1
|
Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity. Nat Commun 2022; 13:5192. [PMID: 36057627 PMCID: PMC9440928 DOI: 10.1038/s41467-022-32846-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/19/2022] [Indexed: 02/08/2023] Open
Abstract
Dynamic regulation of intestinal epithelial cell (IEC) differentiation is crucial for both homeostasis and the response to helminth infection. SIRT6 belongs to the NAD+-dependent deacetylases and has established diverse roles in aging, metabolism and disease. Here, we report that IEC Sirt6 deletion leads to impaired tuft cell development and type 2 immunity in response to helminth infection, thereby resulting in compromised worm expulsion. Conversely, after helminth infection, IEC SIRT6 transgenic mice exhibit enhanced epithelial remodeling process and more efficient worm clearance. Mechanistically, Sirt6 ablation causes elevated Socs3 expression, and subsequently attenuated tyrosine 641 phosphorylation of STAT6 in IECs. Notably, intestinal epithelial overexpression of constitutively activated STAT6 (STAT6vt) in mice is sufficient to induce the expansion of tuft and goblet cell linage. Furthermore, epithelial STAT6vt overexpression remarkedly reverses the defects in intestinal epithelial remodeling caused by Sirt6 ablation. Our results reveal a novel function of SIRT6 in regulating intestinal epithelial remodeling and mucosal type 2 immunity in response to helminth infection. Host defense against helminth infection is mediated by mucosal type 2 immunity. Using gain- and loss-of-function mouse models, and mouse intestinal organoids, Xiong et al. show that SIRT6 modulates tuft and goblet cell expansion in intestinal epithelium by activating STAT6 to maintain type 2 mucosal immunity in response to helminth infection.
Collapse
|
2
|
Hynds RE, Gowers KHC, Nigro E, Butler CR, Bonfanti P, Giangreco A, Prêle CM, Janes SM. Cross-talk between human airway epithelial cells and 3T3-J2 feeder cells involves partial activation of human MET by murine HGF. PLoS One 2018; 13:e0197129. [PMID: 29771943 PMCID: PMC5957441 DOI: 10.1371/journal.pone.0197129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/26/2018] [Indexed: 01/13/2023] Open
Abstract
There is considerable interest in the ex vivo propagation of primary human basal epithelial stem/progenitor cells with a view to their use in drug development, toxicity testing and regenerative medicine. These cells can be expanded in co-culture with mitotically inactivated 3T3-J2 murine embryonic feeder cells but, similar to other epithelial cell culture systems employing 3T3-J2 cells, the aspects of cross-talk between 3T3-J2 cells and human airway basal cells that are critical for their expansion remain largely unknown. In this study, we investigated secreted growth factors that are produced by 3T3-J2 cells and act upon primary human airway basal cells. We found robust production of hepatocyte growth factor (HGF) from fibroblast feeder cells following mitotic inactivation. Consistent with the limited cross-species reactivity of murine HGF on the human HGF receptor (MET; HGFR), MET inhibition did not affect proliferative responses in human airway basal cells and HGF could not replace feeder cells in this culture system. However, we found that murine HGF is not completely inactive on human airway epithelial cells or cancer cell lines but stimulates the phosphorylation of GRB2-associated-binding protein 2 (GAB2) and signal transducer and activator of transcription 6 (STAT6). Although HGF induces phosphorylation of STAT6 tyrosine 641 (Y641), there is no subsequent STAT6 nuclear translocation or STAT6-driven transcriptional response. Overall, these findings highlight the relevance of cross-species protein interactions between murine feeder cells and human epithelial cells in 3T3-J2 co-culture and demonstrate that STAT6 phosphorylation occurs in response to MET activation in epithelial cells. However, STAT6 nuclear translocation does not occur in response to HGF, precluding the transcriptional activity of STAT6.
Collapse
Affiliation(s)
- Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Kate H. C. Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
- Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Universita’ degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Paola Bonfanti
- The Francis Crick Institute, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Adam Giangreco
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Cecilia M. Prêle
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| |
Collapse
|
3
|
Park YR, Bae SH, Ji W, Seo EJ, Lee JC, Kim HR, Jang SJ, Choi CM. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers. J Korean Med Sci 2017; 32:1784-1791. [PMID: 28960030 PMCID: PMC5639058 DOI: 10.3346/jkms.2017.32.11.1784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers.
Collapse
Affiliation(s)
- Yu Rang Park
- Clinical Research Center, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Biomedical Informatics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Soo Hyeon Bae
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Wonjun Ji
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Cheol Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyeong Ryul Kim
- Department of Thoracic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang Min Choi
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Office of Clinical Research Information, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
4
|
Wang H, Nestor CE, Benson M, Zhang H. GAB2 regulates type 2 T helper cell differentiation in humans. Cytokine 2017; 96:234-237. [DOI: 10.1016/j.cyto.2017.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/17/2023]
|
5
|
Guo X, Li T, Xu Y, Xu X, Zhu Z, Zhang Y, Xu J, Xu K, Cheng H, Zhang X, Ke Y. Increased levels of Gab1 and Gab2 adaptor proteins skew interleukin-4 (IL-4) signaling toward M2 macrophage-driven pulmonary fibrosis in mice. J Biol Chem 2017; 292:14003-14015. [PMID: 28687632 DOI: 10.1074/jbc.m117.802066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
M2-polarized macrophages, also known as alternatively activated macrophages, have long been associated with pulmonary fibrosis; however, the mechanism has not been fully defined. Gab1 and Gab2 proteins belong to the Gab family of adaptors and are integral components of the signal specificity in response to various extracellular stimuli. In this report, we found that levels of both Gab1 and Gab2 were elevated in M2-polarized macrophages isolated from bleomycin-induced fibrotic lungs. In vitro Gab1/2 deficiency in bone marrow-derived macrophages abrogated IL-4-mediated M2 polarization. Furthermore, in vivo conditional removal of Gab1 (Gab1MyKO) and germ line knock-out of Gab2 (Gab2-/-) in macrophages prevented a bias toward the M2 phenotype and attenuated bleomycin-induced fibrotic lung remodeling. In support of these observations, Gab1/2 were involved in responses predominated by IL-4 signaling, an essential determinant for macrophage M2 polarization. Further investigation revealed that both Gab1 and -2 are recruited to the IL-4 receptor, synergistically enhancing downstream signal amplification but conferring IL-4 signal preference. Mechanistically, the loss of Gab1 attenuated AKT activation, whereas the absence of Gab2 suppressed STAT6 activation in response to IL-4 stimulation, both of which are commonly attributed to M2-driven pulmonary fibrosis in mice. Taken together, these observations define a non-redundant role of Gab docking proteins in M2 polarization, adding critical insights into the pathogenesis of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohong Guo
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tingting Li
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiayan Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhengyi Zhu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Zhang
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kaihong Xu
- Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Hongqiang Cheng
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| | - Yuehai Ke
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
6
|
Zhang Y, Xu Y, Liu S, Guo X, Cen D, Xu J, Li H, Li K, Zeng C, Lu L, Zhou Y, Shen H, Cheng H, Zhang X, Ke Y. Scaffolding protein Gab1 regulates myeloid dendritic cell migration in allergic asthma. Cell Res 2016; 26:1226-1241. [PMID: 27811945 DOI: 10.1038/cr.2016.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common allergic disorder involving a complex interplay among multiple genetic and environmental factors. Recent studies identified genetic variants of human GAB1 as a novel asthma susceptibility factor. However, the functions of Gab1 in lung remain largely unexplored. In this study, we first observed an elevation of Gab1 level in peripheral blood mononuclear cells from asthmatic patients during acute exacerbation compared with convalescence. Mice with a selectively disrupted Gab1 in myeloid dendritic cells (mDCs) considerably attenuated allergic inflammation in experimental models of asthma. Further investigations revealed a prominent reduction in CCL19-mediated migration of Gab1-deficient mDCs to draining lymph nodes and subsequent impairment of Th2-driven adaptive activation. Mechanistically, Gab1 is an essential component of the CCL19/CCR7 chemokine axis that regulates mDC migration during asthmatic responses. Together, these findings provide the first evidence for the roles of Gab1 in lung, giving us deeper understanding of asthmatic pathogenesis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yun Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shuwan Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Dong Cen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Heyuan Li
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kaijun Li
- Lishui Central Hospital, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, China
| | - Chunlai Zeng
- Lishui Central Hospital, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, China
| | - Linrong Lu
- The Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yiting Zhou
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
7
|
Wang K, Qin S, Liang Z, Zhang Y, Xu Y, Chen A, Guo X, Cheng H, Zhang X, Ke Y. Epithelial disruption of Gab1 perturbs surfactant homeostasis and predisposes mice to lung injuries. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1149-L1159. [PMID: 27793798 DOI: 10.1152/ajplung.00107.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
GRB2-associated-binding protein 1 (Gab1) belongs to Gab adaptor family, which integrates multiple signals in response to the epithelial growth factors. Recent genetic studies identified genetic variants of human Gab1 gene as potential risk factors of asthmatic inflammation. However, the functions of Gab1 in lungs remain largely unknown. Alveolar type-II cells (AT-IIs) are responsible for surfactant homeostasis and essentially regulate lung inflammation following various injuries (3). In this study, in vitro knockdown of Gab1 was shown to decrease the surfactant proteins (SPs) levels in AT-IIs. We further examined in vivo Gab1 functions through alveolar epithelium-specific Gab1 knockout mice (Gab1Δ/Δ). In vivo Gab1 deficiency leads to a decrease in SP synthesis and the appearance of disorganized lamellar bodies. Histological analysis of the lung sections in Gab1Δ/Δ mice shows no apparent pathological alterations or inflammation. However, Gab1Δ/Δ mice demonstrate inflammatory responses during the LPS-induced acute lung injury. Similarly, in mice challenged with bleomycin, fibrotic lesions were found to be aggravated in Gab1Δ/Δ These observations suggest that the abolishment of Gab1 in AT-IIs impairs SP homeostasis, predisposing mice to lung injuries. In addition, we observed that the production of surfactants in AT-IIs overexpressing Gab1 mutants, in which Shp2 phosphatase and PI3K kinase binding sites have been mutated (Gab1ΔShp2, Gab1ΔPI3K), has been considerably attenuated. Together, these findings provide the direct evidence about the roles of docking protein Gab1 in lungs, adding to our understanding of acute and interstitial lung diseases caused by the disruption of alveolar SP homeostasis.
Collapse
Affiliation(s)
- Kai Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenlu Qin
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyu Liang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhang
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchun Xu
- Department of Pulmonary Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and
| | - An Chen
- Department of Neonatal, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China;
| |
Collapse
|
8
|
Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival. Virchows Arch 2015; 467:675-686. [DOI: 10.1007/s00428-015-1852-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
|
9
|
Ding CB, Yu WN, Feng JH, Luo JM. Structure and function of Gab2 and its role in cancer (Review). Mol Med Rep 2015; 12:4007-4014. [PMID: 26095858 PMCID: PMC4526075 DOI: 10.3892/mmr.2015.3951] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/19/2015] [Indexed: 12/30/2022] Open
Abstract
The docking proteins of the Grb-associated binder (Gab) family transduce cellular signals between receptors and intracellular downstream effectors, and provide a platform for protein-protein interactions. Gab2, a key member of the Gab family of proteins, is involved in the amplification and integration of signal transduction, evoked by a variety of extracellular stimuli, including growth factors, cytokines and antigen receptors. Gab2 protein lacks intrinsic catalytic activity; however, when phosphorylated by protein-tyrosine kinases (PTKs), Gab2 recruits several Src homology-2 (SH2) domain-containing proteins, including the SH2-containing protein tyrosine phosphatase 2 (SHP2), the p85 subunit of phosphoinositide-3 kinase (PI3K), phospholipase C-γ (PLCγ)1, Crk, and GC-GAP. Through these interactions, the Gab2 protein triggers various downstream signal effectors, including SHP2/rat sarcoma viral oncogene/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and PI3K/AKT, involved in cell growth, differentiation, migration and apoptosis. It has been previously reported that aberrant Gab2 and/or Gab2 signaling is closely associated with human tumorigenesis, particularly in breast cancer, leukemia and melanoma. The present review aimed to focus on the structure and effector function of Gab2, its role in cancer and its potential for use as an effective therapeutic target.
Collapse
Affiliation(s)
- Chen-Bo Ding
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Wei-Na Yu
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Ji-Hong Feng
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Jun-Min Luo
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| |
Collapse
|
10
|
Abstract
A few human tumor types have been modeled in mice using genetic or chemical tools. The final goal of these efforts is to establish models that mimic not only the location and cellular origin of human cancers but also their genetic aberrations and morphologic appearances. The latter has been neglected by most investigators, and comparative histopathology of human versus mouse cancers is not readily available. This issue is exacerbated by the fact that some human malignancies comprise a whole spectrum of cancer subtypes that differ molecularly and morphologically. Lung cancer is a paradigm that appears not only as non-small cell and small-cell lung cancer but comprises a plethora of subtypes with distinct morphologic features. This review discusses species-specific and common morphological features of non-small cell lung cancer in mice and humans. Potential inconsistencies and the need for refined genetic tools are discussed in the context of a comparative analysis between commonly employed RAS-induced mouse tumors and human lung cancers.
Collapse
Affiliation(s)
- Helmut H Popper
- Institute of Pathology, Research Unit Molecular Lung & Pleura Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036, Graz, Austria,
| |
Collapse
|
11
|
Hu S, Zhang Y, Yu Y, Jin D, Zhang X, Gu S, Jia H, Chen X, Zhang Z, Jin Q, Ke Y, Liu H. Growth factor receptor bound protein 2-associated binder 2, a scaffolding adaptor protein, negatively regulates host immunity against tuberculosis. Am J Respir Cell Mol Biol 2014; 51:575-85. [PMID: 24805943 DOI: 10.1165/rcmb.2013-0329oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell-mediated immunity is indispensable for host protection against tuberculosis (TB). Growth factor receptor bound protein 2-associated binder (Gab) 2, a scaffolding adaptor protein, negatively regulates signaling pathways critical for T cell-mediated immunity. We sought to investigate the clinical significance and immunological role of Gab2 in Mycobacterium tuberculosis infection. We evaluated Gab2 protein and messenger RNA (mRNA) expression in human patients with pulmonary TB and determined the correlation of the mRNA expression pattern with antigen-specific IFN-γ secretion. Subsequently, we carried out M. tuberculosis infection in Gab2-deficient and wild-type control mice to explore the immunological role of Gab2 by examining bacterial load, histological changes, cytokine secretion, and gene expression of immune-associated transcription factors. mRNA levels of Gab2 and its correlated family member, Gab1, were markedly decreased in untreated patients with pulmonary TB compared with healthy control subjects. Importantly, this decreased Gab2 expression to normal levels after bacterial load in the patient's sputum became undetectable under the standard anti-TB treatment, which negatively correlated with the level of M. tuberculosis antigen-specific IFN-γ secretion. In the M. tuberculosis infection mouse model, infected Gab2-deficient mice exhibited decreased bacterial load and milder lung pathological damage compared with infected wild-type mice, accompanied by decreased production of IL-2, IL-6, and granulocyte/macrophage colony-stimulating factor proinflammatory cytokines, and an increased T-cell-specific T-box transcription factor/GATA binding protein 3 expression ratio. Overall, our study indicates that down-regulation of Gab2 relates to a protective function during M. tuberculosis infection, revealing a potential negative regulatory role for Gab2 in immunity to TB.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Bacterial Load
- Case-Control Studies
- Disease Models, Animal
- GATA3 Transcription Factor/metabolism
- Host-Pathogen Interactions
- Humans
- Immunity, Cellular
- Inflammation Mediators/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung/virology
- Mice
- Mice, Knockout
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Messenger/metabolism
- TCF Transcription Factors/metabolism
- Time Factors
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Tuberculosis, Pulmonary/virology
Collapse
Affiliation(s)
- Shizong Hu
- 1 Ministry of Health (MOH) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen ZH, Wang PL, Shen HH. Asthma research in China: a five-year review. Respirology 2014; 18 Suppl 3:10-9. [PMID: 24188199 DOI: 10.1111/resp.12196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/25/2013] [Accepted: 09/07/2013] [Indexed: 12/30/2022]
Abstract
Asthma is one of the most common chronic diseases worldwide with increasing morbidity. China has the largest asthmatic population and is one of the countries with the highest asthma mortality. Fortunately, asthma research in China, both clinical and scientific, has developed markedly over the past few years. This has resulted in significant increases in our understanding of Chinese asthma prevalence, risk factors, control status, pathogenesis, and new prevention or treatment strategies. In this review, the major achievements of asthma research in China from 2008 to 2012 are summarized.
Collapse
Affiliation(s)
- Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
13
|
Liang Y, Zhu Y, Xia Y, Peng H, Yang XK, Liu YY, Xu WD, Pan HF, Ye DQ. Therapeutic potential of tyrosine kinase 2 in autoimmunity. Expert Opin Ther Targets 2014; 18:571-80. [PMID: 24654603 DOI: 10.1517/14728222.2014.892925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Tyrosine kinase 2 (Tyk2) is a Janus kinase family member that is crucial for signaling transduction in response to a wide variety of cytokines, including type I IFNs, IL-6, IL-10, IL-12 and IL-23. An appropriate expression of Tyk2-mediated signaling might be essential for maintaining normal immune responses. AREAS COVERED This review summarizes that Tyk2 is essential for the differentiation and function of a wide variety of immune cells, including natural killer cells, B cells, as well as T helper cells. In addition, Tyk2-mediated signaling promoted the production of autoimmune-associated components, which is implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis. Aberrant expression of Tyk2 was observed in many autoimmune conditions. EXPERT OPINION Until recently, no patent filings had claimed selective inhibitors of Tyk2. Both CP-690,500 and CMP6 failed to be used in clinical treatment due to the difficulties of finding suitable selective leads or due to detrimental toxicities. Although the result of Cmpd1 is promising, it remains to be seen how specific the Tyk2 inhibitor is and how they are working. Currently, structure-based drug design (SBDD) technology has provided us with a quite useful window for SBDD of Tyk2 inhibitors.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , 81 Meishan Road, Hefei, Anhui, 230032 , PR China +86 551 65167726 ; +86 551 65161171 ;
| | | | | | | | | | | | | | | | | |
Collapse
|