1
|
Zondagh LS, Malan SF, Joubert J. Edaravone N-benzyl pyridinium derivatives: BACE-1 inhibition, kinetics and in silico binding pose determination. Eur J Pharm Sci 2024; 201:106869. [PMID: 39102997 DOI: 10.1016/j.ejps.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
BACE-1 plays a pivotal role in the production of β-amyloid (Aβ) peptides, implicated in Alzheimer's Disease (AD) pathology. We previously described edaravone N-benzyl pyridinium derivatives (EBPDs) that exhibited multifunctional activity against multiple AD targets. In this study we explored the EBPDs BACE-1 inhibitory activity to potentially enhance the compounds therapeutic profile. The EBPDs exhibited moderate BACE-1 inhibitory activity (IC50 = 44.10 µM - 123.70 µM) and obtained IC50 values between 2.0 and 5.8-fold greater than resveratrol, a known BACE-1 inhibitor (IC50 = 253.20 µM), in this assay. Compound 3 was the most potent inhibitor with an IC50 of 44.10 µM and a Ki of 19.96 µM and a mixed-type mode of inhibition that favored binding in a competitive manner. Molecular docking identified crucial interactions with BACE-1 active site residues, supported by 100 ns MD simulations. The study highlighted the EBPDs therapeutic potential as BACE-1 inhibitors and multifunctional anti-AD therapeutic agents.
Collapse
Affiliation(s)
- L S Zondagh
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa
| | - S F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa
| | - J Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa.
| |
Collapse
|
2
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
3
|
Beiyu Z, Rong Z, Yi Z, Shan W, Peng L, Meng W, Wei P, Ye Y, Qiumin Q. Oxidative stress is associated with Aβ accumulation in chronic sleep deprivation model. Brain Res 2024; 1829:148776. [PMID: 38253271 DOI: 10.1016/j.brainres.2024.148776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Amyloid-β (Aβ) accumulation is the main pathological change in Alzheimer's disease (AD), which results from the imbalance of production and clearance of Aβ in the brain. Our previous study found that chronic sleep deprivation (CSD) led to the deposition of Aβ in the brain by disrupting the balance of Aβ production and clearance, but the specific mechanism was not clear. In the present study, we investigated the effects of oxidative stress on Aβ accumulation in CSD rats. We found that the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) significantly increased after CSD, while superoxide dismutase (SOD) decreased in the brain. Furthermore, the serum ROS was elevated and SOD declined after CSD. The levels of oxidative stress in the brain were significantly correlated with β-site APP-cleaving enzyme 1 (BACE1), low-density lipoprotein receptor-related protein-1 (LRP1), and receptor of advanced glycation end products (RAGE) levels in hippocampus and prefrontal lobe, and the concentration of serum oxidative mediators were strongly correlated with plasma levels of soluble LRP1 (sLRP1) and soluble RAGE (sRAGE). These results suggested that the oxidative stress in the brain and serum may involved in the CSD-induced Aβ accumulation. The underlying mechanism may be associated with disrupting the balance of Aβ production and clearance.
Collapse
Affiliation(s)
- Zhao Beiyu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhou Rong
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhao Yi
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Shan
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liu Peng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Wei Meng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Ye
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qu Qiumin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Wang Q, Guo S, Hu D, Dong X, Meng Z, Jiang Y, Feng Z, Zhou W, Song W. Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease. Neuroscience 2024; 536:1-11. [PMID: 37944579 DOI: 10.1016/j.neuroscience.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Amyloid β protein (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Aβ induces apoptosis, and gasdermin-E (GSDME) expression can switch apoptosis to pyroptosis. In this study, we demonstrated that GSDME was highly expressed in the hippocampus of APP23/PS45 mouse models compared to that in age-matched wild-type mice. Aβ treatment induced pyroptosis by active caspase-3/GSDME in SH-SY5Y cells. Furthermore, the knockdown of GSDME improved the cognitive impairments of APP23/PS45 mice by alleviating inflammatory response. Our findings reveal that GSDME, as a modulator of Aβ and pyroptosis, plays a potential role in Alzheimer's disease pathogenesis and shows that GSDME is a therapeutic target for AD.
Collapse
Affiliation(s)
- Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
5
|
He T, d’Uscio LV, Katusic ZS. BACE2 deficiency impairs expression and function of endothelial nitric oxide synthase in brain endothelial cells. J Neurochem 2023; 166:928-942. [PMID: 37547981 PMCID: PMC10599353 DOI: 10.1111/jnc.15929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Beta-site amyloid precursor protein (APP)-cleaving enzyme 2 (BACE2) is highly expressed in cerebrovascular endothelium. Notably, BACE2 is one of the most downregulated genes in cerebrovascular endothelium derived from patients with Alzheimer's disease. The present study was designed to determine the role of BACE2 in control of expression and function of endothelial nitric oxide synthase (eNOS). Genetic downregulation of BACE2 with small interfering RNA (BACE2siRNA) in human brain microvascular endothelial cells (BMECs) significantly decreased expression of eNOS and elevated levels of eNOS phosphorylated at threonine residue Thr495, thus leading to reduced production of nitric oxide (NO). BACE2siRNA also suppressed expression of APP and decreased production and release of soluble APPα (sAPPα). In contrast, adenovirus-mediated overexpression of APP increased expression of eNOS. Consistent with these observations, nanomolar concentrations of sAPPα and APP 17mer peptide (derived from sAPPα) augmented eNOS expression. Further analysis established that γ-aminobutyric acid type B receptor subunit 1 and Krüppel-like factor 2 may function as downstream molecular targets significantly contributing to BACE2/APP/sAPPα-induced up-regulation of eNOS. In agreement with studies on cultured human endothelium, endothelium-dependent relaxations to acetylcholine and basal production of cyclic GMP were impaired in cerebral arteries of BACE2-deficient mice. We propose that in the brain blood vessels, BACE2 may function as a vascular protective protein.
Collapse
Affiliation(s)
- Tongrong He
- Departments of Anesthesiology and Perioperative Medicine, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Livius V. d’Uscio
- Departments of Anesthesiology and Perioperative Medicine, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Zvonimir S. Katusic
- Departments of Anesthesiology and Perioperative Medicine, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Li R, Song B, Xu L, Zheng J, Pan W, Cai F, Wang J, Wu Y, Song W. Regulation of USP25 by SP1 Associates with Amyloidogenesis. J Alzheimers Dis 2023; 92:1459-1472. [PMID: 36938736 DOI: 10.3233/jad-221184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
BACKGROUND Trisomy 21, an extra copy of human chromosome 21 (HSA21), causes most Down's syndrome (DS) cases. Individuals with DS inevitably develop Alzheimer's disease (AD) neuropathological phenotypes after middle age including amyloid plaques and tau neurofibrillary tangles. Ubiquitin Specific Peptidase 25 (USP25), encoding by USP25 gene located on HSA21, is a deubiquitinating enzyme, which plays an important role in both DS and AD pathogenesis. However, the regulation of USP25 remains unclear. OBJECTIVE We aimed to determine the regulation of USP25 by specificity protein 1 (SP1) in neuronal cells and its potential role in amyloidogenesis. METHODS The transcription start site and promoter activity was identified by SMART-RACE and Dual-luciferase assay. Functional SP1-responsive elements were examined by EMSA. USP25 expression was examined by RT-PCR and immunoblotting. Student's t-test or one-way ANOVA were applied or statistical analysis. RESULTS The transcription start site of human USP25 gene was identified. Three functional SP1 responsive elements in human USP25 gene were revealed. SP1 promotes USP25 transcription and subsequent USP25 protein expression, while SP1 inhibition significantly reduces USP25 expression in both non-neuronal and neuronal cells. Moreover, SP1 inhibition dramatically reduces amyloidogenesis. CONCLUSION We demonstrates that transcription factor SP1 regulates USP25 gene expression, which associates with amyloidogenesis. It suggests that SP1 signaling may play an important role in USP25 regulation and contribute to USP25-mediated DS and AD pathogenesis.
Collapse
Affiliation(s)
- Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Lu Xu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiali Zheng
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhao Pan
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Weihong Song
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Yeap YJ, Kandiah N, Nizetic D, Lim KL. BACE2: A Promising Neuroprotective Candidate for Alzheimer's Disease. J Alzheimers Dis 2023; 94:S159-S171. [PMID: 36463454 PMCID: PMC10473127 DOI: 10.3233/jad-220867] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia that affects millions of predominantly elderly individuals worldwide. Despite intensive research over several decades, controversies still surround the etiology of AD and the disease remains incurable. Meanwhile, new molecular players of the central amyloid cascade hypothesis have emerged and among these is a protease known as β-site APP cleavage enzyme 2 (BACE2). Unlike BACE1, BACE2 cleaves the amyloid-β protein precursor within the Aβ domain that accordingly prevents the generation of Aβ42 peptides, the aggregation of which is commonly regarded as the toxic entity that drives neurodegeneration in AD. Given this non-amyloidogenic role of BACE2, it is attractive to position BACE2 as a therapeutic target for AD. Indeed, several groups including ours have demonstrated a neuroprotective role for BACE2 in AD. In this review, we discuss emerging evidence supporting the ability of BACE2 in mitigating AD-associated pathology in various experimental systems including human pluripotent stem cell-derived cerebral organoid disease models. Alongside this, we also provide an update on the identification of single nucleotide polymorphisms occurring in the BACE2 gene that are linked to increased risk and earlier disease onset in the general population. In particular, we highlight a recently identified point mutation on BACE2 that apparently leads to sporadic early-onset AD. We believe that a better understanding of the role of BACE2 in AD would provide new insights for the development of viable therapeutic strategies for individuals with dementia.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dean Nizetic
- Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Imperial College London, London, UK
- Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
9
|
Xiong W, Liu Y, Zhou H, Jing S, He Y, Ye Q. Alzheimer’s disease: Pathophysiology and dental pulp stem cells therapeutic prospects. Front Cell Dev Biol 2022; 10:999024. [PMID: 36187488 PMCID: PMC9520621 DOI: 10.3389/fcell.2022.999024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a destructive neurodegenerative disease with the progressive dysfunction, structural disorders and decreased numbers of neurons in the brain, which leads to long-term memory impairment and cognitive decline. There is a growing consensus that the development of AD has several molecular mechanisms similar to those of other neurodegenerative diseases, including excessive accumulation of misfolded proteins and neurotoxic substances produced by hyperactivated microglia. Nonetheless, there is currently a lack of effective drug candidates to delay or prevent the progression of the disease. Based on the excellent regenerative and reparative capabilities of stem cells, the application of them to repair or replace injured neurons carries enormous promise. Dental pulp stem cells (DPSCs), originated from ectomesenchyme of the cranial neural crest, hold a remarkable potential for neuronal differentiation, and additionally express a variety of neurotrophic factors that contribute to a protective effect on injured neuronal cells. Notably, DPSCs can also express immunoregulatory factors to control neuroinflammation and potentiate the regeneration and recovery of injured neurons. These extraordinary features along with accessibility make DPSCs an attractive source of postnatal stem cells for the regeneration of neurons or protection of existing neural circuitry in the neurodegenerative diseases. The present reviews the latest research advance in the pathophysiology of AD and elaborate the neurodifferentiation and neuroprotective properties of DPSCs as well as their application prospects in AD.
Collapse
Affiliation(s)
- Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
10
|
Yun Y, Yang X, Tan S, Wang P, Ji Y, Sun X. Targeting upregulated RNA binding protein RCAN1.1: a promising strategy for neuroprotection in acute ischemic stroke. CNS Neurosci Ther 2022; 28:1814-1828. [PMID: 35900849 PMCID: PMC9532900 DOI: 10.1111/cns.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Aims To explore the expression changes and roles of the RNA‐binding protein RCAN1.1 in acute ischemic stroke (AIS), and to preliminarily confirm the medicinal value of the RNA aptamer R1SR13 in AIS by targeting RCAN1.1. Methods Two mouse AIS models of middle cerebral artery occlusion (MCAO) and right common carotid artery ligation (R‐CCAL) and oxygen glucose deprivation (OGD) model of AIS in primary neurons and SH‐SY5Y were performed. The expression pattern of RCAN1.1 was assessed using real‐time quantitative PCR (RT‐qPCR) and western blotting (WB) in vivo and in vitro. The underlying mechanism for the elevation of RCAN1.1 in the upstream was investigated. Lentiviruses were administrated and the effect of RCAN1.1 in AIS was assessed by ATP level, caspase 3/7 assay, TUNEL and WB. The protective function of R1SR13 in AIS was evaluated both in vivo and in vitro. Results In two mouse models of AIS, RCAN1.1 mRNA and RCAN1.1 L protein were significantly upregulated in the ischemic brain tissue. The same results were detected in the OGD model of primary neurons and SH‐SY5Y. The mechanistic analysis proved that hypoxia‐inducible factor‐1α (HIF1α) could specifically activate the RCAN1.1 gene promoter through combining with the functional hypoxia‐responsive element (HRE) site (−325 to −322 bp). The increased expression of RCAN1.1 L markedly depleted ATP production and aggravated neuronal apoptosis under OGD condition. R1SR13, an antagonizing RNA aptamer of RCAN1.1, was demonstrated to reduce neuronal apoptosis caused by the elevated RCAN1.1 L in the cellular and animal models of AIS. Conclusion RCAN1.1 is a novel target gene of HIF1α and the functional HRE in the RCAN1.1 promoter region is −325 to −322 bp. The marked upregulation of RCAN1.1 in AIS promoted neuronal apoptosis, an effect that could be reversed by its RNA aptamer R1SR13 in vivo and in vitro. Thus, R1SR13 represents a promising strategy for neuroprotection in AIS and our study lays a theoretical foundation for it to become a clinically targeted drug.
Collapse
Affiliation(s)
- Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaxin Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Shichuan Tan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Pin Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.,Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanbin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Luo S, Dong X, Guo S, Wang Q, Dai X, Jiang Y, Zhu W, Zhou W, Song W. Regulation of the Human IL-10RB Gene Expression by Sp8 and Sp9. J Alzheimers Dis 2022; 88:1469-1485. [PMID: 35811529 DOI: 10.3233/jad-220321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Interleukin-10 (IL-10) is a classic anti-inflammatory cytokine that exerts its effects via the receptor complexes IL-10RA and IL-10RB. Loss of IL-10RB results in many diseases. Moreover, IL-10RB is closely associated with neuronal survival and synaptic formation. However, the regulation of IL-10RB gene expression remains elusive. OBJECTIVE To investigate whether the expression of IL-10RB gene is increased in brain of Alzheimer's disease (AD) and its transcriptional regulation. METHODS We examined the gene expression of AD patient brain from public database and detected the protein expression of AD model mouse brain by western blot. We constructed a variety of reporter gene plasmids with different lengths or mutation sites, tested the promoter activity and defined the functional region of the promoter with the luciferase reporter assay. The protein-DNA binding between transcription factors and the promoter was analyzed using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). RESULTS We found that the IL-10RB is elevated in the brain of AD patient and AD model mice. The minimal promoter of the IL-10RB gene is located in the -90 to +51 bp region (relative to the transcriptional start site) and is sufficient for high-level expression of the IL-10RB gene. Transcription factors Sp8 and Sp9 bind to the IL-10RB promoter in vitro. The overexpression or knockdown of Sp8 and Sp9 affected the IL-10RB promoter activity and its gene expression. CONCLUSION Our study functionally characterized the promoter of the IL-10RB gene and demonstrated that Sp8 and Sp9 regulated its expression.
Collapse
Affiliation(s)
- Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Dai
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyi Zhu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Sun Q, Liu F, Zhao J, Wang P, Sun X. Cleavage of Kv2.1 by BACE1 decreases potassium current and reduces neuronal apoptosis. Neurochem Int 2022; 155:105310. [DOI: 10.1016/j.neuint.2022.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
13
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
14
|
Zhang G, Zhang Y, Shen Y, Wang Y, Zhao M, Sun L. The Potential Role of Ferroptosis in Alzheimer's Disease. J Alzheimers Dis 2021; 80:907-925. [PMID: 33646161 DOI: 10.3233/jad-201369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia, accounting for approximately 60%-80%of all cases. Although much effort has been made over the years, the precise mechanism of AD has not been completely elucidated. Recently, great attention has shifted to the roles of iron metabolism, lipid peroxidation, and oxidative stress in AD pathogenesis. We also note that these pathological events are the vital regulators of a novel regulatory cell death, termed ferroptosis-an iron-dependent, oxidative, non-apoptotic cell death. Ferroptosis differs from apoptosis, necrosis, and autophagy with respect to morphology, biochemistry, and genetics. Mounting evidence suggests that ferroptosis may be involved in neurological disorders, including AD. Here, we review the underlying mechanisms of ferroptosis; discuss the potential interaction between AD and ferroptosis in terms of iron metabolism, lipid peroxidation, and the glutathione/glutathione peroxidase 4 axis; and describe some associated studies that have explored the implication of ferroptosis in AD.
Collapse
Affiliation(s)
- Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yaru Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China.,Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
15
|
Hunter S, Brayne C. Amyloid in the ageing brain: New frameworks and perspectives. AGING BRAIN 2021; 1:100008. [PMID: 36911501 PMCID: PMC9997141 DOI: 10.1016/j.nbas.2021.100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/23/2023] Open
Affiliation(s)
- Sally Hunter
- Cambridge Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, United Kingdom
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, United Kingdom
| |
Collapse
|
16
|
Vijayan D, Chandra R. Amyloid Beta Hypothesis in Alzheimer's Disease: Major Culprits and Recent Therapeutic Strategies. Curr Drug Targets 2021; 21:148-166. [PMID: 31385768 DOI: 10.2174/1389450120666190806153206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and has been a global concern for several years. Due to the multi-factorial nature of the disease, AD has become irreversible, fatal and imposes a tremendous socio-economic burden. Even though experimental medicines suggested moderate benefits, AD still lacks an effective treatment strategy for the management of symptoms or cure. Among the various hypotheses that describe development and progression of AD, the amyloid hypothesis has been a long-term adherent to the AD due to the involvement of various forms of Amyloid beta (Aβ) peptides in the impairment of neuronal and cognitive functions. Hence, majority of the drug discovery approaches in the past have focused on the prevention of the accumulation of Aβ peptides. Currently, there are several agents in the phase III clinical trials that target Aβ or the various macromolecules triggering Aβ deposition. In this review, we present the state of the art knowledge on the functional aspects of the key players involved in the amyloid hypothesis. Furthermore, we also discuss anti-amyloid agents present in the Phase III clinical trials.
Collapse
Affiliation(s)
- Dileep Vijayan
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Remya Chandra
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kerala Pin 670 661, India
| |
Collapse
|
17
|
RCAN1 Inhibits BACE2 Turnover by Attenuating Proteasome-Mediated BACE2 Degradation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1920789. [PMID: 32566665 PMCID: PMC7293731 DOI: 10.1155/2020/1920789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022]
Abstract
Amyloid-β protein (Aβ) is the main component of neuritic plaques, the pathological hallmark of Alzheimer's disease (AD). β-site APP cleaving enzyme 1 (BACE1) is a major β-secretase contributing to Aβ generation. β-site APP cleaving enzyme 2 (BACE2), the homolog of BACE1, is not only a θ-secretase but also a conditional β-secretase. Previous studies showed that regulator of calcineurin 1 (RCAN1) is markedly increased by AD and promotes BACE1 expression. However, the role of RCAN1 in BACE2 regulation remains elusive. Here, we showed that RCAN1 increases BACE2 protein levels. Moreover, RCAN1 inhibits the turnover of BACE2 protein. Furthermore, RCAN1 attenuates proteasome-mediated BACE2 degradation, but not lysosome-mediated BACE2 degradation. Taken together, our work indicates that RCAN1 inhibits BACE2 turnover by attenuating proteasome-mediated BACE2 degradation. It advances our understanding of BACE2 regulation and provides a potential mechanism of BACE2 dysregulation in AD.
Collapse
|
18
|
Li C, Zhao B, Fan YN, Jia X, Liu Y. Expression of BACE1 in the Rat Carotid Body. Front Physiol 2020; 11:505. [PMID: 32508682 PMCID: PMC7251150 DOI: 10.3389/fphys.2020.00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
This study explored the expression of BACE1 (β-amyloid precursor protein cleaving enzyme 1) in the rat carotid body and the effect of CIH (cyclic intermittent hypoxia) on the expression of BACE1. We found that BACE1 was expressed in the rat carotid body and located in the nerve endings and type II cells but not in type I cells. CIH reduced BACE1 level in the carotid body, and reoxygenation or ROS scavenger alleviated this reduction. Furthermore, we found that CIH augmented the mRNA level of PGC-1α but attenuated the mRNA level of BACE1 in the carotid body. Taken together, our results suggest that CIH promotes the production of ROS that upregulates the level of PGC-1α, which may in turn inhibits the transcription of BACE1, and that a reduction in the BACE1 level may be related to CIH-induced reversible and ROS-dependent carotid body plasticity. Our study provides a new candidate molecule for further study of the mechanism of carotid body plasticity.
Collapse
Affiliation(s)
- Chaohong Li
- Henan Key Laboratory of Neural Regeneration and Repairment, Henan Neurology Institute, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ya-Nan Fan
- Henan Key Laboratory of Neural Regeneration and Repairment, Henan Neurology Institute, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xianglei Jia
- Henan Key Laboratory of Neural Regeneration and Repairment, Henan Neurology Institute, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neural Regeneration and Repairment, Henan Neurology Institute, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
19
|
Qiu K, Liang W, Wang S, Kong T, Wang X, Li C, Wang Z, Wu Y. BACE2 degradation is mediated by both the proteasome and lysosome pathways. BMC Mol Cell Biol 2020; 21:13. [PMID: 32160867 PMCID: PMC7066761 DOI: 10.1186/s12860-020-00260-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease is the most common neurodegenerative disease in the elderly. Amyloid-β protein (Aβ) is the major component of neuritic plaques which are the hallmark of AD pathology. β-site APP cleaving enzyme 1 (BACE1) is the major β-secretase contributing to Aβ generation. β-site APP-cleaving enzyme 2 (BACE2), the homolog of BACE1, might play a complex role in the pathogenesis of Alzheimer's disease as it is not only a θ-secretase but also a conditional β-secretase. Dysregulation of BACE2 is observed in Alzheimer's disease. However, the regulation of BACE2 is less studied compared with BACE1, including its degradation pathways. In this study, we investigated the turnover rates and degradation pathways of BACE2 in both neuronal cells and non-neuronal cells. RESULTS Both lysosomal inhibition and proteasomal inhibition cause a time- and dose-dependent increase of transiently overexpressed BACE2 in HEK293 cells. The half-life of transiently overexpressed BACE2 protein is approximately 6 h. Moreover, the half-life of endogenous BACE2 protein is approximately 4 h in both HEK293 cells and mouse primary cortical neurons. Furthermore, both lysosomal inhibition and proteasomal inhibition markedly increases endogenous BACE2 in HEK293 cells and mouse primary cortical neurons. CONCLUSIONS This study demonstrates that BACE2 is degraded by both the proteasome and lysosome pathways in both neuronal and non-neuronal cells at endogenous level and in transient overexpression system. It indicates that BACE2 dysregulation might be mediated by the proteasomal and lysosomal impairment in Alzheimer's disease. This study advances our understanding of the regulation of BACE2 and provides a potential mechanism of its dysregulation in Alzheimer's disease.
Collapse
Affiliation(s)
- Kaixin Qiu
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, LixiaDistrict, Jinan, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China
| | - Tingting Kong
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, LixiaDistrict, Jinan, Shandong, China
| | - Xin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China
| | - Chunyan Li
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, LixiaDistrict, Jinan, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China.
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China.
| |
Collapse
|
20
|
Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A. Computer-Aided Drug Design of β-Secretase, γ-Secretase and Anti-Tau Inhibitors for the Discovery of Novel Alzheimer's Therapeutics. Int J Mol Sci 2020; 21:E703. [PMID: 31973122 PMCID: PMC7038192 DOI: 10.3390/ijms21030703] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Aging-associated neurodegenerative diseases, which are characterized by progressive neuronal death and synapses loss in human brain, are rapidly growing affecting millions of people globally. Alzheimer's is the most common neurodegenerative disease and it can be caused by genetic and environmental risk factors. This review describes the amyloid-β and Tau hypotheses leading to amyloid plaques and neurofibrillary tangles, respectively which are the predominant pathways for the development of anti-Alzheimer's small molecule inhibitors. The function and structure of the druggable targets of these two pathways including β-secretase, γ-secretase, and Tau are discussed in this review article. Computer-Aided Drug Design including computational structure-based design and ligand-based design have been employed successfully to develop inhibitors for biomolecular targets involved in Alzheimer's. The application of computational molecular modeling for the discovery of small molecule inhibitors and modulators for β-secretase and γ-secretase is summarized. Examples of computational approaches employed for the development of anti-amyloid aggregation and anti-Tau phosphorylation, proteolysis and aggregation inhibitors are also reported.
Collapse
Affiliation(s)
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, Vari 16672, Greece;
| | - Lefteris C. Zacharia
- Department of Life and Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus
| |
Collapse
|
21
|
Yang S, Wang J, Guo S, Huang D, Lorigados IB, Nie X, Lou D, Li Y, Liu M, Kang Y, Zhou W, Song W. Transcriptional activation of USP16 gene expression by NFκB signaling. Mol Brain 2019; 12:120. [PMID: 31888715 PMCID: PMC6937840 DOI: 10.1186/s13041-019-0535-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin Specific Peptidase 16 (USP16) has been reported to contribute to somatic stem-cell defects in Down syndrome. However, how this gene being regulated is largely unknown. To study the mechanism underlying USP16 gene expression, USP16 gene promoter was cloned and analyzed by luciferase assay. We identified that the 5′ flanking region (− 1856 bp ~ + 468 bp) of the human USP16 gene contained the functional promotor to control its transcription. Three bona fide NFκB binding sites were found in USP16 promoter. We showed that p65 overexpression enhanced endogenous USP16 mRNA level. Furthermore, LPS and TNFα, strong activators of the NFκB pathway, upregulated the USP16 transcription. Our data demonstrate that USP16 gene expression is tightly regulated at transcription level. NFκB signaling regulates the human USP16 gene expression through three cis-acting elements. The results provide novel insights into a potential role of dysregulation of USP16 expression in Alzheimer’s dementia in Down Syndrome.
Collapse
Affiliation(s)
- Shou Yang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shipeng Guo
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Daochao Huang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Isabel Bestard Lorigados
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Xing Nie
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Dandan Lou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanhua Li
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Mingjing Liu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Kang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Weihui Zhou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
22
|
Ba F, Zhou Y, Zhou J, Chen X. Repetitive transcranial magnetic stimulation protects mice against 6-OHDA-induced Parkinson’s disease symptoms by regulating brain amyloid β1–42 level. Mol Cell Biochem 2019; 458:71-78. [DOI: 10.1007/s11010-019-03531-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
|
23
|
The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:697-712. [PMID: 30639513 DOI: 10.1016/j.bbamem.2018.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive accumulation of misfolded proteins, which form senile plaques and neurofibrillary tangles, and the release of inflammatory mediators by innate immune responses. β-Amyloid peptide (Aβ) is derived from sequential processing of the amyloid precursor protein (APP) by membrane-bound proteases, namely the β-secretase, BACE1, and γ-secretase. Membrane trafficking plays a key role in the regulation of APP processing as both APP and the processing secretases traffic along distinct pathways. Genome wide sequencing studies have identified several AD susceptibility genes which regulate membrane trafficking events. To understand the pathogenesis of AD it is critical that the cell biology of APP and Aβ production in neurons is well defined. This review discusses recent advances in unravelling the membrane trafficking events associated with the production of Aβ, and how AD susceptible alleles may perturb the sorting and transport of APP and BACE1. Mechanisms whereby inflammation may influence APP processing are also considered.
Collapse
|
24
|
Hunter S, Smailagic N, Brayne C. Aβ and the dementia syndrome: Simple versus complex perspectives. Eur J Clin Invest 2018; 48:e13025. [PMID: 30246866 DOI: 10.1111/eci.13025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The amyloid cascade hypothesis (ACH) has dominated strategy in dementia research for decades despite evidence of its limitations including known heterogeneity of the dementia syndrome in the population and the narrow focus on a single molecule - the amyloid beta protein (Aβ) as causal for all Alzheimer-type dementia. Other hypotheses relevant to Aβ are the presenilin (PS) hypothesis (PSH) relating to the involvement of PS in the generation of Aβ, and the amyloid precursor protein (APP) matrix approach (AMA), relating to the complex and dynamic breakdown of APP, from which Aβ derives. MATERIALS AND METHODS In this article we explore perspectives relating to complex disorders occurring mainly in older populations through a detailed case study of the role of Aβ in AD. RESULTS Scrutiny of the evidence generated so far reveals and a lack of understanding of the wider APP proteolytic system and how narrow research into the dementia syndrome has been to date. Confounding factors add significant limitations to the understanding of the current evidence base. CONCLUSIONS A better characterisation of the entire APP proteolytic system in the human brain is urgently required to place Aβ in its complex physiological context. From a molecular perspective, a combination of the alternative hypotheses, the PSH and the AMA may better describe the complexity of the APP proteolytic system leading to new therapeutic approaches. The reductionist approach is widespread throughout biomedical research and this example highlights how neglect of complexity can undermine investigations of complex disorders, particularly those arising in the oldest in our populations.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nadja Smailagic
- Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
McGillewie L, Ramesh M, Soliman ME. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases. Protein J 2017; 36:385-396. [PMID: 28762197 DOI: 10.1007/s10930-017-9735-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.
Collapse
Affiliation(s)
- Lara McGillewie
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Muthusamy Ramesh
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa.
| |
Collapse
|
26
|
Chen X, Hu Y, Wang S, Sun X. The regulator of calcineurin 1 (RCAN1) inhibits nuclear factor kappaB signaling pathway and suppresses human malignant glioma cells growth. Oncotarget 2017; 8:12003-12012. [PMID: 28061453 PMCID: PMC5355321 DOI: 10.18632/oncotarget.14479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023] Open
Abstract
Nuclear factor-kappaB (NF-κB) has a vital role in cell survival and inhibition of NF-κB had proven to be an efficient therapeutic pathway for various cancers though little is known about the underlying mechanism. Previously we identified regulator of calcineurin 1 (RCAN1) as an endogenous inhibitor of NF-κB signaling pathway in lymphoma. In the present study, we have solid data to show that RCAN1 can inhibit the nuclear translocation of NF-κB protein then affect the activity of NF-κB signaling pathway in glioma cells. Overexpression of RCAN1 markedly reduced glioma cells viability. We further found that the suppressing glioma cell growth was closely related to the pro-apoptosis effect, not by inhibiting proliferation by the arrest of cell cycle. Our study implicated a novel therapeutic approach for glioma by RCAN1 through inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.,China National Clinical Research Center for Neurological Diseases, Beijing, P. R. China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, P. R. China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, P. R. China
| | - Yuanyuan Hu
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.,China National Clinical Research Center for Neurological Diseases, Beijing, P. R. China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, P. R. China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, P. R. China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
27
|
Wang X, Zhou X, Li G, Zhang Y, Wu Y, Song W. Modifications and Trafficking of APP in the Pathogenesis of Alzheimer's Disease. Front Mol Neurosci 2017; 10:294. [PMID: 28966576 PMCID: PMC5605621 DOI: 10.3389/fnmol.2017.00294] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is the leading cause of dementia. Neuritic plaque, one of the major characteristics of AD neuropathology, mainly consists of amyloid β (Aβ) protein. Aβ is derived from amyloid precursor protein (APP) by sequential cleavages of β- and γ-secretase. Although APP upregulation can promote AD pathogenesis by facilitating Aβ production, growing evidence indicates that aberrant post-translational modifications and trafficking of APP play a pivotal role in AD pathogenesis by dysregulating APP processing and Aβ generation. In this report, we reviewed the current knowledge of APP modifications and trafficking as well as their role in APP processing. More importantly, we discussed the effect of aberrant APP modifications and trafficking on Aβ generation and the underlying mechanisms, which may provide novel strategies for drug development in AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Xuan Zhou
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Gongying Li
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| | - Yili Wu
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
28
|
Ethanol Alters APP Processing and Aggravates Alzheimer-Associated Phenotypes. Mol Neurobiol 2017; 55:5006-5018. [DOI: 10.1007/s12035-017-0703-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
|
29
|
Wang P, Wang L, Chen L, Sun X. Dual-specificity tyrosine-phosphorylation regulated kinase 1A Gene Transcription is regulated by Myocyte Enhancer Factor 2D. Sci Rep 2017; 7:7240. [PMID: 28775333 PMCID: PMC5543054 DOI: 10.1038/s41598-017-07655-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
Dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) is localized in the Down syndrome critical region of chromosome 21. As a candidate gene responsible for learning defects associated with Down syndrome and Alzheimer's disease (AD), DYRK1A has been implied to play pivotal roles in cell proliferation and brain development. MEF2D, a member of the myocyte-specific enhancer factor 2 (MEF2) family of transcription factors, was proved to be in control of neuronal cell differentiation and development. Here we demonstrated that MEF2D could upregulate DYRK1A gene expression through specific activation of DYRK1A isoform 5 gene transcription. A MEF2D responsive element from -268 to -254 bp on promoter region of DYRK1A isoform 5 was identified and confirmed by luciferase assay, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). The coordinated expression of DYRK1A and MEF2D in mouse brain development indicated a possibility of the cross-interaction of these two genes during neurodevelopment. The DYRK1A kinase activity was also affected by MEF2D's transcriptional regulation of DYRK1A. Therefore, the molecular regulation of DYRK1A by MEF2D further supported their involvement in neurodevelopment.
Collapse
Affiliation(s)
- Pin Wang
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Luanluan Wang
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Long Chen
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
30
|
Alcarraz-Vizán G, Castaño C, Visa M, Montane J, Servitja JM, Novials A. BACE2 suppression promotes β-cell survival and function in a model of type 2 diabetes induced by human islet amyloid polypeptide overexpression. Cell Mol Life Sci 2017; 74:2827-2838. [PMID: 28337562 PMCID: PMC11107557 DOI: 10.1007/s00018-017-2505-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
BACE2 (β-site APP-cleaving enzyme 2) is a protease expressed in the brain, but also in the pancreas, where it seems to play a physiological role. Amyloidogenic diseases, including Alzheimer's disease and type 2 diabetes (T2D), share the accumulation of abnormally folded and insoluble proteins that interfere with cell function. In T2D, islet amyloid polypeptide (IAPP) deposits have been shown to be a pathogenic key feature of the disease. The aim of the present study was to investigate the effect of BACE2 modulation on β-cell alterations in a mouse model of T2D induced by IAPP overexpression. Heterozygous mice carrying the human transcript of IAPP (hIAPP-Tg) were used as a model to study the deleterious effects of IAPP upon β-cell function. These animals showed glucose intolerance and impaired insulin secretion. When crossed with BACE2-deficient mice, the animals presented a significant improvement in glucose tolerance accompanied with an enhanced insulin secretion, as compared to hIAPP-Tg mice. BACE2 deficiency also partially reverted gene expression changes observed in islets from hIAPP-Tg mice, including a set of genes related to inflammation. Moreover, homozygous hIAPP mice presented a severe hyperglycemia and a high lethality rate from 8 weeks onwards due to a massive destruction of β-cell mass. This process was significantly reduced when crossed with the BACE2-KO model, improving the survival rate of the animals. Altogether, the absence of BACE2 ameliorates glucose tolerance defects induced by IAPP overexpression in the β-cell and promotes β-cell survival. Thus, targeting BACE2 may represent a promising therapeutic strategy to improve β-cell function in T2D.
Collapse
Affiliation(s)
- Gema Alcarraz-Vizán
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain
| | - Carlos Castaño
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain
| | - Montse Visa
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain
| | - Joel Montane
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain
| | - Joan-Marc Servitja
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain.
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain.
| |
Collapse
|
31
|
Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, Wu Y, Ren L, Chen J, Li T, Song W. Marginal vitamin A deficiency facilitates Alzheimer's pathogenesis. Acta Neuropathol 2017; 133:967-982. [PMID: 28130638 DOI: 10.1007/s00401-017-1669-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Deposition of amyloid β protein (Aβ) to form neuritic plaques in the brain is the unique pathological hallmark of Alzheimer's disease (AD). Aβ is derived from amyloid β precursor protein (APP) by β- and γ-secretase cleavages and turned over by glia in the central nervous system (CNS). Vitamin A deficiency (VAD) has been shown to affect cognitive functions. Marginal vitamin A deficiency (MVAD) is a serious and widespread public health problem among pregnant women and children in developing countries. However, the role of MVAD in the pathogenesis of AD remains elusive. Our study showed that MVAD is approximately twofold more prevalent than VAD in the elderly, and increased cognitive decline is positively correlated with lower VA levels. We found that MVAD, mostly prenatal MVAD, promotes beta-site APP cleaving enzyme 1 (BACE1)-mediated Aβ production and neuritic plaque formation, and significantly exacerbates memory deficits in AD model mice. Supplementing a therapeutic dose of VA rescued the MVAD-induced memory deficits. Taken together, our study demonstrates that MVAD facilitates AD pathogenesis and VA supplementation improves cognitive deficits. These results suggest that VA supplementation might be a potential approach for AD prevention and treatment.
Collapse
Affiliation(s)
- Jiaying Zeng
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Li Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Qian Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhen Fan
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongpeng Jiang
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lan Ren
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tingyu Li
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Weihong Song
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
32
|
Shi Z, Hong Y, Zhang K, Wang J, Zheng L, Zhang Z, Hu Z, Han X, Han Y, Chen T, Yao Q, Cui H, Hong W. BAG-1M co-activates BACE1 transcription through NF-κB and accelerates Aβ production and memory deficit in Alzheimer's disease mouse model. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2398-2407. [PMID: 28502705 DOI: 10.1016/j.bbadis.2017.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Accumulation of amyloid β protein (Aβ)-containing neuritic plaques in the brain is a neuropathological feature of Alzheimer's disease (AD). The β-site APP-cleaving enzyme 1 (BACE1) is essential for Aβ generation and dysregulation of BACE1 expression may lead to AD pathogenesis. Bcl-2-associated athanogen 1M (BAG-1M), initially identified as an anti-apoptotic protein, has also been found to be highly expressed in the same neurons that contain intracellular amyloid in the hippocampus of AD patient. In this report, we found that over-expression of BAG-1M enhances BACE1-mediated cleavage of amyloid precursor protein (APP) and Aβ production by up-regulating BACE1 gene transcription. The regulation of BACE1 transcription by BAG-1M was dependent on NF-κB, as BAG-1M complexes NF-κB at the promoter of BACE1 gene and co-activates NF-κB-facilitated BACE1 transcription. Moreover, expression of BAG-1M by lentiviral vector in the hippocampus of AD transgenic model mice promotes Aβ generation and formation of neuritic plaque, and subsequently accelerates memory deficits of the mice. These results provide evidence for an emerging role of BAG-1M in the regulation of BACE1 expression and AD pathogenesis and that targeting the BAG-1M-NF-κB complex may provide a mechanism for inhibiting Aβ production and plaque formation.
Collapse
Affiliation(s)
- Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuheng Hong
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhimei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yawei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongmei Cui
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
33
|
Zhang C, Jiang H, Wang P, Liu H, Sun X. Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions. Sci Rep 2017; 7:44708. [PMID: 28317877 PMCID: PMC5357787 DOI: 10.1038/srep44708] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/13/2017] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are intracellular organelles involved in cell survival and death, and dysfunctions of mitochondria are related to neurodegenerative diseases. As the most abundant protein in the mitochondrial inner membrane, adenine nucleotide translocator 1 (ANT1) plays a critical role in mitochondrial function, including the exchange of adenosine triphosphate/adenosine diphosphate (ATP/ADP) in mitochondria, basal proton leak and mitochondrial permeability transition pore (mPTP). Here, we show that ANT1 transcription is regulated by transcription factor NF-kappa B (NF-κB). NF-κB is bound to two NF-κB responsive elements (NREs) located at +1 to +20 bp and +41 to +61 bp in the ANT1 promoter. An NF-κB signalling stimulator, tumour necrosis factor alpha (TNFα), suppresses ANT1 mRNA and protein expression. Activation of NF-κB by TNFα impairs ATP/ADP exchange and decreases ATP production in mitochondria. Activation of NF-κB by TNFα decreases calcium induced mPTP opening, elevates mitochondrial potential and increases reactive oxygen species (ROS) production in both T98G human glioblastoma cells and rat cortical neurons. These results demonstrate that NF-κB signalling may repress ANT1 gene transcription and impair mitochondrial functions.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neurology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Hui Jiang
- Department of Pediatrics, 2nd Hospital of Shandong University, No. 44 West Wenhua Road, Jinan, 250011, Shandong Province, China
| | - Pin Wang
- Otolaryngology Key, Lab of Ministry of Health, No. 44 West Wenhua Road, Jinan, China
| | - Heng Liu
- Otolaryngology Key, Lab of Ministry of Health, No. 44 West Wenhua Road, Jinan, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| |
Collapse
|
34
|
Zhang Y, Song W. Islet amyloid polypeptide: Another key molecule in Alzheimer's pathogenesis? Prog Neurobiol 2017; 153:100-120. [PMID: 28274676 DOI: 10.1016/j.pneurobio.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Recent epidemiological evidence reveals that patients suffering from type 2 diabetes mellitus (T2DM) often experience a significant decline in cognitive function, and approximately 70% of those cases eventually develop Alzheimer's disease (AD). Although several pathological processes are shared by AD and T2DM, the exact molecular mechanisms connecting these two diseases are poorly understood. Aggregation of human islet amyloid polypeptide (hIAPP), the pathological hallmark of T2DM, has also been detected in brain tissue and is associated with cognitive decline and AD development. In addition, hIAPP and amyloid β protein (Aβ) share many biophysical and physiological properties as well as exert similar cytotoxic mechanisms. Therefore, it is important to examine the possible role of hIAPP in the pathogenesis of AD. In this article, we introduce the basics on this amyloidogenic protein. More importantly, we discuss the potential mechanisms of hIAPP-induced AD development, which will be beneficial for proposing novel and feasible strategies to optimize AD prevention and/or treatment in diabetics.
Collapse
Affiliation(s)
- Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
35
|
Regulation of global gene expression and cell proliferation by APP. Sci Rep 2016; 6:22460. [PMID: 26936520 PMCID: PMC4776145 DOI: 10.1038/srep22460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. Patients with DS display growth retardation and inevitably develop characteristic Alzheimer’s disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we performed gene expression profiling using microarray method in human cells overexpressing APP. A set of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. Taken together, this study suggests that APP regulates global gene expression and increased APP expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell proliferation including neural stem cell proliferation and neurogenesis.
Collapse
|
36
|
Kumalo HM, Soliman ME. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility. J Recept Signal Transduct Res 2016; 36:505-14. [PMID: 26804314 DOI: 10.3109/10799893.2015.1130058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Beta-amyloid precursor protein cleavage enzyme1 (BACE1) and beta-amyloid precursor protein cleavage enzyme2 (BACE2), members of aspartyl protease family, are close homologs and have high similarity in their protein crystal structures. However, their enzymatic properties are different, which leads to different clinical outcomes. In this study, we performed sequence analysis and all-atom molecular dynamic (MD) simulations for both enzymes in their ligand-free states in order to compare their dynamical flap behaviors. This is to enhance our understanding of the relationship between sequence, structure and the dynamics of this protein family. Sequence analysis shows that in BACE1 and BACE2, most of the ligand-binding sites are conserved, indicative of their enzymatic property as aspartyl protease members. The other conserved residues are more or less unsystematically localized throughout the structure. Herein, we proposed and applied different combined parameters to define the asymmetric flap motion; the distance, d1, between the flap tip and the flexible region; the dihedral angle, φ, to account for the twisting motion and the TriCα angle, θ2 and θ1. All four combined parameters were found to appropriately define the observed "twisting" motion during the flaps different conformational states. Additional analysis of the parameters indicated that the flaps can exist in an ensemble of conformations, i.e. closed, semi-open and open conformations for both systems. However, the behavior of the flap tips during simulations is different between BACE1 and BACE2. The BACE1 active site cavity is more spacious as compared to that of BACE2. The analysis of 10S loop and 113S loop showed a similar trend to that of flaps, with the BACE1 loops being more flexible and less stable than those of BACE2. We believe that the results, methods and perspectives highlighted in this report would assist researchers in the discovery of BACE inhibitors as potential Alzheimer's disease therapies.
Collapse
Affiliation(s)
- H M Kumalo
- a Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban , South Africa
| | - Mahmoud E Soliman
- a Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban , South Africa
| |
Collapse
|
37
|
Hunter S, Martin S, Brayne C. The APP Proteolytic System and Its Interactions with Dynamic Networks in Alzheimer's Disease. Methods Mol Biol 2016; 1303:71-99. [PMID: 26235060 DOI: 10.1007/978-1-4939-2627-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diseases of aging are often complex and multifactorial, involving many genetic and life course modifiers. Systems biology is becoming an essential tool to investigate disease initiation and disease progression. Alzheimer's disease (AD) can be used as a case study to investigate the application of systems biology to complex disease. Here we describe approaches to capturing biological data, representing data in terms of networks and interpreting their meaning in relation to the human population. We highlight issues that remain to be addressed both in terms of modeling disease progression and in relating findings to the current understanding of human disease.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Box 113, Cambridge, CB2 0SP, UK,
| | | | | |
Collapse
|
38
|
The RCAN1 inhibits NF-κB and suppresses lymphoma growth in mice. Cell Death Dis 2015; 6:e1929. [PMID: 26492364 PMCID: PMC4632290 DOI: 10.1038/cddis.2015.260] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/21/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
Nuclear factor-κB (NF-κB) has a vital role in cell survival. Inhibition of NF-κB has been proven to be an efficient therapeutic pathway for various cancers. Activation of NF-κB is mainly through serine residues' phosphorylation of inhibitor of κBα (IκBα) by IKK complex. Phosphorylation at tyrosine 42 is an alternative pathway in regulation of IκBα and NF-κB signaling, though little is known about the underlying mechanism. Here we identified regulator of calcineurin 1 (RCAN1) as a novel endogenous inhibitor of NF-κB signaling pathway. RCAN1 can interact with IκBα and affect the phosphorylation of IκBα at tyrosine 42. Overexpression of RCAN1 by adenovirus reduced cell viability in lymphoma Raji cells and restrained the growth of lymphoma transplants in mice. We further found that N terminus 1–103aa of RCAN1 is sufficient to inhibit NF-κB and reduce cell viability of lymphoma cells. Our study implicated a novel therapeutic approach for lymphoma by RCAN1 through inhibition of NF-κB signaling.
Collapse
|
39
|
Bekris LM, Tsuang DW, Peskind ER, Yu CE, Montine TJ, Zhang J, Zabetian CP, Leverenz JB. Cerebrospinal fluid Aβ42 levels and APP processing pathway genes in Parkinson's disease. Mov Disord 2015; 30:936-44. [PMID: 25808939 DOI: 10.1002/mds.26172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Of recent interest is the finding that certain cerebrospinal fluid (CSF) biomarkers traditionally linked to Alzheimer's disease (AD), specifically amyloid beta protein (Aβ), are abnormal in PD CSF. The aim of this exploratory investigation was to determine whether genetic variation within the amyloid precursor protein (APP) processing pathway genes correlates with CSF Aβ42 levels in Parkinson's disease (PD). METHODS Parkinson's disease (n = 86) and control (n = 161) DNA were genotyped for 19 regulatory region tagging single-nucleotide polymorphisms (SNPs) within nine genes (APP, ADAM10, BACE1, BACE2, PSEN1, PSEN2, PEN2, NCSTN, and APH1B) involved in the cleavage of APP. The SNP genotypes were tested for their association with CSF biomarkers and PD risk while adjusting for age, sex, and APOE ɛ4 status. RESULTS Significant correlation with CSF Aβ42 levels in PD was observed for two SNPs, (APP rs466448 and APH1B rs2068143). Conversely, significant correlation with CSF Aβ42 levels in controls was observed for three SNPs (APP rs214484, rs2040273, and PSEN1 rs362344). CONCLUSIONS In addition, results of this exploratory investigation suggest that an APP SNP and an APH1B SNP are marginally associated with PD CSF Aβ42 levels in APOE ɛ4 noncarriers. Further hypotheses generated include that decreased CSF Aβ42 levels are in part driven by genetic variation in APP processing genes. Additional investigation into the relationship between these findings and clinical characteristics of PD, including cognitive impairment, compared with other neurodegenerative diseases, such as AD, are warranted. © 2015 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Debby W Tsuang
- Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elaine R Peskind
- Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Chang E Yu
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Thomas J Montine
- Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.,Northwest Network Parkinson's Disease Research, Education and Clinical Center (PADRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Jing Zhang
- Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.,Northwest Network Parkinson's Disease Research, Education and Clinical Center (PADRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Cyrus P Zabetian
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.,Northwest Network Parkinson's Disease Research, Education and Clinical Center (PADRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Yuzwa SA, Shan X, Jones BA, Zhao G, Woodward ML, Li X, Zhu Y, McEachern EJ, Silverman MA, Watson NV, Gong CX, Vocadlo DJ. Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Mol Neurodegener 2014; 9:42. [PMID: 25344697 PMCID: PMC4232697 DOI: 10.1186/1750-1326-9-42] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Amyloid plaques and neurofibrillary tangles (NFTs) are the defining pathological hallmarks of Alzheimer's disease (AD). Increasing the quantity of the O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification of nuclear and cytoplasmic proteins slows neurodegeneration and blocks the formation of NFTs in a tauopathy mouse model. It remains unknown, however, if O-GlcNAc can influence the formation of amyloid plaques in the presence of tau pathology. RESULTS We treated double transgenic TAPP mice, which express both mutant human tau and amyloid precursor protein (APP), with a highly selective orally bioavailable inhibitor of the enzyme responsible for removing O-GlcNAc (OGA) to increase O-GlcNAc in the brain. We find that increased O-GlcNAc levels block cognitive decline in the TAPP mice and this effect parallels decreased β-amyloid peptide levels and decreased levels of amyloid plaques. CONCLUSIONS This study indicates that increased O-GlcNAc can influence β-amyloid pathology in the presence of tau pathology. The findings provide good support for OGA as a promising therapeutic target to alter disease progression in Alzheimer disease.
Collapse
Affiliation(s)
- Scott A Yuzwa
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
- />Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
| | - Xiaoyang Shan
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| | - Bryan A Jones
- />Department of Psychology, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| | - Gang Zhao
- />Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Melissa L Woodward
- />Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6 Canada
| | - Xiaojing Li
- />Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Yanping Zhu
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
- />Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| | - Ernest J McEachern
- />Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
- />Alectos Therapeutics Inc, 8999 Nelson Way, Burnaby, BC V5A 4B5 Canada
| | - Michael A Silverman
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
- />Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6 Canada
| | - Neil V Watson
- />Department of Psychology, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| | - Cheng-Xin Gong
- />Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - David J Vocadlo
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
- />Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
41
|
Alcarraz‐Vizán G, Casini P, Cadavez L, Visa M, Montane J, Servitja J, Novials A. Inhibition of BACE2 counteracts hIAPP‐induced insulin secretory defects in pancreatic β‐cells. FASEB J 2014; 29:95-104. [DOI: 10.1096/fj.14-255489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gema Alcarraz‐Vizán
- Diabetes and Obesity Research LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)BarcelonaSpain
| | - Paola Casini
- Diabetes and Obesity Research LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)BarcelonaSpain
| | - Lisa Cadavez
- Diabetes and Obesity Research LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)BarcelonaSpain
| | - Montse Visa
- Diabetes and Obesity Research LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)BarcelonaSpain
| | - Joel Montane
- Diabetes and Obesity Research LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)BarcelonaSpain
| | - Joan‐Marc Servitja
- Diabetes and Obesity Research LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)BarcelonaSpain
| | - Anna Novials
- Diabetes and Obesity Research LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)BarcelonaSpain
| |
Collapse
|
42
|
Giunta S, Andriolo V, Castorina A. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride. Int J Biochem Cell Biol 2014; 54:122-36. [PMID: 25058312 DOI: 10.1016/j.biocel.2014.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/25/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
In a previous work we have shown that exposure to aluminum (Al) chloride (AlCl3) enhanced the neurotoxicity of the amyloid beta(25-35) fragment (Abeta(25-35)) in neuroblastoma cells and affected the expression of Alzheimer's disease (AD)-related genes. Caffein, a compound endowed with beneficial effects against AD, exerts neuroprotection primarily through its antagonist activity on A2A adenosine receptors (A2AR), although it also inhibits A1Rs with similar potency. Still, studies on the specific involvement of these receptors in neuroprotection in a model of combined neurotoxicity (Abeta(25-35)+AlCl3) are missing. To address this issue, cultured SH-SY5Y cells exposed to Abeta(25-35)+AlCl3 were assessed for cell viability, morphology, intracellular ROS activity and expression of apoptosis-, stress- and AD-related proteins. To define the role of A1R and A2ARs, pretreatment with caffein, specific receptor antagonists (DPCPX or SCH58261) or siRNA-mediated gene knockdown were delivered. Results indicate that AlCl3 treatment exacerbated Abeta(25-35) toxicity, increased ROS production, lipid peroxidation, β-secretase-1 (BACE1) and amyloid precursor protein (APP). Interestingly, SCH58261 successfully prevented toxicity associated to Abeta(25-35) only, whereas pretreatment with both DPCPX and SCH58261 was required to fully avert Abeta(25-35)+AlCl3-induced damage, suggesting that A1Rs might also be critically involved in protection during combined toxicity. The effects of caffein were mimicked by both N-acetyl cysteine, an antioxidant, and desferrioxamine, likely acting through distinct mechanisms. Altogether, our data establish a novel protective function associated with A1R inhibition in the setting of combined Abeta(25-35)+AlCl3 neurotoxicity, and expand our current knowledge on the potential beneficial role of caffein to prevent AD progression in subjects environmentally exposed to aluminum.
Collapse
Affiliation(s)
- Salvatore Giunta
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Italy
| | - Violetta Andriolo
- Department of Pediatrics and Public Health Sciences, University of Turin, Italy
| | - Alessandro Castorina
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Italy.
| |
Collapse
|
43
|
Upregulation of SET expression by BACE1 and its implications in Down syndrome. Mol Neurobiol 2014; 51:781-90. [PMID: 24935721 DOI: 10.1007/s12035-014-8782-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/09/2014] [Indexed: 01/18/2023]
Abstract
Down syndrome (DS) is one of the most common genetic diseases. Patients with DS display growth delay and intellectual disabilities and develop Alzheimer's disease (AD) neuropathology after middle age, including neuritic plaques and neurofibrillary tangles. Beta-site amyloid β precursor protein (APP) cleaving enzyme 1 (BACE1), essential for Aβ production and neuritic plaque formation, is elevated in DS patients. However, its homolog, β-site APP cleaving enzyme 2 (BACE2), functions as θ-secretase and plays a differential role in plaque formation. In this study, by using Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) and LC-MS/MS proteomic profiling analysis, we found that the SET oncogene protein (SET) expression was associated with BACE1 but not BACE2. SET protein was increased in BACE1 overexpressing cells and was markedly reduced in the BACE1 knockout mice. We found that the overexpression of BACE1 or SET significantly inhibited cell proliferation. Moreover, knockdown of SET in BACE1 overexpression cells significantly rescued BACE1-induced cell growth suppression. Furthermore, both BACE1 and SET protein levels were increased in Down syndrome patients. It suggests that BACE1 overexpression-induced SET upregulation may contribute to growth delay and cognitive impairment in DS patients. Our work provides a new insight that BACE1 overexpression not only promotes neuritic plaque formation but may also potentiate neurodegeneration mediated by SET elevation in Alzheimer-associated dementia in DS.
Collapse
|
44
|
Deng Y, Wang Z, Wang R, Zhang X, Zhang S, Wu Y, Staufenbiel M, Cai F, Song W. Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1(BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Eur J Neurosci 2013; 37:1962-9. [PMID: 23773065 DOI: 10.1111/ejn.12235] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022]
Abstract
Cleavage of amyloid-β precursor protein (APP) at the Asp1 β-secretase site of the amyloid-β protein (Aβ) domain by β-site Aβ precursor protein-cleaving enzyme 1 (BACE1) is required for the generation of Aβ, a central component of neuritic plaques in the Alzheimer's disease (AD) brain. In this study, we found that Aβ Glu11 is the major β-secretase site for cleavage of APP by BACE1 to generate soluble secreted APP (sAPPβ)(606) and the C-terminal membrane-bound fragment (CTF)β product C89. Cleavage of C89 by γ-secretase resulted in truncated Aβ generation in a non-amyloidogenic pathway. A familial AD-associated Swedish APP mutation adjacent to Aβ Asp1 shifted the major APP β-secretase cleavage site from Aβ Glu11 to Asp1, resulting in significant increases in sAPPβ596 and CTFβ C99 generation and the C99/89 ratio, in turn leading to increased Aβ production in cultured cells in vitro and transgenic AD model mouse brains in vivo. Furthermore, increased BACE1 expression facilitated APP being processed by the β-secretase processing pathway rather than the α-secretase pathway, leading to more Aβ production. Our results suggest that potentiating BACE1 cleavage of APP at both the Asp1 and Glu11 sites, or shifting the cleavage from the Glu11 site to the Asp1 site, could result in increased Aβ production and facilitate neuritic plaque formation. Our study provides new insights into how alteration of BACE1 expression and β-secretase cleavage site selection could contribute to Alzheimer pathogenesis and the pharmaceutical potential of modulating BACE1 expression and its cleavage site selection.
Collapse
Affiliation(s)
- Yu Deng
- Department of Psychiatry, Townsend Family Laboratories, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu X, Wang Z, Wu Y, Wang J, Song W. BACE2 degradation mediated by the macroautophagy-lysosome pathway. Eur J Neurosci 2013; 37:1970-7. [PMID: 23773066 DOI: 10.1111/ejn.12204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/14/2013] [Accepted: 02/28/2013] [Indexed: 12/25/2022]
Abstract
Neuritic plaque is the pathological hallmark in Alzheimer's disease (AD). Amyloid-β protein (Aβ), the central component of neuritic plaques, is generated from amyloid-β precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. β-site APP cleaving enzyme 2 (BACE2), a homolog of BACE1, functions differently from BACE1 in APP processing. BACE1 is the β-secretase essential for Aβ production, and BACE2, a θ-secretase, cleaves APP within the Aβ domain, preventing Aβ production. Elucidation of the mechanism underlying BACE2 degradation is important for defining its biological features and its potential role in Alzheimer's disease drug development. In this report we first showed that the half-life of BACE2 is approximately 20 h. Lysosomal inhibition increased BACE2 protein levels whereas proteasomal inhibition had no effect on BACE2 protein expression. Furthermore, we identified that macroautophagy mediated BACE2 degradation. Finally, we showed that lysosomal inhibition increased BACE2 cleavage of APP. Taken together, our in vitro study showed that BACE2 is degraded through the macrophagy-lysosome pathway and that lysosomal inhibition affects BACE2 processing of APP. Modulation of BACE2 degradation via the lysosomal pathway could be a new target for AD drug development.
Collapse
Affiliation(s)
- Xi Liu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
46
|
Moore DB, Gillentine MA, Botezatu NM, Wilson KA, Benson AE, Langeland JA. Asynchronous evolutionary origins of Aβ and BACE1. Mol Biol Evol 2013; 31:696-702. [PMID: 24361992 DOI: 10.1093/molbev/mst262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative plaques characteristic of Alzheimer's disease (AD) are composed of amyloid beta (Aβ) peptide, which is proteolyzed from amyloid precursor protein (APP) by β-secretase (beta-site APP cleaving enzyme [BACE1]) and γ-secretase. Although γ-secretase has essential functions across metazoans, no essential roles have been identified for BACE1 or Aβ. Because their only known function results in a disease phenotype, we sought to understand these components from an evolutionary perspective. We show that APP-like proteins are found throughout most animal taxa, but sequences homologous to Aβ are not found outside gnathostomes and the β cut site is only conserved within sarcopterygians. BACE1 enzymes, however, extend through basal chordates and as far as cnidaria. We then sought to determine whether BACE1 from a species that never evolved Aβ could proteolyze APP substrates that include Aβ. We demonstrate that BACE1 from a basal chordate is a functional ortholog that can liberate Aβ from full-length human APP, indicating BACE1 activity evolved at least 360 My before Aβ.
Collapse
|
47
|
Southan C, Hancock JM. A tale of two drug targets: the evolutionary history of BACE1 and BACE2. Front Genet 2013; 4:293. [PMID: 24381583 PMCID: PMC3865767 DOI: 10.3389/fgene.2013.00293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/29/2013] [Indexed: 11/22/2022] Open
Abstract
The beta amyloid (APP) cleaving enzyme (BACE1) has been a drug target for Alzheimer's Disease (AD) since 1999 with lead inhibitors now entering clinical trials. In 2011, the paralog, BACE2, became a new target for type II diabetes (T2DM) having been identified as a TMEM27 secretase regulating pancreatic β cell function. However, the normal roles of both enzymes are unclear. This study outlines their evolutionary history and new opportunities for functional genomics. We identified 30 homologs (UrBACEs) in basal phyla including Placozoans, Cnidarians, Choanoflagellates, Porifera, Echinoderms, Annelids, Mollusks and Ascidians (but not Ecdysozoans). UrBACEs are predominantly single copy, show 35-45% protein sequence identity with mammalian BACE1, are ~100 residues longer than cathepsin paralogs with an aspartyl protease domain flanked by a signal peptide and a C-terminal transmembrane domain. While multiple paralogs in Trichoplax and Monosiga pre-date the nervous system, duplication of the UrBACE in fish gave rise to BACE1 and BACE2 in the vertebrate lineage. The latter evolved more rapidly as the former maintained the emergent neuronal role. In mammals, Ka/Ks for BACE2 is higher than BACE1 but low ratios for both suggest purifying selection. The 5' exons show higher Ka/Ks than the catalytic section. Model organism genomes show the absence of certain BACE human substrates when the UrBACE is present. Experiments could thus reveal undiscovered substrates and roles. The human protease double-target status means that evolutionary trajectories and functional shifts associated with different substrates will have implications for the development of clinical candidates for both AD and T2DM. A rational basis for inhibition specificity ratios and assessing target-related side effects will be facilitated by a more complete picture of BACE1 and BACE2 functions informed by their evolutionary context.
Collapse
Affiliation(s)
- Christopher Southan
- IUPHAR Database and Guide to Pharmacology Web Portal Group, University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
| | - John M. Hancock
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| |
Collapse
|
48
|
Wang K, Liu S, Wang J, Wu Y, Cai F, Song W. Transcriptional regulation of human USP24 gene expression by NF-kappa B. J Neurochem 2013; 128:818-28. [PMID: 24286619 DOI: 10.1111/jnc.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/10/2023]
Abstract
Impairment of the ubiquitin proteasome pathway is believed to play an important role in the pathogenesis of Parkinson's disease. This process is carried out under tight regulation by deubiquitinating enzymes. Genetic linkage studies indicated that the region of the human ubiquitin-specific protease 24 (USP24) gene is significantly correlated with Parkinson's disease. In this study, we cloned a 1648 bp 5' flanking region of the human USP24 gene coding sequence and a series of nested deletions into the pGL3-Basic vector. We analyzed promoter activities of these regions with a luciferase-based reporter assay system. A 64-bp region was identified to contain the transcription initiation site and a minimum promoter sequence for transcriptional activation of the USP24 gene expression. Expression of USP24 is controlled by a TATA-box-less promoter with several putative cis-acting elements. Transcriptional activation and gel-shift assay demonstrated that the USP24 gene promoter contains a functional NFκB-binding site. Over-expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and tumor-necrosis factor alpha (TNFα) treatment significantly increased the USP24 promoter activity, mRNA expression and protein level in human HEK293 cells, mouse N2a cells and human neuroblastoma SH-SY5Y cells. Deletion and mutation of the binding site abolished the regulatory effect of NFκB on human USP24 gene transcription. These results suggested that USP24 expression is tightly regulated at its transcription level and NFκB plays an important role in this process.
Collapse
Affiliation(s)
- Ke Wang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Medina M, Avila J. New insights into the role of glycogen synthase kinase-3 in Alzheimer's disease. Expert Opin Ther Targets 2013; 18:69-77. [DOI: 10.1517/14728222.2013.843670] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Millard SP, Lutz F, Li G, Galasko DR, Farlow MR, Quinn JF, Kaye JA, Leverenz JB, Tsuang D, Yu CE, Peskind ER, Bekris LM. Association of cerebrospinal fluid Aβ42 with A2M gene in cognitively normal subjects. Neurobiol Aging 2013; 35:357-64. [PMID: 24011543 DOI: 10.1016/j.neurobiolaging.2013.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022]
Abstract
Low cerebrospinal fluid (CSF) Aβ(42) levels correlate with increased brain Aβ deposition in Alzheimer's disease (AD), which suggests a disruption in the degradation and clearance of Aβ from the brain. In addition, APOE ε4 carriers have lower CSF Aβ(42) levels than non-carriers. The hypothesis of this investigation was that CSF Aβ(42) levels would correlate with regulatory region variation in genes that are biologically associated with degradation or clearance of Aβ from the brain. CSF Aβ(42) levels were tested for associations with Aβ degradation and clearance genes and APOE ε4. Twenty-four SNPs located within the 5' and 3' regions of 12 genes were analyzed. The study sample consisted of 99 AD patients and 168 cognitively normal control subjects. CSF Aβ(42) levels were associated with APOE ε4 status in controls but not in AD patients; A2M regulatory region SNPs were also associated with CSF Aβ(42) levels in controls but not in AD patients, even after adjusting for APOE ε4. These results suggest that genetic variation within the A2M gene influences CSF Aβ(42) levels.
Collapse
Affiliation(s)
- Steven P Millard
- Northwest Network VISN-20 Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|