbohydrate-binding sites of different galectins makes design of specific antagonists (blocking agents/inhibitors of function) difficult. Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectin-1 to the desired site. Developing modified forms of galectin-1 has resulted in increased stability and functional potency. Gene and protein therapy approaches that deliver the protein toward the target are under exploration as is exploitation of different inhibitor scaffolds.
Collapse
Affiliation(s)
- Helen Blanchard
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | - Khuchtumur Bum-Erdene
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | | | - Xing Yu
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| |
Collapse
|
17
|
Nowak-Sliwinska P, Clavel CM, Păunescu E, te Winkel MT, Griffioen AW, Dyson PJ. Antiangiogenic and Anticancer Properties of Bifunctional Ruthenium(II)–p-Cymene Complexes: Influence of Pendant Perfluorous Chains. Mol Pharm 2015; 12:3089-96. [DOI: 10.1021/acs.molpharmaceut.5b00417] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Angiogenesis
Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| | - Catherine M. Clavel
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| | - Emilia Păunescu
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| | - Marije T. te Winkel
- Angiogenesis
Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| | - Arjan W. Griffioen
- Angiogenesis
Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul J. Dyson
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
18
|
Werner HM, Horne WS. Folding and function in α/β-peptides: targets and therapeutic applications. Curr Opin Chem Biol 2015; 28:75-82. [PMID: 26136051 DOI: 10.1016/j.cbpa.2015.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/02/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Combining natural α-amino acid residues and unnatural β-amino acid residues in a single chain leads to heterogeneous-backbone oligomers called α/β-peptides. Despite their unnatural backbones, α/β-peptides can manifest a variety of folding patterns and biological functions reminiscent of natural peptides and proteins. Moreover, incorporation of β-residues can impart useful properties to the oligomer such as improved stability to degradation by protease enzymes. α/β-Peptides have been developed that engage diverse biological targets, including proteins involved in apoptotic signalling, HIV-cell fusion, hormone signalling, and angiogenesis. For some systems, promising results obtained in vitro have paved the way for demonstrated activity in vivo, where α/β-peptides show equal potency and improved duration of effect compared to α-peptide counterparts.
Collapse
Affiliation(s)
- Halina M Werner
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
19
|
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 2015; 26:311-27. [DOI: 10.1016/j.cytogfr.2014.11.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
|
20
|
Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions. Nat Commun 2015; 6:6194. [DOI: 10.1038/ncomms7194] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/05/2015] [Indexed: 01/10/2023] Open
|
21
|
Läppchen T, Dings RP, Rossin R, Simon JF, Visser TJ, Bakker M, Walhe P, van Mourik T, Donato K, van Beijnum JR, Griffioen AW, Lub J, Robillard MS, Mayo KH, Grüll H. Novel analogs of antitumor agent calixarene 0118: Synthesis, cytotoxicity, click labeling with 2-[18F]fluoroethylazide, and in vivo evaluation. Eur J Med Chem 2015; 89:279-95. [DOI: 10.1016/j.ejmech.2014.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/02/2023]
|
22
|
Soloviev DA, Hazen SL, Szpak D, Bledzka KM, Ballantyne CM, Plow EF, Pluskota E. Dual role of the leukocyte integrin αMβ2 in angiogenesis. THE JOURNAL OF IMMUNOLOGY 2014; 193:4712-21. [PMID: 25261488 DOI: 10.4049/jimmunol.1400202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) and macrophages are crucial contributors to neovascularization, serving as a source of chemokines, growth factors, and proteases. α(M)β(2)(CD11b/CD18) and α(L)β(2)(CD11a/CD18) are expressed prominently and have been implicated in various responses of these cell types. Thus, we investigated the role of these β2 integrins in angiogenesis. Angiogenesis was analyzed in wild-type (WT), α(M)-knockout (α(M)(-/-)), and α(L)-deficient (α(L)(-/-)) mice using B16F10 melanoma, RM1 prostate cancer, and Matrigel implants. In all models, vascular area was decreased by 50-70% in α(M)(-/-) mice, resulting in stunted tumor growth as compared with WT mice. In contrast, α(L) deficiency did not impair angiogenesis and tumor growth. The neovessels in α(M)(-/-) mice were leaky and immature because they lacked smooth muscle cell and pericytes. Defective angiogenesis in the α(M)(-/-) mice was associated with attenuated PMN and macrophage recruitment into tumors. In contrast to WT or the α(L)(-/-) leukocytes, the α(M)(-/-) myeloid cells showed impaired plasmin (Plm)-dependent extracellular matrix invasion, resulting from 50-75% decrease in plasminogen (Plg) binding and pericellular Plm activity. Surface plasmon resonance verified direct interaction of the α(M)I-domain, the major ligand binding site in the β(2) integrins, with Plg. However, the α(L)I-domain failed to bind Plg. In addition, endothelial cells failed to form tubes in the presence of conditioned medium collected from TNF-α-stimulated PMNs derived from the α(M)(-/-) mice because of severely impaired degranulation and secretion of VEGF. Thus, α(M)β(2) plays a dual role in angiogenesis, supporting not only Plm-dependent recruitment of myeloid cells to angiogenic niches, but also secretion of VEGF by these cells.
Collapse
Affiliation(s)
- Dmitry A Soloviev
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Stanley L Hazen
- Department of Molecular and Cellular Medicine, Cleveland Clinic, Cleveland, OH 44195; and
| | - Dorota Szpak
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Kamila M Bledzka
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Christie M Ballantyne
- Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, Houston, TX 77030
| | - Edward F Plow
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
23
|
Cabrele C, Martinek TA, Reiser O, Berlicki Ł. Peptides Containing β-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J Med Chem 2014; 57:9718-39. [DOI: 10.1021/jm5010896] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chiara Cabrele
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Tamás A. Martinek
- SZTE-MTA
Lendulet Foldamer Research Group, Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 6., H-6720 Szeged, Hungary
| | - Oliver Reiser
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
24
|
Yousefi A, Bourajjaj M, Babae N, Noort PIV, Schaapveld RQ, Beijnum JRV, Griffioen AW, Storm G, Schiffelers RM, Mastrobattista E. Anginex lipoplexes for delivery of anti-angiogenic siRNA. Int J Pharm 2014; 472:175-84. [DOI: 10.1016/j.ijpharm.2014.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 12/16/2022]
|
25
|
Hegedüs Z, Wéber E, Kriston-Pál É, Makra I, Czibula Á, Monostori É, Martinek TA. Foldameric α/β-peptide analogs of the β-sheet-forming antiangiogenic anginex: structure and bioactivity. J Am Chem Soc 2013; 135:16578-84. [PMID: 24088182 DOI: 10.1021/ja408054f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The principles of β-sheet folding and design for α-peptidic sequences are well established, while those for sheet mimetics containing homologated amino acid building blocks are still under investigation. To reveal the structure-function relations of β-amino-acid-containing foldamers, we followed a top-down approach to study a series of α/β-peptidic analogs of anginex, a β-sheet-forming antiangiogenic peptide. Eight anginex analogs were developed by systematic α → β(3) substitutions and analyzed by using NMR and CD spectroscopy. The foldamers retained the β-sheet tendency, though with a decreased folding propensity. β-Sheet formation could be induced by a micellar environment, similarly to that of the parent peptide. The destructuring effect was higher when the α → β(3) exchange was located in the β-sheet core. Analysis of the β-sheet stability versus substitution pattern and the local conformational bias of the bulky β(3)V and β(3)I residues revealed that a mismatch between the H-bonding preferences of the α- and β-residues played a minor role in the structure-breaking effect. Temperature-dependent CD and NMR measurements showed that the hydrophobic stabilization was scaled-down for the α/β-peptides. Analysis of the biological activity of the foldamer peptides showed that four anginex derivatives dose-dependently inhibited the proliferation of a mouse endothelial cell line. The α → β(3) substitution strategy applied in this work can be a useful approach to the construction of bioactive β-sheet mimetics with a reduced aggregation tendency and improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Zsófia Hegedüs
- SZTE-MTA Lendulet Foldamer Research Group, Institute of Pharmaceutical Chemistry, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
26
|
Pharmacokinetics and antineoplastic activity of galectin-1-targeting OTX008 in combination with sunitinib. Cancer Chemother Pharmacol 2013; 72:879-87. [DOI: 10.1007/s00280-013-2270-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/10/2013] [Indexed: 12/13/2022]
|
27
|
Thijssen VL, Rabinovich GA, Griffioen AW. Vascular galectins: regulators of tumor progression and targets for cancer therapy. Cytokine Growth Factor Rev 2013; 24:547-58. [PMID: 23942184 DOI: 10.1016/j.cytogfr.2013.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 12/14/2022]
Abstract
Galectins are a family of carbohydrate binding proteins with a broad range of cytokine and growth factor-like functions in multiple steps of cancer progression. They contribute to tumor cell transformation, promote tumor angiogenesis, hamper the anti-tumor immune response, and facilitate tumor metastasis. Consequently, galectins are considered as multifunctional targets for cancer therapy. Interestingly, many of the functions related to tumor progression can be linked to galectins expressed by endothelial cells in the tumor vascular bed. Since the tumor vasculature is an easily accessible target for cancer therapy, understanding how galectins in the tumor endothelium influence cancer progression is important for the translational development of galectin-targeting therapies.
Collapse
Affiliation(s)
- Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
28
|
Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Neuzillet C, Albert S, Raymond E, Faivre S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev 2013; 40:307-19. [PMID: 23953240 DOI: 10.1016/j.ctrv.2013.07.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022]
Abstract
Galectins belong to a family of carbohydrate-binding proteins with an affinity for β-galactosides. Galectin-1 is differentially expressed by various normal and pathologic tissues and displays a wide range of biological activities. In oncology, galectin-1 plays a pivotal role in tumor growth and in the multistep process of invasion, angiogenesis, and metastasis. Evidence indicates that galectin-1 exerts a variety of functions at different steps of tumor progression. Moreover, it has been demonstrated that galectin-1 cellular localization and galectin-1 binding partners depend on tumor localization and stage. Recently, galectin-1 overexpression has been extensively documented in several tumor types and/or in the stroma of cancer cells. Its expression is thought to reflect tumor aggressiveness in several tumor types. Galectin-1 has been identified as a promising drug target using synthetic and natural inhibitors. Preclinical data suggest that galectin-1 inhibition may lead to direct antiproliferative effects in cancer cells as well as antiangiogenic effects in tumors. We provide an up-to-date overview of available data on the role of galectin-1 in different molecular and biochemical pathways involved in human malignancies. One of the major challenges faced in targeting galectin-1 is the translation of current knowledge into the design and development of effective galectin-1 inhibitors in cancer therapy.
Collapse
|
29
|
Blood outgrowth endothelial cells increase tumor growth rates and modify tumor physiology: relevance for therapeutic targeting. Cancers (Basel) 2013; 5:205-17. [PMID: 24216704 PMCID: PMC3730307 DOI: 10.3390/cancers5010205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 01/26/2013] [Accepted: 02/06/2013] [Indexed: 11/28/2022] Open
Abstract
Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm3) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the oxygenation and subsequent radiation response of tumors. We surmise that these cells are preferentially stimulated to divide in the tumor microenvironment, thereby inducing the significant increase in tumor growth observed and that the use of injected BOECs could be a viable approach to modulate the tumor microenvironment for therapeutic gain. Conversely, agents or approaches to block their recruitment and integration of BOECs into primary or metastatic lesions may be an effective way to restrain cancer progression before or after other treatments are applied.
Collapse
|
30
|
Reuwer AQ, Nowak-Sliwinska P, Mans LA, van der Loos CM, von der Thüsen JH, Twickler MTB, Spek CA, Goffin V, Griffioen AW, Borensztajn KS. Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology? J Cell Mol Med 2013; 16:2035-48. [PMID: 22128761 PMCID: PMC3822974 DOI: 10.1111/j.1582-4934.2011.01499.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Prolactin is best known as the polypeptide anterior pituitary hormone, which regulates the development of the mammary gland. However, it became clear over the last decade that prolactin contributes to a broad range of pathologies, including breast cancer. Prolactin is also involved in angiogenesis via the release of pro-angiogenic factors by leukocytes and epithelial cells. However, whether prolactin also influences endothelial cells, and whether there are functional consequences of prolactin-induced signalling in the perspective of angiogenesis, remains so far elusive. In the present study, we show that prolactin induces phosphorylation of ERK1/2 and STAT5 and induces tube formation of endothelial cells on Matrigel. These effects are blocked by a specific prolactin receptor antagonist, del1-9-G129R-hPRL. Moreover, in an in vivo model of the chorioallantoic membrane of the chicken embryo, prolactin enhances vessel density and the tortuosity of the vasculature and pillar formation, which are hallmarks of intussusceptive angiogenesis. Interestingly, while prolactin has only little effect on endothelial cell proliferation, it markedly stimulates endothelial cell migration. Again, migration was reverted by del1-9-G129R-hPRL, indicating a direct effect of prolactin on its receptor. Immunohistochemistry and spectral imaging revealed that the prolactin receptor is present in the microvasculature of human breast carcinoma tissue. Altogether, these results suggest that prolactin may directly stimulate angiogenesis, which could be one of the mechanisms by which prolactin contributes to breast cancer progression, thereby providing a potential tool for intervention.
Collapse
Affiliation(s)
- Anne Q Reuwer
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Magnetic resonance imaging (MRI) is a key imaging modality in cancer diagnostics and therapy monitoring. MRI-based tumor detection and characterization is commonly achieved by exploiting the compositional, metabolic, cellular, and vascular differences between malignant and healthy tissue. Contrast agents are frequently applied to enhance this contrast. The last decade has witnessed an increasing interest in novel multifunctional MRI probes. These multifunctional constructs, often of nanoparticle design, allow the incorporation of multiple imaging agents for complementary imaging modalities as well as anti-cancer drugs for therapeutic purposes. The composition, size, and surface properties of such constructs can be tailored as to improve biodistribution and ensure optimal delivery to the tumor microenvironment by passive or targeted mechanisms. Multifunctional MRI probes hold great promise to facilitate more specific tumor diagnosis, patient-specific treatment planning, the monitoring of local drug delivery, and the early evaluation of therapy. This chapter reviews the state-of-the-art and new developments in the application of multifunctional MRI probes in oncology.
Collapse
Affiliation(s)
- Ewelina Kluza
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | |
Collapse
|
32
|
Wang JB, Wang MD, Li EX, Dong DF. Advances and prospects of anginex as a promising anti-angiogenesis and anti-tumor agent. Peptides 2012; 38:457-62. [PMID: 22985857 DOI: 10.1016/j.peptides.2012.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 01/17/2023]
Abstract
Anginex, a novel artificial cytokine-like peptide (βpep-25), is designed by using basic folding principles and incorporating short sequences from the β-sheet domains of anti-angiogenic agents, including platelet factor-4 (PF4), interleukin-8 (IL-8), and bactericidal-permeability increasing protein 1 (BP1). Anginex can specially block the adhesion and migration of the angiogenically activated endothelial cells (ECs), leading to apoptosis and ultimately to the inhibition of angiogenesis and tumor growth. In vitro and in vivo studies have proved its inhibitory effects on the formation of new blood vessels and tumor growth even though the mechanism is not clear. The inhibitory effects of anginex can be enhanced when it is applied in combination with other therapies, such as chemotherapy, radiotherapy and other anti-angiogenic agents. The limitations of anginex, including poor stability, short half life, complicated synthesis and low purity, have been conquered by modifying its structure or designing novel compound anginex and recombinant anginex, which makes possible the clinical application of anginex. Here, we summarize the basic and preclinical trials of anginex and discuss the prospects of anginex in clinical application. We come to the conclusion that anginex and compound or recombinant anginex can be used as effective anti-angiogenic agents.
Collapse
Affiliation(s)
- Ju Bo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | |
Collapse
|
33
|
Elantak L, Espeli M, Boned A, Bornet O, Bonzi J, Gauthier L, Feracci M, Roche P, Guerlesquin F, Schiff C. Structural basis for galectin-1-dependent pre-B cell receptor (pre-BCR) activation. J Biol Chem 2012; 287:44703-13. [PMID: 23124203 DOI: 10.1074/jbc.m112.395152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During B cell differentiation in the bone marrow, the expression and activation of the pre-B cell receptor (pre-BCR) constitute crucial checkpoints for B cell development. Both constitutive and ligand-dependent pre-BCR activation modes have been described. The pre-BCR constitutes an immunoglobulin heavy chain (Igμ) and a surrogate light chain composed of the invariant λ5 and VpreB proteins. We previously showed that galectin-1 (GAL1), produced by bone marrow stromal cells, is a pre-BCR ligand that induces receptor clustering, leading to efficient pre-BII cell proliferation and differentiation. GAL1 interacts with the pre-BCR via the unique region of λ5 (λ5-UR). Here, we investigated the solution structure of a minimal λ5-UR motif that interacts with GAL1. This motif adopts a stable helical conformation that docks onto a GAL1 hydrophobic surface adjacent to its carbohydrate binding site. We identified key hydrophobic residues from the λ5-UR as crucial for the interaction with GAL1 and for pre-BCR clustering. These residues involved in GAL1-induced pre-BCR activation are different from those essential for autonomous receptor activation. Overall, our results indicate that constitutive and ligand-induced pre-BCR activation could occur in a complementary manner.
Collapse
Affiliation(s)
- Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255, Aix-Marseille Université, 13402 Marseille cedex 20, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nowak-Sliwinska P, Weiss A, van Beijnum JR, Wong TJ, Ballini JP, Lovisa B, van den Bergh H, Griffioen AW. Angiostatic kinase inhibitors to sustain photodynamic angio-occlusion. J Cell Mol Med 2012; 16:1553-62. [PMID: 21880113 PMCID: PMC3823223 DOI: 10.1111/j.1582-4934.2011.01440.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/17/2011] [Indexed: 01/07/2023] Open
Abstract
Targeted angiostatic therapy receives major attention for the treatment of cancer and exudative age-related macular degeneration (AMD). Photodynamic therapy (PDT) has been used as an effective clinical approach for these diseases. As PDT can cause an angiogenic response in the treated tissue, combination of PDT with anti-angiogenic compounds should lead to improved therapy. This study was undertaken to test the clinically used small molecule kinase inhibitors Nexavar® (sorafenib), Tarceva® (erlotinib) and Sutent® (sunitinib) for this purpose, and to compare the results to the combination of Visudyne®-PDT with Avastin® (bevacizumab) treatment. When topically applied to the chicken chorioallantoic membrane at embryo development day (EDD) 7, a clear inhibition of blood vessel development was observed, with sorafenib being most efficient. To investigate the combination with phototherapy, Visudyne®-PDT was first applied on EDD11 to close all <100 μm vessels. Application of angiostatics after PDT resulted in a significant decrease in vessel regrowth in terms of reduced vessel density and number of branching points/mm(2) . As the 50% effective dose (ED50) for all compounds was approximately 10-fold lower, Sorafenib outperformed the other compounds. In vitro, all kinase inhibitors decreased the viability of human umbilical vein endothelial cells. Sunitinib convincingly inhibited the in vitro migration of endothelial cells. These results suggest the therapeutic potential of these compounds for application in combination with PDT in anti-cancer approaches, and possibly also in the treatment of other diseases where angiogenesis plays an important role.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Griffin RJ, Koonce NA, Dings RPM, Siegel E, Moros EG, Bräuer-Krisch E, Corry PM. Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide. Radiat Res 2012; 177:804-812. [PMID: 22607585 PMCID: PMC3391740 DOI: 10.1667/rr2784.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
In this study, we sought to determine the therapeutic potential of variably sized (50 μm or 500 μm wide, 14 mm tall) parallel microbeam radiation therapy (MRT) alone and in combination with a novel anti-angiogenic peptide, anginex, in mouse mammary carcinomas (4T1)--a moderately hypoxic and radioresistant tumor with propensity to metastasize. The fraction of total tumor volume that was directly irradiated was approximately 25% in each case, but the distance between segments irradiated by the planar microbeams (width of valley dose region) varied by an order of magnitude from 150-1500 μm corresponding to 200 μm and 2000 μm center-to-center inter-microbeam distances, respectively. We found that MRT administered in 50 μm beams at 150 Gy was most effective in delaying tumor growth. Furthermore, tumor growth delay induced by 50 μm beams at 150 Gy was virtually indistinguishable from the 500 μm beams at 150 Gy. Fifty-micrometer beams at the lower peak dose of 75 Gy induced growth delay intermediate between 150 Gy and untreated tumors, while 500 μm beams at 75 Gy were unable to alter tumor growth compared to untreated tumors. However, the addition of anginex treatment increased the relative tumor growth delay after 500 μm beams at 75 Gy most substantially out of the conditions tested. Anginex treatment of animals whose tumors received the 50 μm beams at 150 Gy also led to an improvement in growth delay from that induced by the comparable MRT alone. Immunohistochemical staining for CD31 (endothelial cells) and αSMA (smooth muscle pericyte-associated blood vessels as a measure of vessel normalization) indicated that vessel density was significantly decreased in all irradiated groups and pericyte staining was significantly increased in the irradiated groups on day 14 after irradiation. The addition of anginex treatment further decreased the mean vascular density in all combination treatment groups and further increased the amount of pericyte staining in these tumors. Finally, evidence of tumor hypoxia was found to decrease in tumors analyzed at 1-14 days after MRT in the groups receiving 150 Gy peak dose, but not 75 Gy peak dose. Our results suggest that tumor vascular damage induced by MRT at these potentially clinically acceptable peak entrance doses may provoke vascular normalization and may be exploited to improve tumor control using agents targeting angiogenesis.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Dings RPM, Miller MC, Nesmelova I, Astorgues-Xerri L, Kumar N, Serova M, Chen X, Raymond E, Hoye TR, Mayo KH. Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding. J Med Chem 2012; 55:5121-9. [PMID: 22575017 DOI: 10.1021/jm300014q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calix[4]arene compound 0118 is an angiostatic agent that inhibits tumor growth in mice. Although 0118 is a topomimetic of galectin-1-targeting angiostatic amphipathic peptide Anginex, we had yet to prove that 0118 targets galectin-1. Galectin-1 is involved in pathological disorders like tumor endothelial cell adhesion and migration and therefore presents a relevant target for therapeutic intervention against cancer. Here, (15)N-(1)H HSQC NMR spectroscopy demonstrates that 0118 indeed targets galectin-1 at a site away from the lectin's carbohydrate binding site and thereby attenuates lactose binding to the lectin. Flow cytometry and agglutination assays show that 0118 attenuates binding of galectin-1 to cell surface glycans, and the inhibition of cell proliferation by 0118 is found to be correlated with the cellular expression of the lectin. In general, our data indicate that 0118 targets galectin-1 as an allosteric inhibitor of glycan/carbohydrate binding. This work contributes to the clinical development of antitumor calixarene compound 0118.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dual-targeting of αvβ3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. J Control Release 2012; 158:207-14. [DOI: 10.1016/j.jconrel.2011.10.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 10/18/2011] [Accepted: 10/26/2011] [Indexed: 01/16/2023]
|
38
|
Mayo KH. From Carbohydrate to Peptidomimetic Inhibitors of Galectins. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1115.ch003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Kevin H. Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, Minnesota 55455
| |
Collapse
|
39
|
Belotti D, Foglieni C, Resovi A, Giavazzi R, Taraboletti G. Targeting angiogenesis with compounds from the extracellular matrix. Int J Biochem Cell Biol 2011; 43:1674-85. [DOI: 10.1016/j.biocel.2011.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
|
40
|
Apana SM, Griffin RJ, Koonce NA, Webber JS, Dings RPM, Mayo KH, Berridge MS. Synthesis of [18F]anginex with high specific activity [18F]fluorobenzaldehyde for targeting angiogenic activity in solid tumors. J Labelled Comp Radiopharm 2011. [DOI: 10.1002/jlcr.1912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Scott M. Apana
- 3D Imaging, LLC; Cyclotron Suite Rm PS010, UAMS Radiology #556, 4301 W. Markham Street; Little Rock; AR; 72205-7199; USA
| | - Robert J. Griffin
- Department of Radiation Oncology; University of Arkansas for Medical Sciences; Little Rock; AR; USA
| | - Nathan A. Koonce
- Department of Radiation Oncology; University of Arkansas for Medical Sciences; Little Rock; AR; USA
| | - Jessica S. Webber
- Department of Radiation Oncology; University of Arkansas for Medical Sciences; Little Rock; AR; USA
| | - Ruud P. M. Dings
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis; MN; USA
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis; MN; USA
| | | |
Collapse
|
41
|
Nowak-Sliwinska P, van Beijnum JR, Casini A, Nazarov AA, Wagnières G, van den Bergh H, Dyson PJ, Griffioen AW. Organometallic Ruthenium(II) Arene Compounds with Antiangiogenic Activity. J Med Chem 2011; 54:3895-902. [DOI: 10.1021/jm2002074] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Institute of Bio-Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Judy R. van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Angela Casini
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Alexey A. Nazarov
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Georges Wagnières
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hubert van den Bergh
- Institute of Bio-Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Salomonsson E, Thijssen VL, Griffioen AW, Nilsson UJ, Leffler H. The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins. J Biol Chem 2011; 286:13801-4. [PMID: 21372130 PMCID: PMC3077580 DOI: 10.1074/jbc.c111.229096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis is a key event in cancer progression and therefore a promising target in cancer treatment. Galectin-1, a β-galactoside binding lectin, is up-regulated in the endothelium of tumors of different origin and has been shown to be the target for anginex, a powerful anti-angiogenic peptide with anti-tumor activity. Here we show that when bound to anginex, galectin-1 binds various glycoproteins with hundred- to thousand-fold higher affinity. Anginex also interacts with galectin-2, -7, -8N, and -9N but not with galectin-3, -4, or -9C.
Collapse
Affiliation(s)
- Emma Salomonsson
- Section Microbiology, Immunology, Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, SE-223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
43
|
Strijkers GJ, Kluza E, Van Tilborg GAF, van der Schaft DWJ, Griffioen AW, Mulder WJM, Nicolay K. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis 2010; 13:161-73. [PMID: 20390447 PMCID: PMC2911540 DOI: 10.1007/s10456-010-9165-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/24/2010] [Indexed: 12/18/2022]
Abstract
Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy.
Collapse
Affiliation(s)
- Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
44
|
Jia D, Koonce NA, Halakatti R, Li X, Yaccoby S, Swain FL, Suva LJ, Hennings L, Berridge MS, Apana SM, Mayo K, Corry PM, Griffin RJ. Repression of multiple myeloma growth and preservation of bone with combined radiotherapy and anti-angiogenic agent. Radiat Res 2010; 173:809-17. [PMID: 20518660 DOI: 10.1667/rr1734.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of ionizing radiation, with or without the anti-angiogenic agent anginex (Ax), on multiple myeloma growth were tested in a SCID-rab mouse model. Mice carrying human multiple myeloma cell-containing pre-implanted bone grafts were treated weekly with various regimens for 8 weeks. Rapid multiple myeloma growth, assessed by bioluminescence intensity (IVIS), human lambda Ig light chain level in serum (ELISA), and the volume of bone grafts (caliper), was observed in untreated mice. Tumor burden in mice receiving combined therapy was reduced to 59% (by caliper), 43% (by ELISA), and 2% (by IVIS) of baseline values after 8 weeks of treatment. Ax or radiation alone slowed but did not stop tumor growth. Four weeks after the withdrawal of the treatments, tumor burden remained minimal in mice given Ax + radiation but increased noticeably in the other three groups. Multiple myeloma suppression by Ax + radiation was accompanied by a marked decrease in the number and activity of osteoclasts in bone grafts assessed by histology. Bone graft integrity was preserved by Ax + radiation but was lost in the other three groups, as assessed by microCT imaging and radiography. These results suggest that radiotherapy, when primed by anti-angiogenic agents, may be a potent therapy for focal multiple myeloma.
Collapse
Affiliation(s)
- Dan Jia
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR72205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kluza E, van der Schaft DWJ, Hautvast PAI, Mulder WJM, Mayo KH, Griffioen AW, Strijkers GJ, Nicolay K. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. NANO LETTERS 2010; 10:52-58. [PMID: 19968235 DOI: 10.1021/nl902659g] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Effective and specific targeting of nanoparticles is of paramount importance in the fields of targeted therapeutics and diagnostics. In the current study, we investigated the targeting efficacy of nanoparticles that were functionalized with two angiogenesis-specific targeting ligands, an alpha(v)beta(3) integrin-specific and a galectin-1-specific peptide. We show in vitro, using optical techniques and MRI, that the dual-targeting approach produces synergistic targeting effects, causing a dramatically elevated uptake of nanoparticles as compared to single ligand targeting.
Collapse
Affiliation(s)
- Ewelina Kluza
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tabruyn SP, Mémet S, Avé P, Verhaeghe C, Mayo KH, Struman I, Martial JA, Griffioen AW. NF-kappaB activation in endothelial cells is critical for the activity of angiostatic agents. Mol Cancer Ther 2009; 8:2645-54. [PMID: 19706735 DOI: 10.1158/1535-7163.mct-09-0383] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In tumor cells, the transcription factor NF-kappaB has been described to be antiapoptotic and proproliferative and involved in the production of angiogenic factors such as vascular endothelial growth factor. From these data, a protumorigenic role of NF-kappaB has emerged. Here, we examined in endothelial cells whether NF-kappaB signaling pathway is involved in mediating the angiostatic properties of angiogenesis inhibitors. The current report describes that biochemically unrelated agents with direct angiostatic effect induced NF-kappaB activation in endothelial cells. Our data showed that endostatin, anginex, angiostatin, and the 16-kDa N-terminal fragment of human prolactin induced NF-kappaB activation in endothelial cells in both cultured human endothelial cells and in vivo in a mouse tumor model. It was also found that NF-kappaB activity was required for the angiostatic activity, because inhibition of NF-kappaB in endothelial cells impaired the ability of angiostatic agents to block sprouting of endothelial cells and to overcome endothelial cell anergy. Therefore, activation of NF-kappaB in endothelial cells can result in an unexpected antitumor outcome. Based on these data, the current approach of systemic treatment with NF-kappaB inhibitors may therefore be revisited because NF-kappaB activation specifically targeted to endothelial cells might represent an efficient strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Sebastien P Tabruyn
- Angiogenesis Laboratory, Department of Pathology, Research, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Dong DF, Li EX, Wang JB, Wu YY, Shi F, Guo JJ, Wu Y, Liu JP, Liu SX, Yang GX. Anti-angiogenesis and anti-tumor effects of AdNT4-anginex. Cancer Lett 2009; 285:218-24. [PMID: 19540664 DOI: 10.1016/j.canlet.2009.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 05/16/2009] [Accepted: 05/18/2009] [Indexed: 11/25/2022]
Abstract
Anginex is a novel artificial peptide that can inhibit angiogenesis. AdNT4-anginex was constructed by inserting the artificial anginex gene into a recombinant adenoviral vector. We demonstrated that AdNT4-anginex inhibited migration of human endothelial cells, angiogenesis and tumor growth in in vitro and in vivo studies. Tumor growth of human H22 hepatoma in mice was inhibited after AdNT4-anginex treatment for 4 weeks, and a significant decrease in tumor size was observed as compared with the control group. Overall, these studies indicate that AdNT4-anginex is an effective anti-tumor agent, and deserves more attention and research.
Collapse
Affiliation(s)
- Dan Feng Dong
- Department of Medical Oncology, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 2008; 12:17-24. [PMID: 19067197 DOI: 10.1007/s10456-008-9124-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
Molecular imaging of angiogenesis is urgently needed for diagnostic purposes such as early detection, monitoring of (angiostatic) therapy and individualized therapy. Multimodality molecular imaging is a promising and refined technique to study tumor angiogenesis, which has so far been largely unexplored due to the lack of suitable multimodal contrast agents. Here, we report on the application of a novel alphavbeta3-specific quantum dot-based nanoparticle, which has been optimized for both optical and magnetic resonance detection of tumor angiogenesis. Upon intravenous injection of RGD-pQDs in tumor-bearing mice, intravital microscopy allowed the detection of angiogenically activated endothelium at cellular resolution with a small scanning window and limited penetration depth, while magnetic resonance imaging was used to visualize angiogenesis at anatomical resolution throughout the entire tumor. Fluorescence imaging allowed whole-body investigation of angiogenic activity. Using these quantum dots and the aforementioned imaging modalities, the angiogenic tumor vasculature was readily detected with the highest angiogenic activity occurring in the periphery of the tumor. This nanoparticle may be employed for multimodality imaging of a variety of diseases that are accompanied by activation of endothelial cells. Furthermore, the current technology might be developed for molecular imaging of other pathophysiological processes.
Collapse
|
49
|
Dhanabal M, Karumanchi SA, Sukhatme VP. Targeting tumor vascular endothelium: an emerging concept for cancer therapy. Drug Dev Res 2008. [DOI: 10.1002/ddr.20266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Abstract
Interleukin-21 (IL-21) is a recently described immunoregulatory cytokine. It has been identified as a very potent immunotherapeutic agent in several cancer types in animal models, and clinical studies are ongoing. IL-21 belongs to the type I cytokine family of which other members, ie, IL-2, IL-15, and IL-4, have been shown to exert activities on vascular endothelial cells (ECs). We hypothesized that IL-21, in addition to inducing the antitumor immune response, also inhibits tumor angiogenesis. In vitro experiments showed a decrease of proliferation and sprouting of activated ECs after IL-21 treatment. We found that the IL-21 receptor is expressed on vascular ECs. Furthermore, in vivo studies in the chorioallantoic membrane of the chick embryo and in mouse tumors demonstrated that IL-21 treatment disturbs vessel architecture and negatively affects vessel outgrowth. Our results also confirm the earlier suggested angiostatic potential of IL-2 in vitro and in vivo. The angiostatic effect of IL-21 is confirmed by the decrease in expression of angiogenesis-related genes. Interestingly, IL-21 treatment of ECs leads to a decrease of Stat3 phosphorylation. Our research shows that IL-21 is a very powerful antitumor compound that combines the induction of an effective antitumor immune response with inhibition of tumor angiogenesis.
Collapse
|