1
|
Zhang X, Wang H, Cai X, Zhang A, Liu E, Li Z, Jiang T, Li D, Ding W. α7nAChR Activation Combined with Endothelial Progenitor Cell Transplantation Attenuates Lung Injury in Diabetic Rats with Sepsis through the NF-κB Pathway. Inflammation 2024; 47:1344-1355. [PMID: 38302679 DOI: 10.1007/s10753-024-01980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Chronic diabetes mellitus compromises the vascular system, which causes organ injury, including in the lung. Due to the strong compensatory ability of the lung, patients always exhibit subclinical symptoms. Once sepsis occurs, the degree of lung injury is more severe under hyperglycemic conditions. The α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulating inflammation and metabolism and can improve endothelial progenitor cell (EPC) functions. In the present study, lung injury caused by sepsis was compared between diabetic rats and normal rats. We also examined whether α7nAChR activation combined with EPC transplantation could ameliorate lung injury in diabetic sepsis rats. A type 2 diabetic model was induced in rats via a high-fat diet and streptozotocin. Then, a rat model of septic lung injury was established by intraperitoneal injection combined with endotracheal instillation of LPS. The oxygenation indices, wet-to-dry ratios, and histopathological scores of the lungs were tested after PNU282987 treatment and EPC transplantation. IL-6, IL-8, TNF-α, and IL-10 levels were measured. Caspase-3, Bax, Bcl-2, and phosphorylated NF-κB (p-NF-κB) levels were determined by blotting. Sepsis causes obvious lung injury, which is exacerbated by diabetic conditions. α7nAChR activation and endothelial progenitor cell transplantation reduced lung injury in diabetic sepsis rats, alleviating inflammation and decreasing apoptosis. This treatment was more effective when PNU282987 and endothelial progenitor cells were administered together. p-NF-κB levels decreased following treatment with PNU282987 and EPCs. In conclusion, α7nAChR activation combined with EPC transplantation can alleviate lung injury in diabetic sepsis rats through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Haixu Wang
- Department of Anesthesiology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xuemin Cai
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Aijia Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Enran Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Zhiyuan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Tao Jiang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Dongmei Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Wengang Ding
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
2
|
Gandasasmita N, Li J, Loane DJ, Semple BD. Experimental Models of Hospital-Acquired Infections After Traumatic Brain Injury: Challenges and Opportunities. J Neurotrauma 2024; 41:752-770. [PMID: 37885226 DOI: 10.1089/neu.2023.0453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Patients hospitalized after a moderate or severe traumatic brain injury (TBI) are at increased risk of nosocomial infections, including bacterial pneumonia and other upper respiratory tract infections. Infections represent a secondary immune challenge for vulnerable TBI patients that can lead to increased morbidity and poorer long-term prognosis. This review first describes the clinical significance of infections after TBI, delving into the known mechanisms by which a TBI can alter systemic immunological responses towards an immunosuppressive state, leading to promotion of increased vulnerability to infections. Pulmonary dysfunction resulting from respiratory tract infections is considered in the context of neurotrauma, including the bidirectional relationship between the brain and lungs. Turning to pre-clinical modeling, current laboratory approaches to study experimental TBI and lung infections are reviewed, to highlight findings from the limited key studies to date that have incorporated both insults. Then, practical decisions for the experimental design of animal studies of post-injury infections are discussed. Variables associated with the host animal, the infectious agent (e.g., species, strain, dose, and administration route), as well as the timing of the infection relative to the injury model are important considerations for model development. Together, the purpose of this review is to highlight the significant clinical need for increased pre-clinical research into the two-hit insult of a hospital-acquired infection after TBI to encourage further scientific enquiry in the field.
Collapse
Affiliation(s)
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Arsava EM, Chang K, Tawakol A, Loggia ML, Goldstein JN, Brown J, Park KY, Singhal AB, Kalpathy-Cramer J, Sorensen AG, Rosen BR, Samuels MA, Ay H. Stroke-Related Visceral Alterations: A Voxel-Based Neuroanatomic Localization Study. Ann Neurol 2023; 94:1155-1163. [PMID: 37642641 PMCID: PMC10841239 DOI: 10.1002/ana.26785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Functional and morphologic changes in extracranial organs can occur after acute brain injury. The neuroanatomic correlates of such changes are not fully known. Herein, we tested the hypothesis that brain infarcts are associated with cardiac and systemic abnormalities (CSAs) in a regionally specific manner. METHODS We generated voxelwise p value maps of brain infarcts for poststroke plasma cardiac troponin T (cTnT) elevation, QTc prolongation, in-hospital infection, and acute stress hyperglycemia (ASH) in 1,208 acute ischemic stroke patients prospectively recruited into the Heart-Brain Interactions Study. We examined the relationship between infarct location and CSAs using a permutation-based approach and identified clusters of contiguous voxels associated with p < 0.05. RESULTS cTnT elevation not attributable to a known cardiac reason was detected in 5.5%, QTc prolongation in the absence of a known provoker in 21.2%, ASH in 33.9%, and poststroke infection in 13.6%. We identified significant, spatially segregated voxel clusters for each CSA. The clusters for troponin elevation and QTc prolongation mapped to the right hemisphere. There were 3 clusters for ASH, the largest of which was in the left hemisphere. We found 2 clusters for poststroke infection, one associated with pneumonia in the left and one with urinary tract infection in the right hemisphere. The relationship between infarct location and CSAs persisted after adjusting for infarct volume. INTERPRETATION Our results show that there are discrete regions of brain infarcts associated with CSAs. This information could be used to bootstrap toward new markers for better differentiation between neurogenic and non-neurogenic mechanisms of poststroke CSAs. ANN NEUROL 2023;94:1155-1163.
Collapse
Affiliation(s)
- Ethem Murat Arsava
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA, USA
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division and Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston MA, USA
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA, USA
| | - Joshua N. Goldstein
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James Brown
- School of Computer Science, University of Lincoln, Lincoln, United Kingdom
| | - Kwang-Yeol Park
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA, USA
- Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Aneesh B. Singhal
- Department of Neurology, Massachusetts General Hospital, Boston MA, USA
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA, USA
| | - Alma Gregory Sorensen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA, USA
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA, USA
| | | | - Hakan Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA, USA
| |
Collapse
|
4
|
Zhi YK, Li J, Yi L, Zhu RL, Luo JF, Shi QP, Bai SS, Li YW, Du Q, Cai JZ, Liu L, Wang PX, Zhou H, Dong Y. Sinomenine inhibits macrophage M1 polarization by downregulating α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154050. [PMID: 35397284 DOI: 10.1016/j.phymed.2022.154050] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sinomenine (SIN) is an anti-inflammatory drug that has been used for decades in China to treat arthritis. In a previous study, SIN acted on α7 nicotinic acetylcholine receptor (α7nAChR) to inhibit inflammatory responses in macrophages, which indicates a new anti-inflammatory mechanism of SIN. However, the level of α7nAChR was increased in the inflammatory responses and was downregulated by SIN in vitro, so the underlying mechanisms of SIN acting on α7nAChR remain unclear. PURPOSE To analyze the role of α7nAChR in inflammation and the effect and mechanism of SIN regulation of α7nAChR. METHODS The effects of SIN on α7nAChR in endotoxemic mice and LPS-stimulated macrophages were observed. Nicotine (Nic) was used as a positive control, and berberine (Ber) was used as a negative control targeting α7nAChR. The antagonists of α7nAChR, α-bungarotoxin (BTX) and mecamylamine (Me), were used to block α7nAChR. In RAW264.7 macrophage cells in vitro, α7nAChR short hairpin RNA (shRNA) was used to knock down α7nAChR. Macrophage polarization was analyzed by the detection of TNF-α, IL-6, iNOS, IL-10, Arg-1, and Fizz1. U0126 was used to block ERK phosphorylation. The cytokines α7nAChR, ERK1/2, p-ERK1/2 and Egr-1 were detected. RESULTS SIN decreased the levels of TNF-α, IL-6 and the expression of α7nAChR increased by LPS in endotoxemic mice. The above effects of SIN were attenuated by BTX. In the α7nAChR shRNA transfected RAW264.7 cells, compared with the control, α7nAChR was knocked down, and M1 phenotype markers (including TNF-α, IL-6, and iNOS) were significantly downregulated, whereas M2 phenotype markers (including IL-10, Arg-1, and Fizz1) were significantly upregulated when stimulated by LPS. SIN inhibited the expression of p-ERK1/2 and the transcription factor Egr-1 induced by LPS in RAW264.7 cells, and the above effects of SIN were attenuated by BTX. The expression of α7nAChR was suppressed by U0126, which lessened the expression of p-ERK1/2 and Egr-1. CONCLUSIONS SIN acts on α7nAChR to inhibit inflammatory responses and downregulates high expression of α7nAChR in vivo and in vitro. The increase of α7nAChR expression is correlated with inflammatory responses and participates in macrophage M1 polarization. SIN downregulates α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1, which contributes to inhibiting macrophage M1 polarization and inflammatory responses.
Collapse
Affiliation(s)
- Ying-Kun Zhi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Lang Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Rui-Li Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jin-Fang Luo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China
| | - Qing-Ping Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Sha-Sha Bai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Yan-Wu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jia-Zhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China
| | - Pei-Xun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China.
| |
Collapse
|
5
|
Gradek-Kwinta E, Slowik A, Dziedzic T. The use of anticholinergic medication is associated with an increased risk of stroke-associated pneumonia. Aging Clin Exp Res 2022; 34:1935-1938. [PMID: 35416612 DOI: 10.1007/s40520-022-02123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pneumonia is a frequent medical complication after stroke. A few studies showed that the use of anticholinergic medication is associated with a higher risk of community acquired pneumonia in the elderly. We aimed to determine if there is any association between anticholinergic medication used before stroke and stroke-associated pneumonia (SAP). METHODS We analysed prospectively collected data of 675 patients with acute stroke (mean age 71.4 ± 13.3; 53.1% female). We used the Anticholinergic Drug Scale to assess anticholinergic exposure during a month preceding stroke onset. RESULTS We diagnosed SAP in 14.7% of patients. The use of anticholinergic medication was associated with an elevated risk of SAP (OR 2.56, 95% CI 1.59-4.11, P < 0.01) in univariate analysis. This association remained significant in multivariable analysis adjusted for age, stroke severity, atrial fibrillation, previous myocardial infarction and respiratory tract diseases (OR 2.06, 95% CI 1.01-4.22, P = 0.04). CONCLUSIONS The use of anticholinergic medication before stroke is associated with an increased risk of SAP.
Collapse
Affiliation(s)
- Elżbieta Gradek-Kwinta
- Department of Neurology, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503, Kraków, Poland
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503, Kraków, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503, Kraków, Poland.
| |
Collapse
|
6
|
Westendorp WF, Dames C, Nederkoorn PJ, Meisel A. Immunodepression, Infections, and Functional Outcome in Ischemic Stroke. Stroke 2022; 53:1438-1448. [PMID: 35341322 DOI: 10.1161/strokeaha.122.038867] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke remains one of the main causes of mortality and morbidity worldwide. Immediately after stroke, a neuroinflammatory process starts in the brain, triggering a systemic immunodepression mainly through excessive activation of the autonomous nervous system. Manifestations of immunodepression include lymphopenia but also dysfunctional innate and adaptive immune cells. The resulting impaired antibacterial defenses render patients with stroke susceptible to infections. In addition, other risk factors like stroke severity, dysphagia, impaired consciousness, mechanical ventilation, catheterization, and older age predispose stroke patients for infections. Most common infections are pneumonia and urinary tract infection, both occur in ≈10% of the patients. Especially pneumonia increases unfavorable outcome and mortality in patients with stroke; systemic effects like hypotension, fever, delay in rehabilitation are thought to play a crucial role. Experimental and clinical data suggest that systemic infections enhance autoreactive immune responses against brain antigens and thus negatively affect outcome but convincing evidence is lacking. Prevention of poststroke infections by preventive antibiotic therapy did not improve functional outcome after stroke. Immunomodulatory approaches counteracting immunodepression to prevent stroke-associated pneumonia need to account for neuroinflammation in the ischemic brain and avoid further tissue damage. Experimental studies discovered interesting targets, but these have not yet been investigated in patients with stroke. A better understanding of the pathobiology may help to develop optimized approaches of preventive antibiotic therapy or immunomodulation to effectively prevent stroke-associated pneumonia while improving long-term outcome after stroke. In this review, we aim to characterize epidemiology, risk factors, cause, diagnosis, clinical presentation, and potential treatment of poststroke immunosuppression and associated infections.
Collapse
Affiliation(s)
- Willeke F Westendorp
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, the Netherlands (W.F.W., P.J.N.)
| | - Claudia Dames
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Germany (C.D., A.M.)
| | - Paul J Nederkoorn
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, the Netherlands (W.F.W., P.J.N.)
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Germany (C.D., A.M.)
| |
Collapse
|
7
|
Faura J, Bustamante A, Miró-Mur F, Montaner J. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J Neuroinflammation 2021; 18:127. [PMID: 34092245 PMCID: PMC8183083 DOI: 10.1186/s12974-021-02177-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
Stroke produces a powerful inflammatory cascade in the brain, but also a suppression of the peripheral immune system, which is also called stroke-induced immunosuppression (SIIS). The main processes that lead to SIIS are a shift from a lymphocyte phenotype T-helper (Th) 1 to a Th2 phenotype, a decrease of the lymphocyte counts and NK cells in the blood and spleen, and an impairment of the defense mechanisms of neutrophils and monocytes. The direct clinical consequence of SIIS in stroke patients is an increased susceptibility to stroke-associated infections, which is enhanced by clinical factors like dysphagia. Among these infections, stroke-associated pneumonia (SAP) is the one that accounts for the highest impact on stroke outcome, so research is focused on its early diagnosis and prevention. Biomarkers indicating modifications in SIIS pathways could have an important role in the early prediction of SAP, but currently, there are no individual biomarkers or panels of biomarkers that are accurate enough to be translated to clinical practice. Similarly, there is still no efficient therapy to prevent the onset of SAP, and clinical trials testing prophylactic antibiotic treatment and β-blockers have failed. However, local immunomodulation could open up a new research opportunity to find a preventive therapy for SAP. Recent studies have focused on the pulmonary immune changes that could be caused by stroke similarly to other acquired brain injuries. Some of the traits observed in animal models of stroke include lung edema and inflammation, as well as inflammation of the bronchoalveolar lavage fluid.
Collapse
Affiliation(s)
- Júlia Faura
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Stroke Unit, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain.
| | - Francesc Miró-Mur
- Systemic Autoimmune Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Research Program, Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen de la Macarena, Seville, Spain
| |
Collapse
|
8
|
Krishnan S, O’Boyle C, Smith CJ, Hulme S, Allan SM, Grainger JR, Lawrence CB. A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clin Exp Immunol 2021; 203:458-471. [PMID: 33205448 PMCID: PMC7874838 DOI: 10.1111/cei.13551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic immune changes following ischaemic stroke are associated with increased susceptibility to infection and poor patient outcome due to their role in exacerbating the ischaemic injury and long-term disability. Alterations to the abundance or function of almost all components of the immune system post-stroke have been identified, including lymphocytes, monocytes and granulocytes. However, subsequent infections have often confounded the identification of stroke-specific effects. Global understanding of very early changes to systemic immunity is critical to identify immune targets to improve clinical outcome. To this end, we performed a small, prospective, observational study in stroke patients with immunophenotyping at a hyperacute time point (< 3 h) to explore early changes to circulating immune cells. We report, for the first time, decreased frequencies of type 1 conventional dendritic cells (cDC1), haematopoietic stem and progenitor cells (HSPCs), unswitched memory B cells and terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA). We also observed concomitant alterations to human leucocyte antigen D-related (HLA-DR), CD64 and CD14 expression in distinct myeloid subsets and a rapid activation of CD4+ T cells based on CD69 expression. The CD69+ CD4+ T cell phenotype inversely correlated with stroke severity and was associated with naive and central memory T (TCM) cells. Our findings highlight early changes in both the innate and adaptive immune compartments for further investigation as they could have implications the development of post-stroke infection and poorer patient outcomes.
Collapse
Affiliation(s)
- S. Krishnan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. O’Boyle
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. J. Smith
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. Hulme
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. M. Allan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - J. R. Grainger
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. B. Lawrence
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
9
|
Islas-Weinstein L, Marquina-Castillo B, Mata-Espinosa D, Paredes-González IS, Chávez J, Balboa L, Marín Franco JL, Guerrero-Romero D, Barrios-Payan JA, Hernandez-Pando R. The Cholinergic System Contributes to the Immunopathological Progression of Experimental Pulmonary Tuberculosis. Front Immunol 2021; 11:581911. [PMID: 33679685 PMCID: PMC7930380 DOI: 10.3389/fimmu.2020.581911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
The cholinergic system is present in both bacteria and mammals and regulates inflammation during bacterial respiratory infections through neuronal and non-neuronal production of acetylcholine (ACh) and its receptors. However, the presence of this system during the immunopathogenesis of pulmonary tuberculosis (TB) in vivo and in its causative agent Mycobacterium tuberculosis (Mtb) has not been studied. Therefore, we used an experimental model of progressive pulmonary TB in BALB/c mice to quantify pulmonary ACh using high-performance liquid chromatography during the course of the disease. In addition, we performed immunohistochemistry in lung tissue to determine the cellular expression of cholinergic system components, and then administered nicotinic receptor (nAChR) antagonists to validate their effect on lung bacterial burden, inflammation, and pro-inflammatory cytokines. Finally, we subjected Mtb cultures to colorimetric analysis to reveal the production of ACh and the effect of ACh and nAChR antagonists on Mtb growth. Our results show high concentrations of ACh and expression of its synthesizing enzyme choline acetyltransferase (ChAT) during early infection in lung epithelial cells and macrophages. During late progressive TB, lung ACh upregulation was even higher and coincided with ChAT and α7 nAChR subunit expression in immune cells. Moreover, the administration of nAChR antagonists increased pro-inflammatory cytokines, reduced bacillary loads and synergized with antibiotic therapy in multidrug resistant TB. Finally, in vitro studies revealed that the bacteria is capable of producing nanomolar concentrations of ACh in liquid culture. In addition, the administration of ACh and nicotinic antagonists to Mtb cultures induced or inhibited bacterial proliferation, respectively. These results suggest that Mtb possesses a cholinergic system and upregulates the lung non-neuronal cholinergic system, particularly during late progressive TB. The upregulation of the cholinergic system during infection could aid both bacterial growth and immunomodulation within the lung to favor disease progression. Furthermore, the therapeutic efficacy of modulating this system suggests that it could be a target for treating the disease.
Collapse
Affiliation(s)
- Leon Islas-Weinstein
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Brenda Marquina-Castillo
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Dulce Mata-Espinosa
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Iris S. Paredes-González
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Jaime Chávez
- Department of Bronchial Hyperreactivity, National Institute of Respiratory Diseases (Mexico), Mexico City, Mexico
| | - Luciana Balboa
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental del National Scientific and Technical Research Council (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - José Luis Marín Franco
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental del National Scientific and Technical Research Council (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Daniel Guerrero-Romero
- Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Alberto Barrios-Payan
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Rogelio Hernandez-Pando
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| |
Collapse
|
10
|
Wirtz MR, Moekotte J, Balvers K, Admiraal MM, Pittet JF, Colombo J, Wagener BM, Goslings JC, Juffermans N. Autonomic nervous system activity and the risk of nosocomial infection in critically ill patients with brain injury. Intensive Care Med Exp 2020; 8:69. [PMID: 33237337 PMCID: PMC7688871 DOI: 10.1186/s40635-020-00359-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Nosocomial infection contributes to adverse outcome after brain injury. This study investigates whether autonomic nervous system activity is associated with a decreased host immune response in patients following stroke or traumatic brain injury (TBI). METHODS A prospective study was performed in adult patients with TBI or stroke who were admitted to the Intensive Care Unit of our tertiary university hospital between 2013 and 2016. Heart rate variability (HRV) was recorded daily and assessed for autonomic nervous system activity. Outcomes were nosocomial infections and immunosuppression, which was assessed ex vivo using whole blood stimulations with plasma of patients with infections, matched non-infected patients and healthy controls. RESULTS Out of 64 brain injured patients, 23 (36%) developed an infection during their hospital stay. The ability of brain injured patients to generate a host response to the bacterial endotoxin lipopolysaccharides (LPS) was diminished compared to healthy controls (p < 0.001). Patients who developed an infection yielded significantly lower TNF-α values (86 vs 192 pg/mL, p = 0.030) and a trend towards higher IL-10 values (122 vs 84 pg/mL, p = 0.071) following ex vivo whole blood stimulations when compared to patients not developing an infection. This decreased host immune response was associated with altered admission HRV values. Brain injured patients who developed an infection showed increased normalized high-frequency power compared to patients not developing an infection (0.54 vs 0.36, p = 0.033), whereas normalized low-frequency power was lower in infected patients (0.46 vs 0.64, p = 0.033). CONCLUSION Brain injured patients developing a nosocomial infection show parasympathetic predominance in the acute phase following brain injury, reflected by alterations in HRV, which parallels a decreased ability to generate an immune response to stimulation with LPS.
Collapse
Affiliation(s)
- Mathijs R Wirtz
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis and Amsterdam University Medical Centers, Amsterdam, The Netherlands. .,Laboratory of Experimental Intensive Care and Anesthesiology of the Amsterdam University Medical Center, Amsterdam, The Netherlands. .,Trauma Unit, Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Jiri Moekotte
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis and Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology of the Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kirsten Balvers
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis and Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology of the Amsterdam University Medical Center, Amsterdam, The Netherlands.,Trauma Unit, Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marjolein M Admiraal
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis and Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology of the Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joe Colombo
- Department of Cardiology, Drexel University College of Medicine, and ANSAR Medical Technologies, Inc., Philadelphia, PA, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Carel Goslings
- Trauma Unit, Department of Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Nicole Juffermans
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis and Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology of the Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gaidhani N, Kem WR, Uteshev VV. Spleen is not required for therapeutic effects of 4OH-GTS-21, a selective α7 nAChR agonist, in the sub-acute phase of ischemic stroke in rats. Brain Res 2020; 1751:147196. [PMID: 33159972 DOI: 10.1016/j.brainres.2020.147196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/15/2022]
Abstract
Acute ischemic stroke (AIS) causes both central and peripheral inflammation, while activation of α7 nicotinic acetylcholine receptors (nAChRs) provides both central and peripheral anti-inflammatory and anti-apoptotic effects. Here, we provide evidence that 4OH-GTS-21, a selective α7 agonist, produces its therapeutic effects via primarily central sites of action because 4OH-GTS-21 was found equally effective in splenectomized and non-spenectomized rats in the sub-acute phase of ischemic stroke (≤1 week). However, the spleen may boost the therapeutic efficacy of 4OH-GTS-21 in certain behavioral tasks as our data also indicated. In our tests, AIS was modeled by transient middle cerebral artery occlusion (tMCAO). Splenectomy was done 2 weeks before tMCAO. We determined that: 1) Daily 4OH-GTS-21 treatments for 7 days after tMCAO significantly reduced neurological deficits and brain injury in both splenectomized and non-spelenectomized rats demonstrating that the spleen is not required for therapeutic benefits of 4OH-GTS-21; 2) The effects of 4OH-GTS-21 in the adhesive sticker removal test were significantly weaker in splenectomized animals suggesting that the spleen boosts the efficacy of 4OH-GTS-21 in the first week after tMCAO; and 3) Ischemic brain injury was not significantly affected by splenectomy in both vehicle-treated and 4OH-GTS-21-treated animals. These data support the hypothesis that the therapeutic efficacy of sub-chronic (≤1 week) 4OH-GTS-21 primarily originates from central sites of action. These results validate brain availability as a critical factor for developing novel α7 ligands for AIS.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
12
|
Wagener BM, Anjum N, Evans C, Brandon A, Honavar J, Creighton J, Traber MG, Stuart RL, Stevens T, Pittet JF. α-Tocopherol Attenuates the Severity of Pseudomonas aeruginosa-induced Pneumonia. Am J Respir Cell Mol Biol 2020; 63:234-243. [PMID: 32243761 DOI: 10.1165/rcmb.2019-0185oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a lethal pathogen that causes high mortality and morbidity in immunocompromised and critically ill patients. The type III secretion system (T3SS) of P. aeruginosa mediates many of the adverse effects of infection with this pathogen, including increased lung permeability in a Toll-like receptor 4/RhoA/PAI-1 (plasminogen activator inhibitor-1)-dependent manner. α-Tocopherol has antiinflammatory properties that may make it a useful adjunct in treatment of this moribund infection. We measured transendothelial and transepithelial resistance, RhoA and PAI-1 activation, stress fiber formation, P. aeruginosa T3SS exoenzyme (ExoY) intoxication into host cells, and survival in a murine model of pneumonia in the presence of P. aeruginosa and pretreatment with α-tocopherol. We found that α-tocopherol alleviated P. aeruginosa-mediated alveolar endothelial and epithelial paracellular permeability by inhibiting RhoA, in part, via PAI-1 activation, and increased survival in a mouse model of P. aeruginosa pneumonia. Furthermore, we found that α-tocopherol decreased the activation of RhoA and PAI-1 by blocking the injection of T3SS exoenzymes into alveolar epithelial cells. P. aeruginosa is becoming increasingly antibiotic resistant. We provide evidence that α-tocopherol could be a useful therapeutic agent for individuals who are susceptible to infection with P. aeruginosa, such as those who are immunocompromised or critically ill.
Collapse
Affiliation(s)
- Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine.,Center for Free Radical Biology, and
| | - Naseem Anjum
- Department of Anesthesiology and Perioperative Medicine
| | - Cilina Evans
- Department of Anesthesiology and Perioperative Medicine
| | | | | | | | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | | | - Troy Stevens
- Department of Pharmacology and Medicine and the Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine.,Center for Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Impact of Key Nicotinic AChR Subunits on Post-Stroke Pneumococcal Pneumonia. Vaccines (Basel) 2020; 8:vaccines8020253. [PMID: 32481512 PMCID: PMC7349987 DOI: 10.3390/vaccines8020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumonia is the most frequent severe medical complication after stroke. An overactivation of the cholinergic signaling after stroke contributes to immunosuppression and the development of spontaneous pneumonia caused by Gram-negative pathogens. The α7 nicotinic acetylcholine receptor (α7nAChR) has already been identified as an important mediator of the anti-inflammatory pathway after stroke. However, whether the α2, α5 and α9/10 nAChR expressed in the lung also play a role in suppression of pulmonary innate immunity after stroke is unknown. In the present study, we investigate the impact of various nAChRs on aspiration-induced pneumonia after stroke. Therefore, α2, α5, α7 and α9/10 nAChR knockout (KO) mice and wild type (WT) littermates were infected with Streptococcus pneumoniae (S. pneumoniae) three days after middle cerebral artery occlusion (MCAo). One day after infection pathogen clearance, cellularity in lung and spleen, cytokine secretion in bronchoalveolar lavage (BAL) and alveolar-capillary barrier were investigated. Here, we found that deficiency of various nAChRs does not contribute to an enhanced clearance of a Gram-positive pathogen causing post-stroke pneumonia in mice. In conclusion, these findings suggest that a single nAChR is not sufficient to mediate the impaired pulmonary defense against S. pneumoniae after experimental stroke.
Collapse
|
14
|
Doran SJ, Henry RJ, Shirey KA, Barrett JP, Ritzel RM, Lai W, Blanco JC, Faden AI, Vogel SN, Loane DJ. Early or Late Bacterial Lung Infection Increases Mortality After Traumatic Brain Injury in Male Mice and Chronically Impairs Monocyte Innate Immune Function. Crit Care Med 2020; 48:e418-e428. [PMID: 32149839 PMCID: PMC7541908 DOI: 10.1097/ccm.0000000000004273] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Respiratory infections in the postacute phase of traumatic brain injury impede optimal recovery and contribute substantially to overall morbidity and mortality. This study investigated bidirectional innate immune responses between the injured brain and lung, using a controlled cortical impact model followed by secondary Streptococcus pneumoniae infection in mice. DESIGN Experimental study. SETTING Research laboratory. SUBJECTS Adult male C57BL/6J mice. INTERVENTIONS C57BL/6J mice were subjected to sham surgery or moderate-level controlled cortical impact and infected intranasally with S. pneumoniae (1,500 colony-forming units) or vehicle (phosphate-buffered saline) at 3 or 60 days post-injury. MAIN RESULTS At 3 days post-injury, S. pneumoniae-infected traumatic brain injury mice (TBI + Sp) had a 25% mortality rate, in contrast to no mortality in S. pneumoniae-infected sham (Sham + Sp) animals. TBI + Sp mice infected 60 days post-injury had a 60% mortality compared with 5% mortality in Sham + Sp mice. In both studies, TBI + Sp mice had poorer motor function recovery compared with TBI + PBS mice. There was increased expression of pro-inflammatory markers in cortex of TBI + Sp compared with TBI + PBS mice after both early and late infection, indicating enhanced post-traumatic neuroinflammation. In addition, monocytes from lungs of TBI + Sp mice were immunosuppressed acutely after traumatic brain injury and could not produce interleukin-1β, tumor necrosis factor-α, or reactive oxygen species. In contrast, after delayed infection monocytes from TBI + Sp mice had higher levels of interleukin-1β, tumor necrosis factor-α, and reactive oxygen species when compared with Sham + Sp mice. Increased bacterial burden and pathology was also found in lungs of TBI + Sp mice. CONCLUSIONS Traumatic brain injury causes monocyte functional impairments that may affect the host's susceptibility to respiratory infections. Chronically injured mice had greater mortality following S. pneumoniae infection, which suggests that respiratory infections even late after traumatic brain injury may pose a more serious threat than is currently appreciated.
Collapse
Affiliation(s)
- Sarah J Doran
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | | | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
15
|
Semerano A, Strambo D, Martino G, Comi G, Filippi M, Roveri L, Bacigaluppi M. Leukocyte Counts and Ratios Are Predictive of Stroke Outcome and Hemorrhagic Complications Independently of Infections. Front Neurol 2020; 11:201. [PMID: 32308640 PMCID: PMC7145963 DOI: 10.3389/fneur.2020.00201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Ischemic stroke patients show alterations in peripheral leukocyte counts that may result from the sterile inflammation response as well as the occurrence of early infections. We here aimed to determine whether alterations of circulating leukocytes in acute ischemic stroke are associated with long-term functional outcome and hemorrhagic complications, independently of the occurrence of infections. Methods: Blood laboratory values of patients with acute ischemic stroke, presenting within 4.5 h from symptom onset, were collected. Leukocyte subsets were analyzed in relation to 3-month functional outcome, mortality, and parenchymal hemorrhagic transformation (PH). A multivariable logistic regression analysis, considering the occurrence of early post-stroke infections, was performed for each outcome measure. Results: Five-hundred-ten patients were included in the study. Independently of infections, good functional outcome was associated with a lower neutrophil to lymphocyte ratio (NL-R, OR 0.906 [95% CI 0.822-0.998]), a higher lymphocyte count (OR 1.547 [95% CI 1.051-2.277]), a higher eosinophil count (OR 1.027 [95% CI 1.007-1.048]), and a higher eosinophil to leukocyte ratio (EoLeu-R, OR 1.240 [95% CI 1.071-1.436]) at admission. Death within 3 months was associated with higher NL-R (OR 1.103 [95% CI 1.032-1.179]) as well as with lower eosinophil counts (OR 0.909 [95% CI 0.827-0.999]). Patients developing parenchymal hemorrhagic transformation had higher neutrophil counts (OR 1.420 [95% CI 1.197-1.684]) as well as a higher NL-R (OR 1.192 [95% IC 1.088-1.305]). Conclusion: Leukocyte subtype profiles in the acute phase of ischemic stroke represent a predictor of outcome independently of infections. Stroke-evoked sterile inflammation is a pathophysiological relevant mechanism that deserves further investigation.
Collapse
Affiliation(s)
- Aurora Semerano
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy.,Neurology Department, San Raffaele Hospital, Milan, Italy
| | - Davide Strambo
- Neurology Department, San Raffaele Hospital, Milan, Italy.,Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy.,Neurology Department, San Raffaele Hospital, Milan, Italy
| | | | - Luisa Roveri
- Neurology Department, San Raffaele Hospital, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy.,Neurology Department, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
16
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Immunology and Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Gomes Ferreira
- Araguaína Medical School, Federal University of Tocantins, Avenida Paraguai s/n, 77824-838, Araguaína, TO, Brazil
| | - Gabriel Shimizu Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Mirian D Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Katiussia Pinho da Silva
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carlos Wagner Wanderley
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José Carlos Alves-Fiho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Sampaio Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA.
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Ke Z, Hu S, Cui W, Sun J, Zhang S, Mak S, Wang J, Tang J, Pang Y, Han Y, Tong K. Bis(propyl)-cognitin potentiates rehabilitation of treadmill exercise after a transient focal cerebral ischemia, possibly via inhibiting NMDA receptor and regulating VEGF expression. Neurochem Int 2019; 128:143-153. [DOI: 10.1016/j.neuint.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022]
|
18
|
Stary CM, Xu L, Voloboueva LA, Alcántara-Hernández M, Arvola OJ, Idoyaga J, Giffard RG. Nursing Markedly Protects Postpartum Mice From Stroke: Associated Central and Peripheral Neuroimmune Changes and a Role for Oxytocin. Front Neurosci 2019; 13:609. [PMID: 31354401 PMCID: PMC6637858 DOI: 10.3389/fnins.2019.00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies demonstrate significant neuroimmune changes in postpartum females, a period that also carries an increased risk of stroke. Oxytocin, a major hormone upregulated in the brains of nursing mothers, has been shown to both modulate neuroinflammation and protect against stroke. In the present study we assessed whether and how nursing modulates the neuroimmune response and injury after stroke. We observed that postpartum nursing mice were markedly protected from 1 h of transient middle cerebral artery occlusion (MCAO) relative to either non-pregnant/non-postpartum or non-nursing (pups removed) postpartum females. Nursing mice also expressed reduced levels of pro-inflammatory cytokines, had decreased migration of blood leukocytes into the brain following MCAO, and displayed peripheral neuroimmune changes characterized by increased spleen weight and increased fraction of spleen monocytes. Intranasal oxytocin treatment in non-pregnant females in part recapitulated the protective and anti-inflammatory effects associated with nursing. In summary, the results of the present study demonstrate that nursing in the postpartum period provides relative protection against transient ischemic stroke associated with decreased brain leukocytes and increased splenic monocytes. These effects appear to be regulated, at least in part, by oxytocin.
Collapse
Affiliation(s)
- Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford, CA, United States
| | - Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford, CA, United States
| | - Ludmilla A Voloboueva
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford, CA, United States
| | - Marcela Alcántara-Hernández
- Department of Microbiology and Immunology, Stanford, CA, United States.,Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Oiva J Arvola
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford, CA, United States
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford, CA, United States.,Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Krishnan S, Lawrence CB. Old Dog New Tricks; Revisiting How Stroke Modulates the Systemic Immune Landscape. Front Neurol 2019; 10:718. [PMID: 31312180 PMCID: PMC6614437 DOI: 10.3389/fneur.2019.00718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Infections in the post-acute phase of cerebral ischaemia impede optimal recovery by exacerbating morbidity and mortality. Our review aims to reconcile the increased infection susceptibility of patients post-stroke by consolidating our understanding of compartmentalised alterations to systemic immunity. Mounting evidence has catalogued alterations to numerous immune cell populations but an understanding of the mechanisms of long-range communication between the immune system, nervous system and other organs beyond the involvement of autonomic signalling is lacking. By taking our cues from established and emerging concepts of neuro-immune interactions, immune-mediated inter-organ cross-talk, innate immune training and the role of microbiota-derived signals in central nervous system (CNS) function we will explore mechanisms of how cerebral ischaemia could shape systemic immune function. In this context, we will also discuss a key question: how are immune requirements critical for mediating repair of the ischaemic insult balanced by the need for anti-microbial immunity post-stroke, given that they are mediated by mutually exclusive immune networks? Our reformed understanding of the immune landscape post-stroke and novel mechanisms at play could guide targeted therapeutic interventions and initiate a step-change in the clinical management of these infectious complications post-stroke.
Collapse
Affiliation(s)
- Siddharth Krishnan
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Samary CS, Ramos AB, Maia LA, Rocha NN, Santos CL, Magalhães RF, Clevelario AL, Pimentel-Coelho PM, Mendez-Otero R, Cruz FF, Capelozzi VL, Ferreira TPT, Koch T, de Abreu MG, Dos Santos CC, Pelosi P, Silva PL, Rocco PRM. Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:249. [PMID: 30290827 PMCID: PMC6173845 DOI: 10.1186/s13054-018-2164-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ischemic stroke causes brain inflammation, which we postulate may result in lung damage. Several studies have focused on stroke-induced immunosuppression and lung infection; however, the possibility that strokes may trigger lung inflammation has been overlooked. We hypothesized that even focal ischemic stroke might induce acute systemic and pulmonary inflammation, thus altering respiratory parameters, lung tissue integrity, and alveolar macrophage behavior. METHODS Forty-eight Wistar rats were randomly assigned to ischemic stroke (Stroke) or sham surgery (Sham). Lung function, histology, and inflammation in the lung, brain, bronchoalveolar lavage fluid (BALF), and circulating plasma were evaluated at 24 h. In vitro, alveolar macrophages from naïve rats (unstimulated) were exposed to serum or BALF from Sham or Stroke animals to elucidate possible mechanisms underlying alterations in alveolar macrophage phagocytic capability. Alveolar macrophages and epithelial and endothelial cells of Sham and Stroke animals were also isolated for evaluation of mRNA expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. RESULTS Twenty-four hours following ischemic stroke, the tidal volume, expiratory time, and mean inspiratory flow were increased. Compared to Sham animals, the respiratory rate and duty cycle during spontaneous breathing were reduced, but this did not affect lung mechanics during mechanical ventilation. Lungs from Stroke animals showed clear evidence of increased diffuse alveolar damage, pulmonary edema, and inflammation markers. This was associated with an increase in ultrastructural damage, as evidenced by injury to type 2 pneumocytes and endothelial cells, cellular infiltration, and enlarged basement membrane thickness. Protein levels of proinflammatory mediators were documented in the lung, brain, and plasma (TNF-α and IL-6) and in BALF (TNF-α). The phagocytic ability of macrophages was significantly reduced. Unstimulated macrophages isolated from naïve rats only upregulated expression of TNF-α and IL-6 following exposure to serum from Stroke rats. Exposure to BALF from Stroke or Sham animals did not change alveolar macrophage behavior, or gene expression of TNF-α and IL-6. IL-6 expression was increased in macrophages and endothelial cells from Stroke animals. CONCLUSIONS In rats, focal ischemic stroke is associated with brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which seems to be promoted by systemic inflammation.
Collapse
Affiliation(s)
- Cynthia S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Alane B Ramos
- Laboratory of Cellular and Molecular Neurobiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lígia A Maia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Cíntia L Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Raquel F Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Amanda L Clevelario
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Pedro M Pimentel-Coelho
- Laboratory of Cellular and Molecular Neurobiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosália Mendez-Otero
- Laboratory of Cellular and Molecular Neurobiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vera L Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana P T Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Thea Koch
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Paolo Pelosi
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università degli Studi di Genova, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
21
|
Jin WN, Ducruet AF, Liu Q, Shi SXY, Waters M, Zou M, Sheth KN, Gonzales R, Shi FD. Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia. FASEB J 2018; 32:2757-2767. [PMID: 29401578 DOI: 10.1096/fj.201700962r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke-induced immune suppression predisposes the host to infections and can contribute to high morbidity and mortality in stroke patients. Because ischemic stroke has a profound effect on the systemic immune response, which may explain the increased susceptibility of stroke patients to infection, an urgent need persists for a better understanding of mechanisms associated with immune suppression; new and effective treatments for stroke can then be identified. NK cells play a key role in early host defense against pathogens by killing infected cells and/or producing cytokines such as IFN-γ. Because the phenotype and function of peripheral NK cells have been widely investigated in ischemic stroke, nCounter Inflammation Gene Array Analysis was used to build immune-related gene profiles of NK cells to comprehensively analyze the molecular signature of NK cells after ischemic brain injury. We observed distinct gene expression profiles reflecting different splenic NK-cell phenotypes and functional properties across the time course of transient middle cerebral artery occlusion (MCAO). Based on gene expression and pathway-network analysis, lower expression levels of signal transducer and activator of transcription-3 (STAT3) were observed in animals with MCAO compared with sham control animals. Genetic activation of STAT3 through the introduction of STAT3 clustered regularly interspaced short palindromic repeats (CRISPR) plasmid prevented the loss of NK-cell-derived IFN-γ production after MCAO, together with reduced bacterial burden and mortality. Our data suggest that brain ischemia impairs NK-cell-mediated immune defense in the periphery, at least in part through the JAK-STAT3 pathway, which can be readdressed by modulating STAT3 activation status.-Jin, W.-N., Ducruet, A. F., Liu, Q., Shi, S. X.-Y., Waters, M., Zou, M., Sheth, K. N., Gonzales, R., Shi, F.-D. Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia.
Collapse
Affiliation(s)
- Wei-Na Jin
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew F Ducruet
- Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Samuel Xiang-Yu Shi
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; and
| | - Michael Waters
- Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ming Zou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rayna Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; and
| | - Fu-Dong Shi
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
22
|
Abe Y, Shimokado K, Fushimi K. Donepezil is associated with decreased in-hospital mortality as a result of pneumonia among older patients with dementia: A retrospective cohort study. Geriatr Gerontol Int 2017; 18:269-275. [PMID: 29139192 DOI: 10.1111/ggi.13177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/31/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
Abstract
AIM Pneumonia is one of the major causes of mortality in older adults. As the average lifespan has extended and new modalities to prevent or treat pneumonia are developed, the factors that affect the length of hospital stay (LHS) and in-hospital mortality of older patients with pneumonia have changed. The object of the present study was to determine the factors associated with LHS and mortality as a result of pneumonia among older patients with dementia. METHODS With a retrospective cohort study design, we used the data derived from the Japanese Administrative Database and diagnosis procedure combination/per diem payment system (DPC/PDPS) database. There were 39 336 admissions of older patients for pneumonia between August 2010 and March 2012. Patients with incomplete data were excluded, leaving 25 602 patients for analysis. RESULTS Having dementia decreased mortality (OR 0.71, P < 0.001) and increased LHS. Multiple logistic regression analysis identified donepezil as an independent factor that decreased mortality in patients with dementia (OR 0.36, P < 0.001). Donepezil was prescribed for 28.7% of these patients, and their mortality rate was significantly lower than those of patients with dementia who were not treated with donepezil and of patients without dementia. The mortality rate was higher for patients with dementia who were not treated with donepezil compared with patients who did not have dementia. All other factors that influenced LHS and mortality were similar to those reported by others. CONCLUSIONS Donepezil seems to decrease in-hospital mortality as a result of pneumonia among older patients with dementia. Geriatr Gerontol Int 2018; 18: 269-275.
Collapse
Affiliation(s)
- Yasuko Abe
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Shimokado
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Hu PJ, Pittet JF, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1-L15. [PMID: 28408366 DOI: 10.1152/ajplung.00485.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Even when patients survive the initial insult, there is significant morbidity and mortality secondary to subsequent pulmonary edema, acute lung injury (ALI), and nosocomial pneumonia. Whereas the relationship between TBI and secondary pulmonary complications is recognized, little is known about the mechanistic interplay of the two phenomena. Changes in mental status secondary to acute brain injury certainly impair airway- and lung-protective mechanisms. However, clinical and translational evidence suggests that more specific neuronal and cellular mechanisms contribute to impaired systemic and lung immunity that increases the risk of TBI-mediated lung injury and infection. To better understand the cellular mechanisms of that immune impairment, we review here the current clinical data that support TBI-induced impairment of systemic and lung immunity. Furthermore, we also review the animal models that attempt to reproduce human TBI. Additionally, we examine the possible role of damage-associated molecular patterns, the chlolinergic anti-inflammatory pathway, and sex dimorphism in post-TBI ALI. In the last part of the review, we discuss current treatments and future pharmacological therapies, including fever control, tracheostomy, and corticosteroids, aimed to prevent and treat pulmonary edema, ALI, and nosocomial pneumonia after TBI.
Collapse
Affiliation(s)
- Parker J Hu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jean-Francois Pittet
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D Kerby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick L Bosarge
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
24
|
Pinheiro NM, Santana FPR, Almeida RR, Guerreiro M, Martins MA, Caperuto LC, Câmara NOS, Wensing LA, Prado VF, Tibério IFLC, Prado MAM, Prado CM. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. FASEB J 2016; 31:320-332. [PMID: 27729414 DOI: 10.1096/fj.201600431r] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/28/2016] [Indexed: 11/11/2022]
Abstract
Nicotinic α-7 acetylcholine receptor (nAChRα7) is a critical regulator of cholinergic anti-inflammatory actions in several diseases, including acute respiratory distress syndrome (ARDS). Given the potential importance of α7nAChR as a therapeutic target, we evaluated whether PNU-282987, an α7nAChR agonist, is effective in protecting the lung against inflammation. We performed intratracheal instillation of LPS to generate acute lung injury (ALI) in C57BL/6 mice. PNU-282987 treatment, either before or after ALI induction, reduced neutrophil recruitment and IL-1β, TNF-α, IL-6, keratinocyte chemoattractant (KC), and IL-10 cytokine levels in the bronchoalveolar lavage fluid (P < 0.05). In addition, lung NF-κB phosphorylation decreased, along with collagen fiber deposition and the number of matrix metalloproteinase-9+ and -2+ cells, whereas the number of tissue inhibitor of metalloproteinase-1+ cells increased (P < 0.05). PNU-282987 treatment also reduced lung mRNA levels and the frequency of M1 macrophages, whereas cells expressing the M2-related markers CD206 and IL-10 increased, suggesting changes in the macrophage profile. Finally, PNU-282987 improved lung function in LPS-treated animals. The collective results suggest that PNU-282987, an agonist of α7nAChR, reduces LPS-induced experimental ALI, thus supporting the notion that drugs that act on α7nAChRs should be explored for ARDS treatment in humans.-Pinheiro, N. M., Santana, F. P. R., Almeida, R. R., Guerreiro, M., Martins, M. A., Caperuto, L. C., Câmara, N. O. S., Wensing, L. A., Prado, V. F., Tibério, I. F. L. C., Prado, M. A. M., Prado, C. M. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile.
Collapse
Affiliation(s)
- Nathalia M Pinheiro
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda P R Santana
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil.,Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | | | - Marina Guerreiro
- Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | - Milton A Martins
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | - Niels O S Câmara
- Department of Immunology, Universidade de São Paulo, São Paulo, Brazil
| | | | - Vânia F Prado
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; and
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Marco Antônio M Prado
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; and
| | - Carla M Prado
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil; .,Department of Bioscience, Federal University of São Paulo, Campus Baixada Santista, Santos, Brazil
| |
Collapse
|
25
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
26
|
Akella A, Deshpande SB. Vagal efferent stimulation protects against Mesobuthus tamulus venom-induced acute respiratory distress syndrome in rats. Toxicon 2015; 108:189-201. [PMID: 26525658 DOI: 10.1016/j.toxicon.2015.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022]
Abstract
Mesobuthus tamulus (MBT) venom and oleic acid (OA) have been shown to produce acute respiratory distress syndrome (ARDS) involving different mechanisms. The role of vagally mediated anti-inflammatory pathway in ARDS is poorly understood. Therefore, the effects of vagal efferent stimulation on these two models of ARDS were examined. Experiments were performed on anesthetized adult rats. Parameters like ventilatory changes (respiratory frequency and minute ventilation), hypoxemic status (PaO2/FiO2 ratio; P/F ratio), survival time, pulmonary water content and histopathological evidences of lung injury were determined to assess the severity of ARDS. In addition, heart rate (HR) and mean arterial pressure (MAP) were monitored. Injection of OA/MBT venom produced respiratory alterations, hypoxemia, pulmonary edema and histopathological changes demonstrating the development of ARDS. In both the groups, animals died around 60 min. Tachypnea and hyperventilation were seen after OA while bradypnea and hypoventilation were seen after MBT venom. Pulmonary edema was absent in vagotomised animals in MBT venom group but not in OA group. Further, electrical stimulation of the cut peripheral ends of vagii prolonged the survival time and attenuated all the parameters of MBT venom-induced ARDS significantly. In case of OA, there was improvement in histopathological changes but the survival time of animals was not prolonged. Stimulation of α7-nicotinic receptors (by pretreatment with GTS-21) exacerbated OA as well as MBT venom-induced ARDS. The present results indicate that vagal efferent stimulation protects against MBT venom-induced ARDS.
Collapse
Affiliation(s)
- Aparna Akella
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Shripad B Deshpande
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
27
|
Engel O, Akyüz L, da Costa Goncalves AC, Winek K, Dames C, Thielke M, Herold S, Böttcher C, Priller J, Volk HD, Dirnagl U, Meisel C, Meisel A. Cholinergic Pathway Suppresses Pulmonary Innate Immunity Facilitating Pneumonia After Stroke. Stroke 2015; 46:3232-40. [PMID: 26451017 DOI: 10.1161/strokeaha.115.008989] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Temporary immunosuppression has been identified as a major risk factor for the development of pneumonia after acute central nervous system injury. Although overactivation of the sympathetic nervous system was previously shown to mediate suppression of systemic cellular immune responses after stroke, the role of the parasympathetic cholinergic anti-inflammatory pathway in the antibacterial defense in lung remains largely elusive. METHODS The middle cerebral artery occlusion model in mice was used to examine the influence of the parasympathetic nervous system on poststroke immunosuppression. We used heart rate variability measurement by telemetry, vagotomy, α7 nicotinic acetylcholine receptor-deficient mice, and parasympathomimetics (nicotine, PNU282987) to measure and modulate parasympathetic activity. RESULTS Here, we demonstrate a rapidly increased parasympathetic activity in mice after experimental stroke. Inhibition of cholinergic signaling by either vagotomy or by using α7 nicotinic acetylcholine receptor-deficient mice reversed pulmonary immune hyporesponsiveness and prevented pneumonia after stroke. In vivo and ex vivo studies on the role of α7 nicotinic acetylcholine receptor on different lung cells using bone marrow chimeric mice and isolated primary cells indicated that not only macrophages but also alveolar epithelial cells are a major cellular target of cholinergic anti-inflammatory signaling in the lung. CONCLUSIONS Thus, cholinergic pathways play a pivotal role in the development of pulmonary infections after acute central nervous system injury.
Collapse
Affiliation(s)
- Odilo Engel
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Levent Akyüz
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Andrey C da Costa Goncalves
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Katarzyna Winek
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Claudia Dames
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Mareike Thielke
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Susanne Herold
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Chotima Böttcher
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Josef Priller
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Hans Dieter Volk
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Ulrich Dirnagl
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Christian Meisel
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.)
| | - Andreas Meisel
- From the Department of Experimental Neurology (O.E., K.W., M.T., U.D., A.M.), Department of Neurology (U.D., A.M.), NeuroCure Clinical Research (U.D., A.M.), Institute for Medical Immunology (L.A., C.D., H.D.V., C.M.), BCRT Berlin Brandenburg Centre for Regenerative Medicine (L.A., H.D.V.), Department of Neuropsychiatry and Laboratory of Molecular Psychiatry (C.B., J.P.), and Center for Stroke Research Berlin (O.E., K.W., M.T., U.D., A.M.), Charité University Medicine Berlin, Berlin, Germany; German Center for Neurodegeneration Research (DZNE), partner site Berlin, Germany (J.P., U.D.); Department of Internal Medicine II, Justus-Liebig-University, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL) (S.H.); and Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.C.d.C.G.).
| |
Collapse
|
28
|
Nurulain S, Prytkova T, Sultan AM, Ievglevskyi O, Lorke D, Yang KHS, Petroianu G, Howarth FC, Kabbani N, Oz M. Inhibitory actions of bisabolol on α7-nicotinic acetylcholine receptors. Neuroscience 2015; 306:91-9. [PMID: 26283025 DOI: 10.1016/j.neuroscience.2015.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
Abstract
Bisabolol is a plant-derived monocyclic sesquiterpene alcohol with antinociceptive and antiinflammatory actions. However, molecular targets mediating these effects of bisabolol are poorly understood. In this study, using a two-electrode voltage-clamp and patch-clamp techniques and live cellular calcium imaging, we have investigated the effect of bisabolol on the function of human α7 subunit of nicotinic acetylcholine receptor (nAChR) in Xenopus oocytes, interneurons of rat hippocampal slices. We have found that bisabolol reversibly and concentration dependently (IC50 = 3.1 μM) inhibits acetylcholine (ACh)-induced α7 receptor-mediated currents. The effect of bisabolol was not dependent on the membrane potential. Bisabolol inhibition was not changed by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free solution containing Ba(2+), suggesting that endogenous Ca(2+)-dependent Cl(-) channels are not involved in bisabolol actions. Increasing the concentrations of ACh did not reverse bisabolol inhibition. Furthermore, the specific binding of [(125)I] α-bungarotoxin was not attenuated by bisabolol. Choline-induced currents in CA1 interneurons of rat hippocampal slices were also inhibited with IC50 of 4.6 μM. Collectively, our results suggest that bisabolol directly inhibits α7-nAChRs via a binding site on the receptor channel.
Collapse
Affiliation(s)
- S Nurulain
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - T Prytkova
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - A M Sultan
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - O Ievglevskyi
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - D Lorke
- Department of Cellular Biology & Pharmacology, College of Medicine, Florida International University, Miami, FL 33199, USA
| | - K-H S Yang
- Laboratory of Functional Lipidomics, Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - G Petroianu
- Department of Cellular Biology & Pharmacology, College of Medicine, Florida International University, Miami, FL 33199, USA
| | - F C Howarth
- Laboratory of Functional Lipidomics, Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - N Kabbani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - M Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| |
Collapse
|
29
|
Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model. EUKARYOTIC CELL 2015; 14:834-44. [PMID: 26092919 DOI: 10.1128/ec.00067-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022]
Abstract
Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.
Collapse
|
30
|
Weinstein LI, Revuelta A, Pando RH. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann N Y Acad Sci 2015; 1351:39-51. [PMID: 26378438 DOI: 10.1111/nyas.12792] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies suggest that catecholamines (CAs) and acetylcholine (ACh) play essential roles in the crosstalk between microbes and the immune system. Host cholinergic afferent fibers sense pathogen-associated molecular patterns and trigger efferent cholinergic and catecholaminergic pathways that alter immune cell proliferation, differentiation, and cytokine production. On the other hand, microbes have the ability to produce and degrade ACh and also regulate autogenous functions in response to CAs. Understanding the role played by these neurotransmitters in host-microbe interactions may provide valuable information for the development of novel therapies.
Collapse
Affiliation(s)
- Leon Islas Weinstein
- Department of Pathology, Experimental Pathology Section, The Salvador Zubirán National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
| | - Alberto Revuelta
- Department of Pathology, Experimental Pathology Section, The Salvador Zubirán National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
| | - Rogelio Hernandez Pando
- Department of Pathology, Experimental Pathology Section, The Salvador Zubirán National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
| |
Collapse
|
31
|
PNU-282987 improves the hemodynamic parameters by alleviating vasopermeability and tissue edema in dogs subjected to a lethal burns shock. J Burn Care Res 2015; 35:e197-204. [PMID: 23877136 DOI: 10.1097/bcr.0b013e31829afe46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive inflammation and high vasopermeability can lead to blood volume loss and tissue edema, which can affect the resuscitation and prognosis for serious burn patients. In this experiment, we investigated the effect of PNU-282987, an α7 nicotine cholinergic receptor agonist on the hemodynamic parameters and survival rate by inhibiting vasopermeability and tissue edema during the fluid resuscitation for lethal burn shock. Forty Beagle dogs with intubation of the carotid artery and jugular vein 24 hours before the injury were subjected to 50% TBSA full-thickness burns, and were randomly divided into following four groups: no resuscitation group (group NR), venous fluid resuscitation group (group R), PNU-282987 treatment group (group P), and fluid resuscitation group plus PNU-282987 group (group RP), with 10 dogs in each group. Hemodynamic variables and biochemical parameters were determined with animals in a conscious and cooperative state. The plasma volume and the vasopermeability were determined by indocyanine green and fluorescein isothiocyanate-dextran, respectively. The level of tumor necrosis factor-α and interleukin-1β in plasma, and the water content of different organs were also determined. The mean arterial pressure, cardiac output, and plasma volume of all dogs decreased significantly, and the lung extravascular water index and pulmonary vascular permeability index increased remarkably after burn. The hemodynamic parameters deteriorated continually in group N dogs, and then anuria, hyperlactacidemia, and multiple organ dysfunctions developed. The mean arterial pressure and cardiac output of dogs in group R and group RP returned to preinjury levels at 48 hours postburn. The lung extravascular water index and pulmonary vascular permeability in group R were higher than those before preinjury. The dogs in group RP were found to have a significant increase in plasma volume and urine output, and a remarkable decrease in the levels of tumor necrosis factor-α, interleukin-1α, lactic acid, and organ functions compared with those of group R (P <.05). The survival rate of RP group (100%; 10/10) was significantly higher than that of group N (0; 0/10), group P (20%; 2/10), and group R (60%; 6/10). PNU-282987 combined with intravenous fluid resuscitation significantly improved hemodynamics and the survival rate in the early period after this lethal burn shock. The mechanism may be attributable to the lowering of the level of proinflammatory mediators, amelioration of vasopermeability-induced visceral edema, less of blood volume loss, and protection of vital organs through activation of cholinergic anti-inflammatory pathway.
Collapse
|
32
|
Verhaegh R, Petrat F, de Groot H. Attenuation of intestinal ischemic injury and shock by physostigmine. J Surg Res 2015; 194:405-414. [DOI: 10.1016/j.jss.2014.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 10/01/2014] [Accepted: 11/04/2014] [Indexed: 01/16/2023]
|
33
|
Ouyang YB, Stary CM, White RE, Giffard RG. The use of microRNAs to modulate redox and immune response to stroke. Antioxid Redox Signal 2015; 22:187-202. [PMID: 24359188 PMCID: PMC4281877 DOI: 10.1089/ars.2013.5757] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cerebral ischemia is a major cause of death and disability throughout the world, yet therapeutic options remain limited. The interplay between the cellular redox state and the immune response plays a critical role in determining the extent of neural cell injury after ischemia and reperfusion. Excessive amounts of reactive oxygen species (ROS) generated by mitochondria and other sources act both as triggers and effectors of inflammation. This review will focus on the interplay between these two mechanisms. RECENT ADVANCES MicroRNAs (miRNAs) are important post-transcriptional regulators that interact with multiple target messenger RNAs coordinately regulating target genes, including those involved in controlling mitochondrial function, redox state, and inflammatory pathways. This review will focus on the regulation of mitochondria, ROS, and inflammation by miRNAs in the chain of deleterious intra- and intercellular events that lead to brain cell death after cerebral ischemia. CRITICAL ISSUES Although pretreatment using miRNAs was effective in cerebral ischemia in rodents, testing treatment after the onset of ischemia is an essential next step in the development of acute stroke treatment. In addition, miRNA formulation and delivery into the CNS remain a challenge in the clinical translation of miRNA therapy. FUTURE DIRECTIONS Future research should focus on post-treatment and potential clinical use of miRNAs.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine , Stanford, California
| | | | | | | |
Collapse
|
34
|
Vagus nerve through α7 nAChR modulates lung infection and inflammation: models, cells, and signals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:283525. [PMID: 25136575 PMCID: PMC4127262 DOI: 10.1155/2014/283525] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/27/2022]
Abstract
Cholinergic anti-inflammatory pathway (CAP) bridges immune and nervous systems and plays pleiotropic roles in modulating inflammation in animal models by targeting different immune, proinflammatory, epithelial, endothelial, stem, and progenitor cells and signaling pathways. Acute lung injury (ALI) is a devastating inflammatory disease. It is pathogenically heterogeneous and involves many cells and signaling pathways. Here, we emphasized the research regarding the modulatory effects of CAP on animal models, cell population, and signaling pathways that involved in the pathogenesis of ALI. By comparing the differential effects of CAP on systemic and pulmonary inflammation, we postulated that a pulmonary parasympathetic inflammatory reflex is formed to sense and respond to pathogens in the lung. Work targeting the formation and function of pulmonary parasympathetic inflammatory reflex would extend our understanding of how vagus nerve senses, recognizes, and fights with pathogens and inflammatory responses.
Collapse
|
35
|
Park S, Kim YJ, Jon S. A high-affinity peptide for nicotinic acetylcholine receptor-α1 and its potential use in pulmonary drug delivery. J Control Release 2014; 192:141-7. [PMID: 25025285 DOI: 10.1016/j.jconrel.2014.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
Abstract
In pulmonary drug delivery, the ability of an affinity molecule to bind to lung epithelium may prolong retention of therapeutic molecules within the lung and consequently yield higher overall bioavailability. To this end, we screened a library of structurally constrained peptides ('aptides') using phage-display technology and identified a high-affinity aptide for the mouse nicotinic acetylcholine receptor-α1 (nAChR-α1). The isolated aptide (APTnAChR-α1) bound to its target protein with high affinity (Kd=47nM). Alexa 488-labeled APTnAChR-α1 showed preferential binding to nAChR-α1-positive mouse lung epithelial cells and mouse muscle cells. Furthermore, the aptide exhibited substantial binding in nAChR-α1-positive tissue sections of muscle, trachea and lung, but not in liver, kidney or spleen tissues, which are nAChR-α1-negative. In an in vivo experiment, a high-intensity fluorescence signal was observed in the entire lung up to 50h after tracheal injection of Cy5.5-APTnAChR-α1, whereas most of the fluorescence signal from a Cy5.5-labeled scrambled peptide washed out within 20h after injection. Taken together, these results indicate that the high-affinity peptide for nAChR-α1 identified here bound tightly to lung epithelium and thus exhibited a long residence time in this tissue, suggesting that the peptide could be used for pulmonary delivery of active pharmaceuticals.
Collapse
Affiliation(s)
- Seho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 500-712, Republic of Korea
| | - Young-Jun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 500-712, Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
36
|
Heat-shock response increases lung injury caused by Pseudomonas aeruginosa via an interleukin-10-dependent mechanism in mice. Anesthesiology 2014; 120:1450-62. [PMID: 24667831 DOI: 10.1097/aln.0000000000000235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The heat-shock response (HSR) protects from insults, such as ischemia-reperfusion injury, by inhibiting signaling pathways activated by sterile inflammation. However, the mechanisms by which the HSR activation would modulate lung damage and host response to a bacterial lung infection remain unknown. METHODS HSR was activated with whole-body hyperthermia or by intraperitoneal geldanamycin in mice that had their lungs instilled with Pseudomonas aeruginosa 24 h later (at least six mice per experimental group). Four hours after instillation, lung endothelial and epithelial permeability, bacterial counts, protein levels in bronchoalveolar lavage fluid, and lung myeloperoxidase activity were measured. Mortality rate 24 h after P. aeruginosa instillation was recorded. The HSR effect on the release of interleukin-10 and killing of P. aeruginosa bacteria by a mouse alveolar macrophage cell line and on neutrophil phagocytosis was also examined. RESULTS HSR activation worsened lung endothelial (42%) and epithelial permeability (50%) to protein, decreased lung bacterial clearance (71%), and increased mortality (50%) associated with P. aeruginosa pneumonia, an effect that was not observed in heat-shock protein-72-null mice. HSR-mediated decrease in neutrophil phagocytosis (69%) and bacterial killing (38%) by macrophages was interleukin-10 dependent, a mechanism confirmed by increased lung bacterial clearance and decreased mortality (70%) caused by P. aeruginosa pneumonia in heat-shocked interleukin-10-null mice. CONCLUSIONS Prior HSR activation worsens lung injury associated with P. aeruginosa pneumonia in mice via heat-shock protein-72- and interleukin-10-dependent mechanisms. These results provide a novel mechanism for the immunosuppression observed after severe trauma that is known to activate HSR in humans.
Collapse
|
37
|
Ouyang YB, Giffard RG. MicroRNAs regulate the chaperone network in cerebral ischemia. Transl Stroke Res 2013; 4:693-703. [PMID: 24323423 PMCID: PMC3864745 DOI: 10.1007/s12975-013-0280-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/17/2023]
Abstract
The highly evolutionarily conserved 70 kDa heat shock protein (HSP70) family was first understood for its role in protein folding and response to stress. Subsequently, additional functions have been identified for it in regulation of organelle interaction, of the inflammatory response, and of cell death and survival. Overexpression of HSP70 family members is associated with increased resistance to and improved recovery from cerebral ischemia. MicroRNAs (miRNAs) are important posttranscriptional regulators that interact with multiple target messenger RNAs (mRNA) coordinately regulating target genes, including chaperones. The members of the HSP70 family are now appreciated to work together as networks to facilitate organelle communication and regulate inflammatory signaling and cell survival after cerebral ischemia. This review will focus on the new concept of the role of the chaperone network in the organelle network and its novel regulation by miRNA.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, S272A and S290, Stanford, CA, 94305-5117, USA,
| | | |
Collapse
|