1
|
Chen S, Huang H, Liu Y, Wang C, Chen X, Chang Y, Li Y, Guo Z, Han Z, Han ZC, Zhao Q, Chen XM, Li Z. Renal subcapsular delivery of PGE 2 promotes kidney repair by activating endogenous Sox9 + stem cells. iScience 2021; 24:103243. [PMID: 34746706 PMCID: PMC8554536 DOI: 10.1016/j.isci.2021.103243] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Prostaglandin E2 (PGE2) has recently been recognized to play a role in immune regulation and tissue regeneration. However, the short half-life of PGE2 limits its clinical application. Improving the delivery of PGE2 specifically to the target organ with a prolonged release method is highly desirable. Taking advantage of the adequate space and proximity of the renal parenchyma, renal subcapsular delivery allows minimally invasive and effective delivery to the entire kidney. Here, we report that by covalently cross-linking it to a collagen matrix, PGE2 exhibits an adequate long-term presence in the kidney with extensive intraparenchymal penetration through renal subcapsular delivery and significantly improves kidney function. Sox9 cell lineage tracing with intravital microscopy revealed that PGE2 could activate the endogenous renal progenitor Sox9+ cells through the Yap signaling pathway. Our results highlight the prospects of utilizing renal subcapsular-based drug delivery and facilitate new applications of PGE2-releasing matrices for regenerative therapy. PGE2 exhibits an adequate long-term release by being covalently cross-linked to collagen The renal subcapsular space serves as a reservoir for the delivery of PGE2 Sox9+ renal progenitor cells can be lineage traced intravitally by microscopy PGE2 activates the endogenous renal progenitor Sox9+ cells through the YAP pathway
Collapse
Affiliation(s)
- Shang Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Haoyan Huang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Yue Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chen Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoniao Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yuhao Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell Products, AmCellGene Co., Ltd., Tianjin China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell Products, AmCellGene Co., Ltd., Tianjin China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Qiang Zhao
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Xiang-Mei Chen
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100039, China
| | - Zongjin Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100039, China
| |
Collapse
|
2
|
Zhu X, Zhang F, Lian S, Wang Y, Hu N, Chen X, Dai X, Hu X, Wang S, Bao Z. IAPs Gene Expansion in the Scallop Patinopecten yessoensis and Their Expression Profiles After Exposure to the Toxic Dinoflagellate. Front Physiol 2021; 12:633301. [PMID: 33613325 PMCID: PMC7893105 DOI: 10.3389/fphys.2021.633301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) are conserved regulators involved in cell cycle, cell migration, cell death, immunity and inflammation, should be due to the fact that they can assist with the ability to cope with different kinds of extrinsic or intrinsic stresses. Bivalve molluscs are well adapted to highly complex marine environments. As free-living filter feeders that may take toxic dinoflagellates as food, bivalves can accumulate and put up with significant levels of paralytic shellfish toxins (PSTs). PSTs absorption and accumulation could have a deleterious effect on bivalves, causing negative impact on their feeding and digestion capabilities. In the present study, we analyzed IAP genes (PyIAPs) in Yesso scallop (Patinopecten yessoensis), a major fishery and aquaculture species in China. Forty-seven PyIAPs from five sub-families were identified, and almost half of the PyIAP genes were localized in clusters on two chromosomes. Several sites under positive selection was revealed in the significantly expanded sub-families BIRC4 and BIRC5. After exposure to PST-producing dinoflagellates, Alexandrium catenella, fourteen PyIAPs showed significant responses in hepatopancreas and kidney, and more than eighty-five percent of them were from the expanded sub-families BIRC4 and BIRC5. The regulation pattern of PyIAPs was similar between the two tissues, with more than half exhibited expression suppression within three days after exposure. In contrast to hepatopancreas, more acute changes of PyIAPs expression could be detected in kidney, suggesting the possible involvement of these PyIAPs in tissue-specific PST tolerance. These findings also imply the adaptive expansion of bivalve IAP genes in response to algae derived biotoxins.
Collapse
Affiliation(s)
- Xiaomei Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Fengmei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yinghui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaomei Chen
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Nežić L, Škrbić R, Amidžić L, Gajanin R, Milovanović Z, Nepovimova E, Kuča K, Jaćević V. Protective Effects of Simvastatin on Endotoxin-Induced Acute Kidney Injury through Activation of Tubular Epithelial Cells' Survival and Hindering Cytochrome C-Mediated Apoptosis. Int J Mol Sci 2020; 21:ijms21197236. [PMID: 33008033 PMCID: PMC7583796 DOI: 10.3390/ijms21197236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that apoptosis of tubular cells and renal inflammation mainly determine the outcome of sepsis-associated acute kidney injury (AKI). The study aim was to investigate the molecular mechanism involved in the renoprotective effects of simvastatin in endotoxin (lipopolysaccharide, LSP)-induced AKI. A sepsis model was established by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment. The severity of the inflammatory injury was expressed as renal damage scores (RDS). Apoptosis of tubular cells was detected by Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL assay) (apoptotic DNA fragmentation, expressed as an apoptotic index, AI) and immunohistochemical staining for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL and survivin. We found that endotoxin induced severe renal inflammatory injury (RDS = 3.58 ± 0.50), whereas simvastatin dose-dependently prevented structural changes induced by LPS. Furthermore, simvastatin 40 mg/kg most profoundly attenuated tubular apoptosis, determined as a decrease of cytochrome C, caspase-3 expression, and AIs (p < 0.01 vs. LPS). Conversely, simvastatin induced a significant increase of Bcl-XL and survivin, both in the strong inverse correlations with cleaved caspase-3 and cytochrome C. Our study indicates that simvastatin has cytoprotective effects against LPS-induced tubular apoptosis, seemingly mediated by upregulation of cell-survival molecules, such as Bcl-XL and survivin, and inhibition of the mitochondrial cytochrome C and downstream caspase-3 activation.
Collapse
Affiliation(s)
- Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Banja Luka, 14 Save Mrkalja St, 78000 Banja Luka, Bosnia and Herzegovina;
- Correspondence: (L.N.); (K.K.); Tel.: +387-66-125222 (L.N.); +420-603289 (K.K.)
| | - Ranko Škrbić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Banja Luka, 14 Save Mrkalja St, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Ljiljana Amidžić
- Center for Biomedical Research, School of Medicine, University of Banja Luka, 14 Save Mrkalja St, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Radoslav Gajanin
- Institute of Pathology, University Clinical Center of Republic of Srpska, School of Medicine, University of Banja Luka, 12 Beba St, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Zoran Milovanović
- Special Police Unit, Police Department of the City of Belgrade, Ministry of Interior, Trebevićka 12/A, 11030 Belgrade, Serbia;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (E.N.); (V.J.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (E.N.); (V.J.)
- Biomedical Research Center, University Hospital Hradec Kralove, 500 02 Hradec Kralove, Czech Republic
- Correspondence: (L.N.); (K.K.); Tel.: +387-66-125222 (L.N.); +420-603289 (K.K.)
| | - Vesna Jaćević
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (E.N.); (V.J.)
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11 Crnotravska St, 11000 Belgrade, Serbia
- Department of Pharmacological Sciences, Medical Faculty of the Military Medical Academy, the University of Defence in Belgrade, 17 Crnotravska St, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Shojaei-Ghahrizjani F, Rahmati S, Mirzaei SA, Banitalebi-Dehkordi M. Does survivin overexpression enhance the efficiency of fibroblast cell-based wound therapy? Mol Biol Rep 2020; 47:5851-5864. [PMID: 32691274 DOI: 10.1007/s11033-020-05656-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
Cell-based wound therapy is faced with some limiting factors that decrease the therapeutic efficacy of transplanted cells. In this study, we aimed to genetically modify fibroblast cells with anti-apoptotic Survivin gene (Birc5) before cell transplantation. In vitro, pIRES2-eGFP-Survivin plasmid was transfected into the fibroblast cells and the growth curve was evaluated for transfected and normal cells performing MTT assay. In vivo, two 6-diameter cutaneous wounds were created at mice dorsal skin. Fibrin clot was used as a delivery vehicle to transfer cells into the wound bed. The effects of four treatment groups including (a) Cell-SVV-Clot (b) Cell-GFP-Clot, (c) Normal cell-Clot and, (d) Clot alone were evaluated. After 1,2,3,7 and 14 days post-transplantation, the wounds were photographed for evaluating the wound closure rate and wound samples were obtained. Angiogenesis and formation of granulated tissue were assessed via H&E staining for wound samples. The expression levels of Survivin, VEGF, and bFGF genes were also determined using qRT-PCR. The MTT assay showed similar proliferation potential of transfected cells with normal cells verifying that Survivin had no detrimental effect. Compared to the Normal cell-Clot group, the Survivin overexpression was seen for 3 days in the Cell-SVV-Clot group verifying the cell survival during the early stage of wound healing. The Survivin further upregulated VEGF and bFGF expressions resulting in more angiogenesis and formation of granulated tissue by day 3 and 14. The treated wounds with Cell-SVV-Clot were regenerated with a higher wound closure rate by day 7 compared to Normal cell-Clot and Clot groups. Survivin enhanced wound healing through induction of VEGF and bFGF at particular times post-wounding that led to a more structured-epidermis with higher angiogenesis and granulation tissue formation rate.
Collapse
Affiliation(s)
- Fereshteh Shojaei-Ghahrizjani
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shima Rahmati
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
5
|
Mandyam D V, Muthangi S. Survival of silk worm, Bombyx mori in azaserine induced oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108637. [PMID: 31655299 DOI: 10.1016/j.cbpc.2019.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
Cells under stress generate reactive oxygen species (ROS) in excess, which causes mitochondrial dysfunction and stimulates the apoptotic cascade. However, mild stress or pre-conditioning lead to the evasion of apoptosis by activating mitogenic signaling, including the signaling of inhibitors of apoptosis proteins (IAPs), or by inactivating certain apoptotic molecules. The silkworm (Bombyx mori) is an important economic insect which serves as a model organism in biological research. Bombyx mori apoptotic protease inducing factor (BmApaf1), a death-related ced-3/Nedd2-like protein (BmDredd), and BmSurvivin-2 (BmSvv2) are known to play significant roles in metamorphosis. Azaserine is an analogue of glutamine and irreversibly inhibits glutamine-utilizing enzymes and cysteine-glutamate transporter genes EAAT2. In the present study, we experimentally demonstrated stress induced by azaserine along with the capacity of antioxidants to modulate apoptotic/anti-apoptotic gene expression in determining the fate of the larvae. We observed higher larval survival with higher azaserine dosages and attributed this to the quantum of ROS generated and AOEs response, which favoured the BmSvv2 expression. Meanwhile higher levels of ROS with concomitant changes in AOEs were found to be responsible for BmApaf1 and BmDredd expression, which reflected a higher mortality rate.
Collapse
|
6
|
Wen S, Wang ZH, Zhang CX, Yang Y, Fan QL. Caspase-3 Promotes Diabetic Kidney Disease Through Gasdermin E-Mediated Progression to Secondary Necrosis During Apoptosis. Diabetes Metab Syndr Obes 2020; 13:313-323. [PMID: 32104028 PMCID: PMC7020918 DOI: 10.2147/dmso.s242136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Apoptosis has been repeatedly linked with diabetic kidney disease (DKD), which is a programmed cell death mediated by effector caspases-3, 6 and 7, targeting >600 substrates. However, the pathophysiologic correlations of this process remain obscure. As a putative tumor suppressor, gasdermin E (GSDME) was recently reported to be cleaved by caspase-3 to produce a GSDME-N fragment which targets the plasma membrane to switch apoptosis to secondary necrosis. However, it remains elusive whether GSDME is involved in the regulation of DKD. METHODS To evaluate the therapeutic potential of caspase-3 inhibition in DKD, we administered caspase-3 inhibitor Z-DEVD-FMK to STZ-induced diabetic mice for eight weeks. Albuminuria, renal function, pathological changes, and indicators of secondary necrosis and fibrosis were evaluated. In vitro, human tubule epithelial cells (HK-2 cells) were subjected to high-glucose treatment. Secondary necrosis was determined by LDH release, GSDME cleavage, and morphological feature under confocal microscopy. Z-DEVD-FMK and GSDME inhibition by shRNA were administered to suppress the cleavage and expression of GSDME. Flow cytometry, cytotoxicity assay and immunoblot were used to assess cell death and fibrogenesis. RESULTS Caspase-3 inhibition by Z-DEVD-FMK ameliorated albuminuria, renal function, and tubulointerstitial fibrosis in diabetic mice. The nephroprotection mediated by Z-DEVD-FMK was potentially associated with inhibition of GSDME. In vitro, molecular and morphological features of secondary necrosis were observed in glucose-stressed HK-2 cells, evidenced by active GSDME cleavage, ballooning of the cell membrane, and release of cellular contents. Here we showed that caspase-3 inhibition prevented GSDME activation and cell death in glucose-treated tubular cells. Specifically, knocking down GSDME directly inhibited secondary necrosis and fibrogenesis. CONCLUSION These data suggest GSDME-dependent secondary necrosis plays a crucial role in renal injury, and provides a new insight into the pathogenesis of DKD and a promising target for its treatment.
Collapse
Affiliation(s)
- Si Wen
- Department of Nephrology, First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhao-Hua Wang
- Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Cong-Xiao Zhang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ying Yang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence: Qiu-Ling Fan Department of Nephrology, First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang110001, People’s Republic of ChinaTel +86 13904012680 Email
| |
Collapse
|
7
|
Antiapoptotic Molecule Survivin in Transplantation: Helpful or Harmful? J Transplant 2018; 2018:6492034. [PMID: 30364092 PMCID: PMC6188762 DOI: 10.1155/2018/6492034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/11/2018] [Accepted: 08/19/2018] [Indexed: 11/17/2022] Open
Abstract
Survivin, an antiapoptotic molecule from inhibitor of apoptosis protein (IAP) family, is most known for its implication in cancer as there are some efforts to apply it for diagnostic as well as therapeutic purposes in oncology. On the other hand, it could be a useful molecule to be positively targeted when trying to save tissue and promote cells viability. Since protecting the allograft from ischemia reperfusion injury and inflammation-induced damage is a considerable objective in transplantation, it is reasonable to take advantage from antiapoptotic agents like survivin in order to achieve this goal. However, survivin's potential ability to induce malignancies makes some concerns about its use in clinic. The other barrier is this molecule's involvement in lymphocytes development and proliferation which might increase the risk of graft rejection due to adaptive immune system overactivation. In this review we summarize the few studies carried out about survivin's effect on graft survival and probable advantages and disadvantages of its overexpression in transplantation.
Collapse
|
8
|
Makhdoumi P, Abnous K, Mehri S, Etemad L, Imenshahidi M, Karimi G. Oral deferiprone administration ameliorates cisplatin-induced nephrotoxicity in rats. ACTA ACUST UNITED AC 2018; 70:1357-1368. [PMID: 30051477 DOI: 10.1111/jphp.12990] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/07/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Cisplatin is one of the widely used antitumour agents with major clinical side effect, nephrotoxicity. We showed the role of iron in cisplatin-induced nephrotoxicity that entrance to the cell via transferrin receptor (TfR) as a gatekeeper for iron uptake. We also examined the effect of iron chelator deferiprone against this toxicity. METHODS Thirty male Wistar rats were randomly divided into six groups. Group I (saline orally for 10 days); group II (saline orally for 10 days plus single injection of cisplatin 7 mg/kg, intraperitoneally on 5th day); groups III, IV and V (deferiprone 50, 100 and 200 mg/kg orally for 10 days, respectively, plus cisplatin on 5th day). Group VI (deferiprone, orally). RESULTS Deferiprone provided functional and significant histological-proven protection in group IV. Deferiprone attenuated the increased creatinine, BUN, malondialdehyde and iron concentrations in cisplatin-injected animals. The increased amounts of TfR and decreased levels of HIF-1α and related anti-apoptotic genes expression in cisplatin-treated animals were improved by deferiprone. CONCLUSIONS The results supported a role for iron in cisplatin-induced nephrotoxicity and TfR may serve as an important source of iron. Based on these findings, deferiprone pretreatment may play a role in preventing cisplatin-induced nephropathy in cancer patient.
Collapse
Affiliation(s)
- Pouran Makhdoumi
- Student Research Committee, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Iwakura T, Fujigaki Y, Fujikura T, Tsuji T, Ohashi N, Kato A, Yasuda H. Cytoresistance after acute kidney injury is limited to the recovery period of proximal tubule integrity and possibly involves Hippo-YAP signaling. Physiol Rep 2017; 5:5/11/e13310. [PMID: 28611154 PMCID: PMC5471447 DOI: 10.14814/phy2.13310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/29/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022] Open
Abstract
Rat proximal tubule (PT) cells that have recovered from severe acute kidney injury induced by uranyl acetate (UA) develop cytoresistance to subsequent UA treatments. We reported that enhanced G1 arrest might contribute to cytoresistance. Herein, we examined these mechanisms by investigating Yes-associated protein (YAP), a regulator of cell number, and survivin, a downstream mediator of YAP that inhibits apoptosis. Rats pretreated with saline (vehicle group) or UA (AKI group) were injected with UA 2 weeks, 2 months, or 6 months after treatment. Cytoresistance, evaluated by serum creatinine, was observed at 2 weeks, was attenuated at 2 months, and was lost at 6 months in the AKI group. Based on immunohistochemistry, overexpressed YAP/survivin in PT cells and an increased number of PT cells was found before the second insult at 2 weeks, regressed gradually, and returned to a normal value by 6 months in the AKI group. Cell cycle status, assessed by flow cytometry, was equivalent in all groups before the second insult. However, early G1 phase (cyclin D1-) and p27+ PT cells increased in the AKI group compared to those in the vehicle group until 2 months, but were comparable to those in the vehicle group at 6 months. p21+ PT cells increased at 2 weeks, but normalized by 2 months. Thus, PT cells that have recovered from AKI transiently overexpress YAP/survivin, probably inhibiting apoptosis and resulting in acquired cytoresistance. This effect occurs until PT remodeling is complete, subceullular PT integrity is restored, and cell numbers are normalized.
Collapse
Affiliation(s)
- Takamasa Iwakura
- Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihide Fujigaki
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujikura
- Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayuki Tsuji
- Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naro Ohashi
- Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiko Kato
- Blood Purification Unit, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideo Yasuda
- Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
10
|
Scheer A, Knauer SK, Verhaegh R. Survivin expression pattern in the intestine of normoxic and ischemic rats. BMC Gastroenterol 2017; 17:76. [PMID: 28615071 PMCID: PMC5471735 DOI: 10.1186/s12876-017-0625-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Background Survivin, a member of the inhibitor of apoptosis protein (IAP) family, regulates mitosis and chromosome segregation. The expression of survivin proceeds during embryonic development and in addition has already been demonstrated in cancer cells. However, there is also evidence of survivin expression in differentiated tissues, including the gastro-intestinal tract of adult rats. A study with human colon specimens exhibited survivin in most basal crypt epithelial cells of normal mucosa. There is rather limited information on survivin expression in the small intestine. In order to paint a more detailed and thus complete picture of survivin expression patterns in the gastrointestinal tract, we used an immunohistochemical approach in normal adult rat small intestinal and ascending colonic tissue. Moreover, to get deeper insights in the regulation of survivin expression after tissue damage, we also studied its expression in mesenteric ischemia-reperfusion (I/R) injury. Methods Mesenteric ischemia-reperfusion injury was induced in male Wistar rats (six animals/group) by occlusion of the superior mesenteric artery for 90 min and subsequent reperfusion for 120 min. Paraffin sections of untreated or ischemically treated tissue were assessed immunohistochemically by survivin and Ki-67 staining. Results Survivin could be detected in the small intestine and ascending colon of the normoxia group. It was expressed mainly in the epithelial cells of the crypts and only marginally in the villi. The individual small intestinal segments studied revealed comparable staining intensities. Likewise, expression of survivin was detected in the ischemically damaged small intestine and ascending colon. The expression pattern corresponded to the normoxic animals, as far as verifiable due to the existing tissue damage. Comparison of the expression pattern of Ki-67, a protein that acts as a cellular marker for proliferation, and survivin demonstrated a coincidental localization of the two proteins in the small intestinal and ascending colonic tissue. Conclusions Survivin was expressed strongly in epithelial cells of small intestinal as well as ascending colonic tissue. Its expression was located in cells with a high proliferation rate and regenerative capacity. This further supports the decisive role of survivin in cell division. Surprisingly, the ischemically damaged small intestinal and ascending colonic tissue showed a comparably high expression level. These results suggest that there is already a maximal survivin expression under normal conditions. However, the intestine is able to maintain the regenerative capacity even in spite of an ischemic injury. These findings reflect the important relevance of an intact intestinal barrier.
Collapse
Affiliation(s)
- Alexandra Scheer
- Institute of Physiological Chemistry, University Hospital Essen, Hufelandstraße 55, D-45147, Essen, Germany
| | - Shirley K Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Rabea Verhaegh
- Institute of Physiological Chemistry, University Hospital Essen, Hufelandstraße 55, D-45147, Essen, Germany.
| |
Collapse
|
11
|
Luo CJ, Luo F, Zhang L, Xu Y, Cai GY, Fu B, Feng Z, Sun XF, Chen XM. Knockout of interleukin-17A protects against sepsis-associated acute kidney injury. Ann Intensive Care 2016; 6:56. [PMID: 27334720 PMCID: PMC4917508 DOI: 10.1186/s13613-016-0157-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/05/2016] [Indexed: 12/14/2022] Open
Abstract
Background Sepsis-associated acute kidney injury (SA-AKI) is an independent risk factor for death in patients with sepsis, but treatment for it is limited. To improve the diagnosis and treatment of SA-AKI, we must first understand its pathogenesis. Recently, interleukin (IL)-17A has been shown to be associated with the pathogenesis of acute kidney injury and sepsis, but its role in SA-AKI remains unclear. Methods SA-AKI was induced in male C57BL/6 and IL-17A−/− mice using cecal ligation and puncture (CLP) operations for 24 h. Results At 7 days, only seven mice survived in the wild-type septic group, but nine survived in the IL-17A−/− septic group, corresponding to survival rates of 25 % and 45 %, respectively. At 24 h after CLP operations, both wild-type and IL-17A−/− septic mice developed kidney injury. The IL-17A−/− septic mice exhibited decreased serum creatinine and blood urea nitrogen levels and an improved acute tubular necrosis score. The IL-17A−/− septic mice exhibited decreased IL-6, interferon-γ, tumor necrosis factor-α, CXCL1, CXCL2, and CXCL5 expression in kidney tissue, but increased IL-10 expression. In addition, renal neutrophil infiltration was attenuated significantly in the IL-17A−/− septic group. Moreover, IL-17A−/− septic mice showed significantly decreased apoptosis of tubular epithelial cells, including decreased TUNEL-positive tubular cell number and cleaved caspase-3 level, compared with the wild-type CLP group. Their Bax/Bcl-2 expression ratio was also increased. Conclusions Our study demonstrates that IL-17A knockout could protect against SA-AKI. We show that IL-17A plays a pathogenic role in SA-AKI by increasing the levels of proinflammatory cytokines and chemokines, and by inducing neutrophil infiltration and apoptosis of tubular epithelial cells. Accordingly, IL-17A may be a novel target in SA-AKI. Electronic supplementary material The online version of this article (doi:10.1186/s13613-016-0157-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong-Juan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China.,State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Feng Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China.,Department of Cardiology, Liaocheng People's Hospital, Shandong, 252000, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China
| | - Guang-Yan Cai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Bo Fu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Zhe Feng
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Xue-Feng Sun
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Xiang-Mei Chen
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
12
|
Sancho-Martínez SM, López-Novoa JM, López-Hernández FJ. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin Kidney J 2015; 8:548-59. [PMID: 26413280 PMCID: PMC4581387 DOI: 10.1093/ckj/sfv069] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022] Open
Abstract
The histological substrate of many forms of intrinsic acute kidney injury (AKI) has been classically attributed to tubular necrosis. However, more recent studies indicate that necrosis is not the main form of cell death in AKI and that other forms such as apoptosis, regulated necrosis (i.e. necroptosis and parthanatos), autophagic cell death and mitotic catastrophe, also participate in AKI and that their contribution depends on the cause and stage of AKI. Herein, we briefly summarize the main characteristics of the major types of cell death and we also critically review the existing evidence on the occurrence of different types of cell death reported in the most common experimental models of AKI and human specimens. We also discuss the pathophysiological mechanisms linking tubule epithelial cell death with reduced glomerular filtration, azotaemia and hydroelectrolytic imbalance. For instance, special relevance is given to the analysis of the inflammatory component of some forms of cell death over that of others, as an important and differential pathophysiological determinant. Finally, known molecular mechanisms and signalling pathways involved in each cell death type pose appropriate targets to specifically prevent or reverse AKI, provided that further knowledge of their participation and repercussion in each AKI syndrome is progressively increased in the near future.
Collapse
Affiliation(s)
- Sandra M Sancho-Martínez
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain
| | - José M López-Novoa
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain ; Critical Care Biomedical Research Group (BioCritic) , Valladolid , Spain
| | - Francisco J López-Hernández
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain ; Critical Care Biomedical Research Group (BioCritic) , Valladolid , Spain ; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL) , Salamanca , Spain
| |
Collapse
|
13
|
Mormile R, Fanos V, Vittori G. Preterm infants, kidney, rickets and vitamin D intake: is it time for rewriting the history? Arch Gynecol Obstet 2014; 290:1055-7. [PMID: 25151029 DOI: 10.1007/s00404-014-3425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Via A. Gramsci, 3, 81031, Aversa, Italy,
| | | | | |
Collapse
|
14
|
Decitabine and SAHA-induced apoptosis is accompanied by survivin downregulation and potentiated by ATRA in p53-deficient cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:165303. [PMID: 25140197 PMCID: PMC4130322 DOI: 10.1155/2014/165303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/26/2014] [Accepted: 07/05/2014] [Indexed: 12/18/2022]
Abstract
While p53-dependent apoptosis is triggered by combination of methyltransferase inhibitor decitabine (DAC) and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in leukemic cell line CML-T1, reactive oxygen species (ROS) generation as well as survivin and Bcl-2 deregulation participated in DAC + SAHA-induced apoptosis in p53-deficient HL-60 cell line. Moreover, decrease of survivin expression level is accompanied by its delocalization from centromere-related position in mitotic cells suggesting that both antiapoptotic and cell cycle regulation roles of survivin are affected by DAC + SAHA action. Addition of subtoxic concentration of all-trans-retinoic acid (ATRA) increases the efficiency of DAC + SAHA combination on viability, apoptosis induction, and ROS generation in HL-60 cells but has no effect in CML-T1 cell line. Peripheral blood lymphocytes from healthy donors showed no damage induced by DAC + SAHA + ATRA combination. Therefore, combination of ATRA with DAC and SAHA represents promising tool for therapy of leukemic disease with nonfunctional p53 signalization.
Collapse
|
15
|
Cassis P, Solini S, Azzollini N, Aiello S, Rocchetta F, Conti S, Novelli R, Gagliardini E, Mister M, Rapezzi F, Rapezzi S, Benigni A, Remuzzi G, Conway EM, Noris M. An unanticipated role for survivin in organ transplant damage. Am J Transplant 2014; 14:1046-60. [PMID: 24731002 DOI: 10.1111/ajt.12677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/16/2014] [Accepted: 01/29/2014] [Indexed: 01/25/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a major determinant of graft survival in kidney transplantation. Survivin, an inhibitor of apoptosis that participates in the control of mitosis and cell cycle progression, has been implicated in renal protection and repair after I/R injury; however, no study has been performed in the transplant setting. We investigated the role of survivin in modulating posttransplant I/R injury in syngeneic and allogeneic kidney grafts, and studied whether protection from I/R injury impacted on the recipient immune system, on chronic allograft nephropathy and rejection. We used genetically engineered mice with survivin haploinsufficiency and WT mice in which survivin over-expression was induced by gene-delivery. Survivin haploinsufficiency in syngeneic grafts was associated with exuberant I/R tissue injury, which triggered inflammation eventually resulting in graft loss. Conversely, survivin over-expression in the grafts minimized I/R injury and dysfunction in syngeneic grafts and in a clinically relevant fully MHC-mismatched allogeneic combination. In the latter, survivin over-expression translated into limited anti-donor adaptive immune response and less long-term allograft injury with protection from renal parenchymal damage. Our data support survivin over-expression in the graft as a novel target for protocols aimed at limiting tissue damage at the time of transplant ultimately modulating the recipient immune system.
Collapse
Affiliation(s)
- P Cassis
- Centro Ricerche Trapianti, "Chiara Cucchi de Alessandri e Gilberto Crespi", IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Ranica, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li X, Zhang X, Li X, Ding F, Ding J. The role of survivin in podocyte injury induced by puromycin aminonucleoside. Int J Mol Sci 2014; 15:6657-73. [PMID: 24747598 PMCID: PMC4013653 DOI: 10.3390/ijms15046657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022] Open
Abstract
Objective Survivin is a member of the inhibitor of apoptosis protein family, which uniquely promotes mitosis and regulates apoptosis in cancer cells. Recent studies have demonstrated that survivin also expresses in several normal adult cells. In the present study, we aimed to investigate the function of survivin in the terminally differentiated epithelial cells, podocytes. Methods Survivin expression and location were detected by Quantitative Real-Time PCR, western blot and fluorescence confocal microscopy methods in normal and injured mouse podocytes. Cyto-protection function of survivin was also studied in cultured podocyte injured by puromycin aminonucleoside (PAN), transfected with survivin siRNA to down-regulate survivin expression, or with survivin plasmid to transiently over-express survivin. Results In podocytes, PAN stimulated expressions of survivin and the apoptosis related molecule caspase 3. Knockdown of survivin expression by siRNA increased the activation of caspase 3, induced podocyte apoptosis and remarkable rearrangement of actin cytoskeleton. Moreover, over-expression of survivin inhibited PAN-induced podocyte apoptosis and cytoskeleton rearrangement. Conclusion Our data provides the evidence that survivin plays an important role in protecting podocytes from apoptosis induced by PAN. The mechanism of survivin related anti-apoptosis may, at least partially, be through the activation of caspase 3.
Collapse
Affiliation(s)
- Xuejuan Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| | - Xiaoyan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| | - Xiaoyan Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| | - Fangrui Ding
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| |
Collapse
|
17
|
Mahadevappa R, Nielsen R, Christensen EI, Birn H. Megalin in acute kidney injury: foe and friend. Am J Physiol Renal Physiol 2013; 306:F147-54. [PMID: 24197071 DOI: 10.1152/ajprenal.00378.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney proximal tubule is a key target in many forms of acute kidney injury (AKI). The multiligand receptor megalin is responsible for the normal proximal tubule uptake of filtered molecules, including nephrotoxins, cytokines, and markers of AKI. By mediating the uptake of nephrotoxins, megalin plays an essential role in the development of some types of AKI. However, megalin also mediates the tubular uptake of molecules implicated in the protection against AKI, and changes in megalin expression have been demonstrated in AKI in animal models. Thus, modulation of megalin expression in response to AKI may be an important part of the tubule cell adaption to cellular protection and regeneration and should be further investigated as a potential target of intervention. This review explores current evidence linking megalin expression and function to the development, diagnosis, and progression of AKI as well as renal protection against AKI.
Collapse
Affiliation(s)
- Ravikiran Mahadevappa
- Dept. of Biomedicine, Aarhus Univ., Wilhelm Meyers Allé 3, Bldg. 1234, Aarhus DK-8000, Denmark.
| | | | | | | |
Collapse
|
18
|
Terasaki Y, Terasaki M, Urushiyama H, Nagasaka S, Takahashi M, Kunugi S, Ishikawa A, Wakamatsu K, Kuwahara N, Miyake K, Fukuda Y. Role of survivin in acute lung injury: epithelial cells of mice and humans. J Transl Med 2013; 93:1147-63. [PMID: 23979427 DOI: 10.1038/labinvest.2013.103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 11/10/2022] Open
Abstract
Survivin, an inhibitor of apoptosis, regulates cell division and is a potential target for anticancer drugs because many cancers express high survivin levels. However, whether survivin would be toxic to human lung cells and tissues has not been determined. This report clarified the involvement of survivin in acute lung injury. We used immunohistochemical analysis, immunoelectron microscopy, and real-time reverse transcription-quantitative polymerase chain reaction to study survivin expression and localization in injured mouse and human lungs. We also used cultured human lung epithelial cells (BEAS-2B and A549) to study survivin cytoprotection. Nuclei and cytoplasm of epithelial cells in day 3 and day 7 models of bleomycin-injured lung showed survivin-positive results, which is consistent with upregulated survivin mRNA expression. These nuclei also evidenced double positive findings for proliferating cell nuclear antigen and survivin. Day 7 models had similar Smac/DIABLO-positive and survivin-positive cell distributions. The cytoplasm and nuclei of epithelial cells in lesions with diffuse alveolar damage manifested strong survivin-positive findings. Bleomycin stimulation in both epithelial cell lines upregulated expression of survivin and apoptosis-related molecules. Suppression of survivin expression with small interfering RNA rendered human lung epithelial cells susceptible to bleomycin-induced damage, with markedly upregulated activation of caspase-3, caspase-7, poly (ADP-ribose) polymerase, and lactate dehydrogenase activity and an increased number of dead cells compared with mock small interfering RNA-treated cells. Overexpression of survivin via transfection resulted in these epithelial cells being resistant to bleomycin-induced cell damage, with reduced activation of apoptosis-related molecules and lactate dehydrogenase activity and fewer dead cells compared with results for mock-transfected cells. Survivin, acting at the epithelial cell level that depends partly on apoptosis inhibition, is therefore a key mediator of cytoprotection in acute lung injury. Understanding the precise role of survivin in normal lung cells is required for the development of therapeutic survivin.
Collapse
Affiliation(s)
- Yasuhiro Terasaki
- Department of Analytic Human Pathology and Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jobst-Schwan T, Knaup KX, Nielsen R, Hackenbeck T, Buettner-Herold M, Lechler P, Kroening S, Goppelt-Struebe M, Schloetzer-Schrehardt U, Fürnrohr BG, Voll RE, Amann K, Eckardt KU, Christensen EI, Wiesener MS. Renal uptake of the antiapoptotic protein survivin is mediated by megalin at the apical membrane of the proximal tubule. Am J Physiol Renal Physiol 2013; 305:F734-44. [DOI: 10.1152/ajprenal.00546.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The inhibitor of apoptosis protein survivin is a bifunctional molecule that regulates cellular division and survival. We have previously shown that survivin protein can be found at high concentrations in the adult kidney, particularly in the proximal tubules. Here, survivin is localized primarily at the apical membrane, a pattern that may indicate absorption of the protein. Several proteins in primary urine are internalized by megalin, an endocytosis receptor, which is in principle found in the same localization as survivin. Immunolabeling for survivin in different species confirmed survivin signal localizing to the apical membrane of the proximal tubule. Immunoelectron microscopy also showed apical localization of survivin in human kidneys. Furthermore, in polarized human primary tubular cells endogenous as well as external recombinant survivin is stored in the apical region of the cells. Costaining of survivin and megalin by immunohistochemistry and immunoelectron microscopy confirmed colocalization. Finally, by surface plasmon resonance we were able to demonstrate that survivin binds megalin and cubilin and that megalin knockout mice lose survivin through the urine. Survivin accumulates at the apical membrane of the renal tubule by reuptake, which is achieved by the endocytic receptor megalin, collaborating with cubilin. For this to occur, survivin will have to circulate in the blood and be filtered into the primary urine. It is not known at this stage what the functional role of tubular survivin is. However, a small number of experimental and clinical reports implicate that renal survivin is important for functional integrity of the kidney.
Collapse
Affiliation(s)
- Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Karl X. Knaup
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rikke Nielsen
- Department of Biomedicine/Anatomy, University of Aarhus, Aarhus, Denmark
| | - Thomas Hackenbeck
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Philipp Lechler
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen and Marburg, Location Marburg, Marburg, Germany
| | - Sven Kroening
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Barbara G. Fürnrohr
- Institute for Clinical Immunology and Rheumatology, Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany; and
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Michael S. Wiesener
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
20
|
Chen J, Chen JK, Conway EM, Harris RC. Survivin mediates renal proximal tubule recovery from AKI. J Am Soc Nephrol 2013; 24:2023-33. [PMID: 23949800 DOI: 10.1681/asn.2013010076] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AKI induces the renoprotective upregulation of survivin expression in kidney epithelial cells, but the underlying mechanisms have not been identified. To determine the role of survivin in renal recovery from AKI, we generated mice with renal proximal tubule-specific deletion of survivin (survivin(ptKO)). Renal survivin expression increased substantially in response to ischemia-reperfusion (I/R) injury in control littermates but remained minimal in survivin(ptKO) mice. Functional and histologic data indicated similar degrees of renal injury in survivin(ptKO) and control mice 24 hours after reperfusion, but recovery was markedly delayed in survivin(ptKO) mice. In MCT cells, a mouse renal proximal tubule cell line, ATP depletion by antimycin A treatment upregulated survivin expression through a phospho-STAT3-dependent pathway. In wild-type mice, inhibition of STAT3 kinase diminished I/R-induced upregulation of STAT3 phosphorylation and survivin expression and delayed recovery. Furthermore, I/R injury activated Notch-2 signaling, and a γ-secretase inhibitor suppressed I/R-induced Notch-2 signaling, STAT3 phosphorylation, and survivin expression and delayed recovery. In MCT cells, inhibition of γ-secretase similarly attenuated antimycin A-induced Notch-2 activation, upregulation of survivin, and phosphorylation of STAT3, but STAT3 kinase inhibition did not prevent Notch-2 activation. Therefore, these data suggest that STAT3 phosphorylation and subsequent upregulation of survivin expression mediated by Notch-2 signaling in renal proximal tubule epithelial cells aid in the functional and structural recovery of the kidney from AKI.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | |
Collapse
|
21
|
Tang H, Wu Y, Wu H, Wu Y, Wu H, Wang W. Functional analysis of a survivin-like gene in Bombyx mori. Cytotechnology 2013; 66:181-91. [PMID: 23529562 DOI: 10.1007/s10616-013-9551-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/25/2013] [Indexed: 10/27/2022] Open
Abstract
The survivin (svv) gene is a newly discovered member of the inhibitors of apoptosis gene family. In recent years, svv has been confirmed to have an anti-apoptosis function and to play a critical role in cell division. We identified a survivin-like gene in the silkworm, Bombyx mori (Bm-svv). In this study, to gain insight into its function, a baculovirus expression system was used to express the Bm-svv gene in insect cell lines. The recombinant viruses were then used as a vector to transform insect cells, and cell activity was determined using the Cell Counting Kit-8 (CCK-8), which is usually employed for detecting mammalian cell number. The results indicated that the Bm-svv gene plays a role in the cell growth arrest or apoptosis induced by viruses. Furthermore, the CCK-8 kit is effective in determining the activity of insect cells.
Collapse
Affiliation(s)
- Hui Tang
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China,
| | | | | | | | | | | |
Collapse
|
22
|
Lee SY, Lee YS, Choi HM, Ko YS, Lee HY, Jo SK, Cho WY, Kim HK. Distinct pathophysiologic mechanisms of septic acute kidney injury: role of immune suppression and renal tubular cell apoptosis in murine model of septic acute kidney injury. Crit Care Med 2013; 40:2997-3006. [PMID: 22878677 DOI: 10.1097/ccm.0b013e31825b912d] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Sepsis is the most common cause of acute kidney injury in critically ill patients; however, the mechanisms leading to acute kidney injury in sepsis remain elusive. Although sepsis has been considered an excessive systemic inflammatory response, clinical trials that inhibit inflammation have been shown to have no effect. The purpose of this study was to examine the pathophysiology of septic acute kidney injury focusing on immune responses and renal tubular cell apoptosis by providing an on-site quantitative comparison between septic- and ischemia/reperfusion-induced acute kidney injury. DESIGN Twenty-four hours after cecal ligation and puncture or ischemia/reperfusion injury, biochemical, histologic, and cytokine changes were compared in C57BL/6 mice. Apoptosis was assessed, and the effect of caspase 3 inhibition on renal function was also examined. The percentage of regulatory T cells and the effect of depletion were determined and compared with ischemia/reperfusion-induced acute kidney injury. The effect of interleukin-10 blocking was also compared. MEASUREMENTS AND MAIN RESULTS Despite comparable renal dysfunction, acute tubular necrosis or inflammation was minimal in septic kidneys. However, tubular cell apoptosis was prominent, and caspase 3 activity was positively correlated with renal dysfunction. A decrease in apoptosis by caspase 3 inhibitor resulted in attenuation of renal dysfunction. In assessment of systemic immunity, septic acute kidney injury was associated with an increase in interleukin-10, and also showed massive immune cell apoptosis with increased regulatory T cells. In contrast to ischemia/reperfusion injury in which depletion of regulatory T cells aggravated renal injury, depletion of regulatory T cells before cecal ligation and puncture resulted in renoprotection. In addition, blocking interleukin-10 rescued septic mice from the development of acute kidney injury, whereas it had no effect in ischemia/reperfusion injury. CONCLUSIONS Pathogenesis of septic acute kidney injury is thought to be different from that of ischemia/reperfusion-induced acute kidney injury. Our data showed a link between apoptosis, immune suppression, and the development of acute kidney injury during sepsis and suggest that strategies targeting apoptosis or enhancing immunity might be a potential therapeutic strategy for septic acute kidney injury.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Internal Medicine, Division of Nephrology, Eulji General Hospital, Eulji University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gupta S, Li S, Abedin MJ, Noppakun K, Wang L, Kaur T, Najafian B, Rodrigues CMP, Steer CJ. Prevention of acute kidney injury by tauroursodeoxycholic acid in rat and cell culture models. PLoS One 2012; 7:e48950. [PMID: 23152827 PMCID: PMC3494686 DOI: 10.1371/journal.pone.0048950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/02/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) has grave short- and long-term consequences. Often the onset of AKI is predictable, such as following surgery that compromises blood flow to the kidney. Even in such situations, present therapies cannot prevent AKI. As apoptosis is a major form of cell death following AKI, we determined the efficacy and mechanisms of action of tauroursodeoxycholic acid (TUDCA), a molecule with potent anti-apoptotic and pro-survival properties, in prevention of AKI in rat and cell culture models. TUDCA is particularly attractive from a translational standpoint, as it has a proven safety record in animals and humans. METHODOLOGY/PRINCIPAL FINDINGS We chose an ischemia-reperfusion model in rats to simulate AKI in native kidneys, and a human kidney cell culture model to simulate AKI associated with cryopreservation in transplanted kidneys. TUDCA significantly ameliorated AKI in the test models due to inhibition of the mitochondrial pathway of apoptosis and upregulation of survival pathways. CONCLUSIONS This study sets the stage for testing TUDCA in future clinical trials for prevention of AKI, an area that needs urgent attention due to lack of effective therapies.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Shunan Li
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Md. Joynal Abedin
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kajohnsak Noppakun
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Lawrence Wang
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Tarundeep Kaur
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Behzad Najafian
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Clifford J. Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
24
|
Differential effects of kidney-lung cross-talk during acute kidney injury and bacterial pneumonia. Kidney Int 2011; 80:633-44. [PMID: 21734638 DOI: 10.1038/ki.2011.201] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute injuries of the kidney or lung each represent serious, complex clinical problems, and their combination drastically decreases patient survival. However, detailed understanding of interactions between these two organs is scarce. To evaluate this further, we used the folic acid (FA) and myohemoglobinuria models of acute kidney injury (AKI) together with Pseudomonas aeruginosa inhalation to study kidney-lung cross-talk in mice during acute kidney and lung injury. Subgroups of mice received antineutrophil antibody or platelet-depleting serum to assess the role of neutrophil and platelets, respectively. AKI by itself did not cause clinically relevant acute lung injury. Pneumonia was neutrophil dependent, whereas pneumonia-induced AKI was platelet dependent. AKI attenuated pulmonary neutrophil recruitment and worsened pneumonia. Mice with AKI had lower oxygen saturations and greater bacterial load than mice without. Neutrophils isolated from mice with FA-induced AKI also had impaired transmigration and F-actin polymerization in vitro. Thus, during acute kidney and pneumonia-induced lung injury, clinically relevant kidney-lung interactions are both neutrophil and platelet dependent.
Collapse
|
25
|
Habtemichael N, Wünsch D, Bier C, Tillmann S, Unruhe B, Frauenknecht K, Heinrich UR, Mann WJ, Stauber RH, Knauer SK. Cloning and functional characterization of the guinea pig apoptosis inhibitor protein Survivin. Gene 2010; 469:9-17. [DOI: 10.1016/j.gene.2010.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/08/2010] [Accepted: 08/09/2010] [Indexed: 11/29/2022]
|
26
|
Knauer SK, Heinrich UR, Bier C, Habtemichael N, Docter D, Helling K, Mann WJ, Stauber RH. An otoprotective role for the apoptosis inhibitor protein survivin. Cell Death Dis 2010; 1:e51. [PMID: 21364656 PMCID: PMC3032560 DOI: 10.1038/cddis.2010.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hearing impairment caused by ototoxic insults, such as noise or gentamicin is a worldwide health problem. As the molecular circuitries involved are not yet resolved, current otoprotective therapies are rather empirical than rational. Here, immunohistochemistry and western blotting showed that the cytoprotective protein survivin is expressed in the human and guinea pig cochlea. In the guinea pig model, moderate noise exposure causing only a temporary hearing impairment transiently evoked survivin expression in the spiral ligament, nerve fibers and the organ of Corti. Mechanistically, survivin upregulation may involve nitric oxide (NO)-induced Akt signaling, as enhanced expression of the endothelial NO synthase and phosphorylated Akt were detectable in some surviving-positive cell types. In contrast, intratympanic gentamicin injection inducing cell damage and permanent hearing loss correlated with attenuated survivin levels in the cochlea. Subsequently, the protective activity of the human and the guinea pig survivin orthologs against the ototoxin gentamicin was demonstrated by ectopic overexpression and RNAi-mediated depletion studies in auditory cells in vitro. These data suggest that survivin represents an innate cytoprotective resistor against stress conditions in the auditory system. The pharmacogenetic modulation of survivin may thus provide the conceptual basis for the rational design of novel therapeutic otoprotective strategies.
Collapse
Affiliation(s)
- S K Knauer
- Department of Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li M, Balamuthusamy S, Khan AM, Maderdrut JL, Simon EE, Batuman V. Pituitary adenylate cyclase-activating polypeptide ameliorates cisplatin-induced acute kidney injury. Peptides 2010; 31:592-602. [PMID: 20034524 DOI: 10.1016/j.peptides.2009.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/11/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
Cisplatin nephrotoxicity involves DNA damage, proinflammatory responses and apoptosis/necrosis of renal proximal tubular epithelial cells. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to protect kidneys from ischemic injury and light chain-induced damage by modulating inflammation. Confluent monolayer of HK-2 human renal cells were exposed to 50 microM cisplatin in the presence or absence of either PACAP38 or p53 siRNA. Mice injected with cisplatin were also treated with PACAP38 daily for 3 days. The damage to HK-2 cells caused by cisplatin involved the activation of p53, caspase-7, and poly (ADP-ribose) polymerase-1 (PARP-1). PACAP38 prevented the decrease in the apurinic/apyrimidinic endonuclease-1 by suppressing p53 activation and blocked the cleavage of caspase-7 and PARP-1 in cisplatin-exposed cells. PACAP also markedly inhibited cisplatin-induced apoptotic tubule cell death. Exposure to cisplatin significantly suppressed the expression of fibronectin and collagens I and IV, and altered the integrin repertoire of human renal tubule cells, while PACAP partially reversed the reduction of fibronectin, collagen IV, and the integrin subunits in cells exposed to cisplatin. Experiments with PACAP receptor antagonists and siRNA silencing of p53 showed that the renoprotection with PACAP was mediated by the PAC(1) receptor and through both p53-dependent and -independent suppression of apoptosis. PACAP was renoprotective in vivo and prevented the rise in blood urea nitrogen and creatinine in mice treated with cisplatin. These results suggest that p53 plays a pivotal role in decreased integrin-mediated extracellular matrix component expression in cisplatin-induced tubule cell apoptosis, and reveal a novel aspect of PACAP-mediated renoprotection.
Collapse
Affiliation(s)
- Min Li
- Section of Nephrology and Hypertension, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Kim JH, Lee SS, Jung MH, Yeo HD, Kim HJ, Yang JI, Roh GS, Chang SH, Park DJ. N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrol Dial Transplant 2009; 25:1435-43. [PMID: 20037173 DOI: 10.1093/ndt/gfp659] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Rhabdomyolysis-induced acute kidney injury (AKI) accounts for about 10 to 40% of all cases of AKI. It is known that N-acetylcysteine (NAC) is effective in various experimental renal injury models; however, little information is available about the rat model of glycerol-induced rhabdomyolysis. In this study, we hypothesize that NAC plays a renoprotective role via the anti-apoptotic pathway. METHODS Male Sprague-Dawley rats were divided into four groups: (i) saline control group, (ii) NAC-treated group (N-acetylcysteine) (150 mg/kg), (iii) glycerol-treated group (50%, 8 ml/kg, IM) and (iv) NAC plus glycerol-treated group. Rats were sacrificed at 24 h after glycerol injection, and the blood and renal tissues were harvested. RESULTS Glycerol administration caused severe renal dysfunction, which included marked renal oxidative stress, significantly increased blood urea nitrogen (BUN) and serum creatinine levels. Histopathological findings, such as cast formation and tubular necrosis, confirmed renal impairment. We noted a marked activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p-38, in the glycerol-treated group. We also observed high expression of Bax and Bad but only weak expression of Bcl-2 and Bcl-xL in the glycerol-treated group. However, NAC pretreatment significantly improved renal function and decreased the activation of ERK, JNK, Bax and Bad, whereas it increased Bcl-2 and Bcl-xL. CONCLUSION These results demonstrate that NAC protects against renal dysfunction, morphological damage and biochemical changes via the anti-apoptotic pathway in the glycerol-induced rhabdomyolysis model in rats.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Clinical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lewis KD, Samlowski W, Ward J, Catlett J, Cranmer L, Kirkwood J, Lawson D, Whitman E, Gonzalez R. A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma. Invest New Drugs 2009; 29:161-6. [PMID: 19830389 DOI: 10.1007/s10637-009-9333-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/24/2009] [Indexed: 11/25/2022]
Abstract
UNLABELLED Melanoma continues to be a major health problem with no effective therapy. Melanocytes, both benign and malignant, express many anti-apoptotic factors. Survivin is a member of the family of inhibitors of apoptosis proteins (IAP) and is preferentially expressed in tumor cells, including melanoma. YM155 is a small molecule suppressant of survivin that has been shown in preclinical cell lines, xenograft models and phase I studies to have anti-tumor activity. METHODS This was an open-label, multi-center, study of YM155 monotherapy in subjects with unresectable stage III or IV melanoma. Thirty-four chemotherapy naïve subjects were treated with YM155 at a dose of 4.8 mg/m(2)/day administered by continuous infusion for 168-hours (7 days) followed by a 14-day rest period, for up to 6 cycles or until disease progression. RESULTS One subject had a partial response to treatment seen at cycle two and lasting through cycle eight. Median progression-free survival was 1.3 months (95% CI; 1.3-2.7). Median overall survival was 9.9 months (95% CI; 7.0-14.5). Overall, YM155 was well tolerated with the most common (>20%) adverse events reported as fatigue, nausea, pyrexia, headache, arthralgia and back pain. Only four subjects required dose reductions. CONCLUSIONS YM155 was well tolerated in subjects with advanced melanoma; however, the pre-specified primary end-point for efficacy which required two responders in 29 evaluable subjects was not achieved.
Collapse
Affiliation(s)
- Karl D Lewis
- University of Colorado Health Sciences Center, Aurora, CO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yuan-Jing F, Nan-Shan H, Lian X. Genistein synergizes with RNA interference inhibiting survivin for inducing DU-145 of prostate cancer cells to apoptosis. Cancer Lett 2009; 284:189-97. [PMID: 19433345 DOI: 10.1016/j.canlet.2009.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 12/13/2022]
Abstract
To further investigate the effect of a combination of genistein with survivin of RNA interference on the proliferation and apoptosis of DU-145 cells, the effect of genistein on the proliferation of DU-145 cells was detected by the MTT method and cytometry, and the apoptosis of cells was observed with fluorescence microscopy. In order to test combined genistein with transfection of small interfering RNA (siRNA) against survivin, a survivin siRNA plasmid was constructed and transfected into DU-145 cells. Genistein inhibited proliferation and induced apoptosis of cancerous DU-145 and Hela cells, whereas genistein had minimal effects for normal L-O2 cells. The stable transfected cell lines of DU-145, knockdown survivin by siRNA, displayed stronger apoptotic than untransfected DU-145, the transfected cell of DU-145 treated with genistein demonstrated the inhibition of proliferation and induction of apoptosis significantly; it showed genistein synergistic effect with RNAi in survivin for inhibition of prostate cancer cells.
Collapse
Affiliation(s)
- Fan Yuan-Jing
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | | | | |
Collapse
|
31
|
de Vries EGE, de Jong S. Exploiting the apoptotic route for cancer treatment: a single hit will rarely result in a home run. J Clin Oncol 2008; 26:5151-3. [PMID: 18824700 DOI: 10.1200/jco.2008.18.3160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Khoury W, Jakowlev K, Fein A, Orenstein H, Nakache R, Weinbroum AA. Renal apoptosis following carbon dioxide pneumoperitoneum in a rat model. J Urol 2008; 180:1554-8. [PMID: 18710725 DOI: 10.1016/j.juro.2008.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Indexed: 11/18/2022]
Abstract
PURPOSE Laparoscopically recruited kidneys regain normal function more slowly than laparotomy harvested organs for several possible reasons. We investigated the effects of CO(2) induced pneumoperitoneum on kidney function, as reflected by blood and urine creatinine levels, and its relation with renal cell apoptosis. MATERIALS AND METHODS CO(2) pneumoperitoneum was established in anesthetized Wistar male rats that were randomly allocated at 6 per group into 1 of 6 groups with an intraperitoneal pressure of 0 (control), 5, 8, 12, 15 or 18 mm Hg. Pressure was maintained for 60 minutes in all groups. Three additional groups were subjected to 30-minute pneumoperitoneum at 0, 12 and 18 mm Hg, respectively. The rats were kept alive for the ensuing 24 hours, after which blood and urine creatinine were analyzed and the abdominal organs were harvested. Various areas of the organs were analyzed for apoptotic cells using the TUNEL method. Cells were randomly counted in 10 eyeshots in 3 sections each using an ocular micrometer. RESULTS Creatinine levels in blood and urine changed as pressure and pneumoperitoneum duration progressed. Isolated TUNEL positive nuclei were detected in the outer medulla and the cortex of control kidneys. There was a significantly higher number of TUNEL positive nuclei in the cortex and the medulla of all pressurized kidneys (p <0.05), which increased in parallel with increasing intraperitoneal pressure and pneumoperitoneum exposure time. CONCLUSIONS The CO(2) pneumoperitoneum gradient and its duration affect renal function and induce apoptosis. This could be a mechanism involved in renal delayed graft dysfunction in recipients of laparoscopically harvested kidneys.
Collapse
Affiliation(s)
- Wisam Khoury
- Department of Surgery B and Transplantation Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Lechler P, Wu X, Bernhardt W, Campean V, Gastiger S, Hackenbeck T, Klanke B, Weidemann A, Warnecke C, Amann K, Engehausen D, Willam C, Eckardt KU, Rödel F, Wiesener MS. The tumor gene survivin is highly expressed in adult renal tubular cells: implications for a pathophysiological role in the kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 171:1483-98. [PMID: 17982126 DOI: 10.2353/ajpath.2007.070132] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The inhibitor of apoptosis protein survivin is of critical importance for regulation of cellular division and survival. Published data point to a restricted function of survivin in embryonic development and cancer; thus survivin has been broadly proposed as an ideal molecular target for specific anti-cancer therapy. In contrast to this paradigm, we report here broad expression of survivin in adult differentiated tissues, as demonstrated at the mRNA and protein levels. Focusing on the kidney, survivin is strongly expressed in proximal tubuli, particularly at the apical membrane, which can be verified in rat, mouse, and human kidneys. In the latter, survivin expression seems to be even stronger in proximal tubuli than in adjacent cancerous tissue. Primary and immortalized human renal tubular cells also showed high levels of survivin protein expression, and RNA interference resulted in a partial G(2)/M arrest of the cell cycle and increased rate of apoptosis. In conclusion, survivin may be of importance for renal pathophysiology and pathology. The predominant apical expression of survivin may indicate a further, yet unknown, function. Interventional strategies to inhibit survivin's function in malignancy need to be carefully (re)evaluated for renal side effects, as well as for other possible organ dysfunctions.
Collapse
Affiliation(s)
- Philipp Lechler
- Interdisciplinary Center for Clinical Research, Friedrich-Alexander University Erlangen-Nuremberg, Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sokolova I, Algeciras-Schimnich A, Song M, Sitailo S, Policht F, Kipp BR, Voss JS, Halling KC, Ruth A, King W, Underwood D, Brainard J, Morrison L. Chromosomal biomarkers for detection of human papillomavirus associated genomic instability in epithelial cells of cervical cytology specimens. J Mol Diagn 2008; 9:604-11. [PMID: 17975027 DOI: 10.2353/jmoldx.2007.070007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to compare how accumulation of chromosomal aberrations in human papillomavirus (HPV)-infected cells correlates with the severity of cervical dysplastic lesions. We assessed the frequency of genomic alterations for 35 different loci in a pilot biopsy study and selected two loci (3q26 and 8q24) with the highest frequency of copy number gains found in high-grade dysplasia and cancer. These probes were labeled with gold and red fluorophores and combined with HPV biotin-labeled probes for subsequent detection using a tyramide signal amplification system with a green fluorophore. Cells that were both HPV positive and chromosomally abnormal were designated as "double-positive cells." Cervical cytology specimens from 235 patients were used for this blinded study. The average number of double-positive cells increased from two cells in patients with a cytological interpretation of atypical squamous cells of undetermined significance to 22 cells in low-grade squamous intraepithelial lesion and 99 cells in high-grade squamous intraepithelial lesion, reflecting an accumulation of chromosomal abnormality with disease progression. Using a cutoff of four or more double-positive cells as the criterion for the presence of a cervical intraepithelial neoplasia 2 or 3 lesion, we demonstrated that low-grade squamous intraepithelial lesion and high-grade squamous intraepithelial lesion cytology specimens with underlying cervical intraepithelial neoplasia 2/3 histology showed positive test results in more than 80% of cases. Correlation of 3q26 and 8q24 aneusomy with concurrent HPV infection may thus serve as a biomarker of genetic instability in HPV-infected cells.
Collapse
Affiliation(s)
- Irina Sokolova
- Abbott Molecular Inc., 1300 E. Touhy Avenue, Des Plaines, IL 60018, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|