1
|
Inda A, Martinez S, Bessone C, Rios M, Guido M, Herrero-Vanrell R, Luna JD, Allemandi D, Ravetti S, Quinteros D. Evidence of the protective role of Carvacrol in a retinal degeneration animal model. Exp Eye Res 2024; 244:109938. [PMID: 38789020 DOI: 10.1016/j.exer.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Neurodegenerative pathologies affecting the posterior segment of the eye, are characterized by being devastating and responsible for the majority of visual dysfunctions worldwide. These diseases are primarily degenerative, progressing chronically, and can inflict gradual harm to the optic nerve, retinal ganglion cells (RGC), photoreceptors, and other retinal cells. This retinal damage leads to a progressive loss of vision, marking these conditions as a significant health concern worldwide. The intravitreal administration of the phytochemical Carvacrol (CAR) is expected to demonstrate a neuroprotective and antiapoptotic effect on retinal cells, with a specific focus on RGC. This effect will be observed in a retinal degeneration model (RDM) in rabbits induced by cytotoxic and oxidative agents, namely glutamate (GLUT) and L-buthionine-S, R-sulfoximine (BSO). An in vivo study was conducted using New Zealand rabbits in which retinal damage was created to evaluate the effectiveness of CAR. The effectiveness of CAR on the functionality of retinal neuronal cells in RDM was evaluated using pupillary light reflection (PLR). Furthermore, the phytotherapeutic's influence on cell viability was determined through flow cytometry analysis. Finally, the neuroprotective and antiapoptotic capabilities of CAR were specifically scrutinized in RGC through histological studies, quantifying cell survival, and employing immunohistochemical assays to detect the apoptotic index (%) using the TUNEL technique. Our results demonstrated that CAR promoted the recovery of the pupillary contraction profile over time, maintaining the functionality of retinal cells as healthy controls. Additionally, it showed increased cell viability under oxidative and cytotoxic conditions given by GLUT-BSO agents. Finally, we found that CAR protects the survival of RGC and decreases the percentage of apoptotic cells when compared to RDM. CAR demonstrated to have positive effects on the functionality of photoreceptive nerve cells by restoring pupillary contraction. Likewise, it was shown to have neuroprotective and antiapoptotic effects when evaluated in a general and specific way on retinal nerve cells.
Collapse
Affiliation(s)
- Ayelen Inda
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina; Centro de Investigación y Transferencia (CIT VM), 5900, Villa María, Córdoba, Argentina
| | - Sofía Martinez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Carolina Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina; Departamento de Ciencias Básicas, Escuela Ciencias de la Salud, Universidad Nacional de Villa Mercedes (UNVIME), 5730, Villa Mercedes, San Luis, Argentina
| | - Maximiliano Rios
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina
| | - Mario Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina
| | - Rocío Herrero-Vanrell
- Grupo de Investigación en Innovación, Terapia y Desarrollo Farmacéutico en Oftalmología (UCM 920415), Departamento de Farmacia y Tecnología de Alimentos, Facultad de Farmacia. Universidad Complutense, 28040, Madrid, Spain
| | - Jose Domingo Luna
- Área de Cirugía Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. y Fundación VER, 5000, Córdoba, Argentina
| | - Daniel Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Soledad Ravetti
- Centro de Investigación y Transferencia (CIT VM), 5900, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, 5900, Villa María, Córdoba, Argentina
| | - Daniela Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
2
|
Pan D, Wang Z, Chen Y, Cao J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun Biol 2023; 6:1054. [PMID: 37853054 PMCID: PMC10584931 DOI: 10.1038/s42003-023-05432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.
Collapse
Affiliation(s)
- Deng Pan
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China.
| |
Collapse
|
3
|
Vilani NMJ, Monteiro DALV, Einat H, Jerome B, Fix VD, de Lauro CAM, Oliveira BDM. Melanopsin expression in the retinas of owls with different daily activity patterns. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Effect of pre-hatch incubator lights on the ontogeny of CNS opsins and photoreceptors in the Pekin duck. Poult Sci 2022; 101:101699. [PMID: 35176701 PMCID: PMC8857459 DOI: 10.1016/j.psj.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 02/02/2023] Open
Abstract
Incubated eggs with and without light had no effect on post-hatch production. Light does not influence the ontogeny of retinal rod and cone photoreceptors. Brain OPN4 mRNA is increased the later stages of embryonic development.
The Pekin duck is a valuable agricultural commodity globally and in the United States. Pekin ducks are seasonal breeders; they are sensitive to light and thus, research on the neuroendocrine and behavioral responses are needed to maximize production and to improve their welfare. There is compelling evidence that specific wavelengths of light may adversely alter the growth and welfare of meat (grow out) ducks. However, despite a birds’ dependence upon light, in commercial poultry hatcheries, incubators almost exclusively hold eggs in the dark. Therefore, our objective was to determine the effects of lighting on the expression of retina photoreceptors (RPs) and deep brain photoreceptors (DBPs) during duck embryological development. Two groups of ducks were raised with and without light over 21 d from egg laying, embryonic day 0. Brain and retinal tissues were collected at embryonic days 3, 7, 11, 16, and 21 of a 24 d incubation period. qRT-PCR was performed on RPs (OPN1LW, OPN2SW, OPN1SW, MAFA, RHO, and RBP3) and the DBP OPN4M from retinal and brain samples, respectively. We find that the presence and absence of light during pre-hatch incubation, had no influence on the expression of any retinal photoreceptor. However, a late embryological increase in DBP OPN4M expression was observed. Taken together, the impact of light during pre-hatch incubation does not impact the overall post-hatch production. However, future directions should explore how OPN4M pre-hatch activation impacts Pekin duck post-hatch development and growth.
Collapse
|
5
|
Marchese NA, Ríos MN, Guido ME. The Intrinsic Blue Light Responses of Avian Müller Glial Cells Imply Calcium Release from Internal Stores. ASN Neuro 2022; 14:17590914221076698. [PMID: 35103506 PMCID: PMC8814826 DOI: 10.1177/17590914221076698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The retina of vertebrates is responsible for capturing light through visual
(cones and rods) and non-visual photoreceptors (intrinsically photosensitive
retinal ganglion cells and horizontal cells) triggering a number of essential
activities associated to image- and non-image forming functions (photic
entrainment of daily rhythms, pupillary light reflexes, pineal melatonin
inhibition, among others). Although the retina contains diverse types of
neuronal based-photoreceptors cells, originally classified as ciliary- or
rhabdomeric-like types, in recent years, it has been shown that the major glial
cell type of the retina, the Müller glial cells (MC), express blue photopigments
as Opn3 (encephalopsin) and Opn5 (neuropsin) and display light responses
associated to intracellular Ca2 + mobilization. These findings strongly propose
MC as novel retinal photodetectors (Rios et al., 2019). Herein, we further
investigated the intrinsic light responses of primary cultures of MC from
embryonic chicken retinas specially focused on Ca2 + mobilization by
fluorescence imaging and the identity of the internal Ca2 + stores responsible
for blue light responses. Results clearly demonstrated that light responses were
specific to blue light of long time exposure, and that the main Ca2 + reservoir
to trigger downstream responses came from intracellular stores localized in the
endoplasmic reticulum These observations bring more complexity to the intrinsic
photosensitivity of retinal cells, particularly with regard to the detection of
light in the blue range of visible spectra, and add novel functions to glial
cells cooperating with other photoreceptors to detect and integrate ambient
light in the retinal circuit and participate in cell to cell communication.
Summary statement:
Non-neuronal cells in the vertebrate retina, Muller glial cells, express
non-canonical photopigments and sense blue light causing calcium release from
intracellular stores strongly suggesting a novel intrinsic photosensitivity and
new regulatory events mediating light-driven processes with yet unknown
physiological implications.
Collapse
Affiliation(s)
- Natalia A Marchese
- 373607CIQUIBIC-CONICET, Facultad de Ciencias Químicas, 28217Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maximiliano N Ríos
- 373607CIQUIBIC-CONICET, Facultad de Ciencias Químicas, 28217Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- 373607CIQUIBIC-CONICET, Facultad de Ciencias Químicas, 28217Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region. Cell Mol Neurobiol 2020; 42:59-83. [PMID: 33231827 DOI: 10.1007/s10571-020-00997-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuron-to-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.
Collapse
|
7
|
Alkozi HA, Navarro G, Franco R, Pintor J. Melatonin and the control of intraocular pressure. Prog Retin Eye Res 2019; 75:100798. [PMID: 31560946 DOI: 10.1016/j.preteyeres.2019.100798] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Melatonin is not only synthesized by the pineal gland but by several ocular structures. This natural indoleamine is of great importance for regulating several eye processes, among which pressure homeostasis is included. Glaucoma, the most prevalent eye disease, also known as the silent thief of vision, is a multifactorial pathology that is associated to age and, often, to intraocular hypertension (IOP). Indeed IOP is the only modifiable risk factor and as such medications are available to control it; however, novel medications are sought to minimize undesirable side effects. Melatonin and analogues decrease IOP in both normotensive and hypertensive eyes. Melatonin activates its cognate membrane receptors, MT1 and MT2, which are present in numerous ocular tissues, including the aqueous-humor-producing ciliary processes. Melatonin receptors belong to the superfamily of G-protein-coupled receptors and their activation would lead to different signalling pathways depending on the tissue. This review describes the molecular mechanisms underlying differential functionalities that are attributed to melatonin receptors. Accordingly, the current work highlights the important role of melatonin and its analogues in the healthy and in the glaucomatous eyes, with special attention to the control of intraocular pressure.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Juan XXIII, 27, 08027, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Barcelona, Spain.
| | - Jesus Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain; Real Academia Nacional de Farmacia, Calle Farmacia 11, 28004, Madrid, Spain.
| |
Collapse
|
8
|
Physiological roles of avian eyes in light perception and their responses to photoperiodicity. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Douglas RH. The pupillary light responses of animals; a review of their distribution, dynamics, mechanisms and functions. Prog Retin Eye Res 2018; 66:17-48. [PMID: 29723580 DOI: 10.1016/j.preteyeres.2018.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 11/28/2022]
Abstract
The timecourse and extent of changes in pupil area in response to light are reviewed in all classes of vertebrate and cephalopods. Although the speed and extent of these responses vary, most species, except the majority of teleost fish, show extensive changes in pupil area related to light exposure. The neuromuscular pathways underlying light-evoked pupil constriction are described and found to be relatively conserved, although the precise autonomic mechanisms differ somewhat between species. In mammals, illumination of only one eye is known to cause constriction in the unilluminated pupil. Such consensual responses occur widely in other animals too, and their function and relation to decussation of the visual pathway is considered. Intrinsic photosensitivity of the iris muscles has long been known in amphibia, but is in fact widespread in other animals. The functions of changes in pupil area are considered. In the majority of species, changes in pupil area serve to balance the conflicting demands of high spatial acuity and increased sensitivity in different light levels. In the few teleosts in which pupil movements occur they do not serve a visual function but play a role in camouflaging the eye of bottom-dwelling species. The occurrence and functions of the light-independent changes in pupil size displayed by many animals are also considered. Finally, the significance of the variations in pupil shape, ranging from circular to various orientations of slits, ovals, and other shapes, is discussed.
Collapse
Affiliation(s)
- Ronald H Douglas
- Division of Optometry & Visual Science City, University of London, Northampton Square, London, EC1V 0HB, United Kingdom.
| |
Collapse
|
10
|
Valdez DJ, Benitez-Vieyra SM. A Spectrophotometric Study of Plumage Color in the Eared Dove (Zenaida auriculata), the Most Abundant South American Columbiforme. PLoS One 2016; 11:e0155501. [PMID: 27213273 PMCID: PMC4877085 DOI: 10.1371/journal.pone.0155501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/30/2016] [Indexed: 11/19/2022] Open
Abstract
For birds, plumage color perception is critical in social interactions such as courtship, in both monochromatic and dichromatic species. In the Eared Dove (Zenaida auriculata), perhaps the most abundant South American Columbiforme, the plumage of males and females looks alike and both sexes share the same melanistic coloration with gray and pink tones. The aim of this study was therefore to determine whether evident sexual dichromatism exists in the plumage of the Eared Dove using a spectrophotometry technique in the avian-visible range (300–700 nm). The results of the classic colorimetric variables analysis (hue, chroma and brightness) show that males are in general brighter and have higher UV chroma values than females. The avian visual model points to differences in achromatic and chromatic levels between males and females in body regions possibly involved in sexual selection (e.g. the crown). The model also indicates chromatic or achromatic differences in body regions not subject to sexual selection such as the black spots on the wing coverts and white tail bands, both of which may be involved in intra- or inter-gender-specific communication.
Collapse
Affiliation(s)
- Diego Javier Valdez
- Instituto de Diversidad y Ecología Animal (IDEA-CONICET-UNC), Centro de Zoología Aplicada, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- * E-mail: ;
| | - Santiago Miguel Benitez-Vieyra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
11
|
Díaz NM, Morera LP, Guido ME. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates. Photochem Photobiol 2015; 92:29-44. [DOI: 10.1111/php.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolás M. Díaz
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Luis P. Morera
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Mario E. Guido
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| |
Collapse
|
12
|
Kumar V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen Comp Endocrinol 2015; 220:13-22. [PMID: 24929229 DOI: 10.1016/j.ygcen.2014.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Birds time their activities in synchronization with daily and seasonal periodicities in the environment, which is mainly provided by changes in day length (=photoperiod). Photoperiod appears to act at different levels than simply entraining the hypothalamic clock via eyes in birds. Photoreceptor cells that transmit light information to an avian brain are localized in three independent structures, the retina of eyes, pineal gland and hypothalamus, particularly in the paraventricular organ and lateral septal area. These hypothalamic photoreceptors are commonly referred to as encephalic or deep brain photoreceptors, DBPs. Eyes and pineal are known to contribute to the circadian regulation of behavior and physiology via rhythmic melatonin secretion in several birds. DBPs have been implicated in the regulation of seasonal physiology, particularly in photoperiod induced gonadal growth and development. Here, we briefly review limited evidence that is available on the roles of these photoreceptors in the regulation of circadian and seasonal physiology, with particular emphasis placed on the DBPs.
Collapse
Affiliation(s)
- Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo US Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
13
|
Valdez DJ, Nieto PS, Díaz NM, Garbarino-Pico E, Guido ME. Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness. FASEB J 2013; 27:2702-12. [PMID: 23585397 DOI: 10.1096/fj.12-222885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All organisms have evolved photodetection systems to synchronize their physiology and behavior with the external light-dark (LD) cycles. In nonmammalian vertebrates, the retina, the pineal organ, and the deep brain can be photoreceptive. Inner retinal photoreceptors transmit photic information to the brain and regulate diverse nonvisual tasks. We previously reported that even after preventing extraretinal photoreception, blind GUCY1* chickens lacking functional visual photoreceptors could perceive light that modulates physiology and behavior. Here we investigated the contribution of different photoreceptive system components (retinal/pineal and deep brain photoreceptors) to the photic entrainment of feeding rhythms. Wild-type (WT) and GUCY1* birds with head occlusion to avoid extraocular light detection synchronized their feeding rhythms to a LD cycle with light >12 lux, whereas at lower intensities blind birds free-ran with a period of >24 h. When released to constant light, both WT and blind chickens became arrhythmic; however, after head occlusion, GUCY1* birds free-ran with a 24.5-h period. In enucleated birds, brain illumination synchronized feeding rhythms, but in pinealectomized birds only responses to high-intensity light (≥800 lux) were observed, revealing functional deep brain photoreceptors. In chickens, a multiple photoreceptive system, including retinal and extraretinal photoreceptors, differentially contributes to the synchronization of circadian feeding behavior.
Collapse
Affiliation(s)
- Diego J Valdez
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
14
|
Botbol M, Cabon P, Kermarrec S, Tordjman S. Biological and psychological rhythms: an integrative approach to rhythm disturbances in autistic disorder. ACTA ACUST UNITED AC 2013; 107:298-309. [PMID: 23542543 DOI: 10.1016/j.jphysparis.2013.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep-wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep-wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach.
Collapse
Affiliation(s)
- Michel Botbol
- Laboratoire Psychologie de la Perception, Université Paris Descartes et CNRS UMR 8158, Paris, France.
| | | | | | | |
Collapse
|
15
|
Valdez DJ, Garbarino-Pico E, Díaz NM, Silvestre DC, Guido ME. Differential Regulation of ArylalkylamineN-Acetyltransferase Activity in Chicken Retinal Ganglion Cells by Light and Circadian Clock. Chronobiol Int 2012; 29:1011-20. [DOI: 10.3109/07420528.2012.707160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Expression of novel opsins and intrinsic light responses in the mammalian retinal ganglion cell line RGC-5. Presence of OPN5 in the rat retina. PLoS One 2011; 6:e26417. [PMID: 22022612 PMCID: PMC3195719 DOI: 10.1371/journal.pone.0026417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/26/2011] [Indexed: 02/01/2023] Open
Abstract
The vertebrate retina is known to contain three classes of photoreceptor cells: cones and rods responsible for vision, and intrinsically photoresponsive retinal ganglion cells (RGCs) involved in diverse non-visual functions such as photic entrainment of daily rhythms and pupillary light responses. In this paper we investigated the potential intrinsic photoresponsiveness of the rat RGC line, RGC-5, by testing for the presence of visual and non-visual opsins and assessing expression of the immediate-early gene protein c-Fos and changes in intracellular Ca2+mobilization in response to brief light pulses. Cultured RGC-5 cells express a number of photopigment mRNAs such as retinal G protein coupled receptor (RGR), encephalopsin/panopsin (Opn3), neuropsin (Opn5) and cone opsin (Opn1mw) but not melanopsin (Opn4) or rhodopsin. Opn5 immunoreactivity was observed in RGC-5 cells and in the inner retina of rat, mainly localized in the ganglion cell layer (GCL). Furthermore, white light pulses of different intensities and durations elicited changes both in intracellular Ca2+ levels and in the induction of c-Fos protein in RGC-5 cell cultures. The results demonstrate that RGC-5 cells expressing diverse putative functional photopigments display intrinsic photosensitivity which accounts for the photic induction of c-Fos protein and changes in intracellular Ca2+ mobilization. The presence of Opn5 in the GCL of the rat retina suggests the existence of a novel type of photoreceptor cell.
Collapse
|
17
|
Kang SW, Leclerc B, Kosonsiriluk S, Mauro LJ, Iwasawa A, El Halawani ME. Melanopsin expression in dopamine-melatonin neurons of the premammillary nucleus of the hypothalamus and seasonal reproduction in birds. Neuroscience 2010; 170:200-13. [PMID: 20620198 DOI: 10.1016/j.neuroscience.2010.06.082] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/27/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022]
Abstract
Melanopsin (OPN4) is a photoreceptive molecule regulating circadian systems in mammals. Previous studies from our laboratory have shown that co-localized dopamine-melatonin (DA-MEL) neurons in the hypothalamic premammillary nucleus (PMM) are putatively photosensitive and exhibit circadian rhythms in DAergic and MELergic activities. This study investigates turkey OPN4x (tOPN4x) mRNA distribution in the hypothalamus and brainstem, and characterizes its expression in PMM DA-MEL neurons, using in situ hybridization (ISH), immunocytochemistry (ICC), double-label ISH/ICC, and real time-PCR. The mRNA encoding tOPN4x was found in anatomically discrete areas in or near the hypothalamus and the brainstem, including nucleus preopticus medialis (POM), nucleus septalis lateralis (SL), PMM and the pineal gland. Double ICC, using tyrosine hydroxylase (TH, the rate limiting enzyme in DA synthesis)-and OPN4x antibodies, confirmed the existence of OPN4x protein in DA-MEL neurons. Also, tOPN4x mRNA expression was verified with double ISH/ICC using tOPN4x mRNA and TH immunoreactivity. PMM and pineal gland tOPN4x mRNA expression levels were diurnally high during the night and low during the day. A light pulse provided to short day photosensitive hens during the photosensitive phase at night significantly down-regulated tOPN4x expression. The expression level of tOPN4x mRNA in PMM DA-MEL neurons of photorefractory hens was significantly lower as compared with that of short or long day photosensitive hens. The results implicate tOPN4x in hypothalamic PMM DA-MEL neurons as an important component of the photoreceptive system regulating reproductive activity in temperate zone birds.
Collapse
Affiliation(s)
- S W Kang
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|