1
|
Wilkinson ML, Trainor C, Lampe E, Presseller EK, Juarascio A. Cannabis use and binge eating: Examining the relationship between cannabis use and clinical severity among adults with binge eating. Exp Clin Psychopharmacol 2024; 32:392-397. [PMID: 38236224 PMCID: PMC11253108 DOI: 10.1037/pha0000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cannabis use is prevalent among individuals with binge eating (BE; i.e., the inability to control eating behavior). Yet, only two studies to date (both over 20 years old) have tested if cannabis use relates to clinical severity among BE samples. Characterizing the relationship between cannabis use, eating disorder (ED) severity, and other psychiatric symptoms in BE samples is necessary for informing screening and clinical recommendations. The present study characterized cannabis use among adults with BE and tested between-group and within-group relationships between cannabis use and eating disorder symptoms, alcohol consumption and symptoms, and depression symptoms. Participants (N = 165) were treatment-seeking adults with at least once weekly BE in the past 3 months who completed clinical interviews and self-report measures before treatment. Over 23% of participants reported cannabis use in the past 3 months, with most persons using cannabis reported using "once or twice" or "monthly." Most persons using cannabis reported cannabis-related symptoms. Persons using cannabis reported significantly greater alcohol consumption and were more likely to report alcohol-related symptoms compared to persons not using cannabis. No associations were observed between cannabis use, eating disorder symptoms, and depressions symptoms. These findings indicate that a notable subset of patients with BE use cannabis and experience cannabis-related problems, and that cannabis and alcohol use may be related for these individuals. Considering legal and sociocultural shifts in cannabis availability and prevalence, results from the present study support screening for cannabis and alcohol use patterns in patients with BE. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Claire Trainor
- Department of Psychological and Brain Sciences, Drexel University
| | - Elizabeth Lampe
- Department of Psychological and Brain Sciences, Drexel University
| | | | | |
Collapse
|
2
|
Perez PA, Wiley MB, Makriyannis A, DiPatrizio NV. Cannabinoids Block Fat-induced Incretin Release via CB 1-dependent and CB 1-independent Pathways in Intestinal Epithelium. GASTRO HEP ADVANCES 2024; 3:931-941. [PMID: 39318720 PMCID: PMC11419882 DOI: 10.1016/j.gastha.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 09/26/2024]
Abstract
Background and Aims Glucose homeostasis is regulated by a dynamic interplay between hormones along the gastro-insular axis. For example, enteroendocrine L- and K- cells that line the intestine produce the incretins glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), respectively, which are secreted following a meal. Broadly, incretin signaling enhances insulin release from the endocrine pancreas and participates in the control of food intake, and therapeutics that mimic their activity have recently been developed for the treatment of type-2 diabetes and obesity. Notably, genes for cannabinoid subtype-1 receptor (CB1R) are expressed in these cell subpopulations; however, roles for CB1Rs in controlling fat-induced incretin release are unclear. To address this gap in our understanding, we tested the hypothesis that intestinal epithelial CB1Rs control fat-induced incretin secretion. Methods We treated mice with conditional deletion of CB1Rs in the intestinal epithelium (IntCB1-/-) or controls (IntCB1+/+) with oil gavage to stimulate incretin release in the presence of the cannabinoid receptor agonists, WIN55,212-2 or Δ9 tetrahydrocannabinol (THC), and the peripherally-restricted CB1R antagonist AM6545. Circulating incretin levels were measured in plasma. Results Oral gavage of corn oil increased levels of bioactive GLP1 and GIP in IntCB1+/+ mouse plasma. Pretreatment with the WIN55,212-2 or THC blocked this response, which was largely reversed by coadministration with AM6545. WIN55,212-2 failed to inhibit fat-induced GIP release, but not GLP1, in IntCB1-/- mice. In contrast, THC inhibited the secretion of incretins irrespective of CB1R expression in intestinal epithelial cells. Conclusion These results indicate that cannabinoid receptor agonists can differentially inhibit incretin release via mechanisms that include intestinal epithelial CB1R-dependent and CB1R-independent mechanisms.
Collapse
Affiliation(s)
- Pedro Antonio Perez
- Center for Cannabinoid Research (UCRCCR), School of Medicine, University of California, Riverside, Riverside, California
- Department of Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California
| | - Mark Benjamin Wiley
- Center for Cannabinoid Research (UCRCCR), School of Medicine, University of California, Riverside, Riverside, California
| | | | - Nicholas Vincent DiPatrizio
- Center for Cannabinoid Research (UCRCCR), School of Medicine, University of California, Riverside, Riverside, California
| |
Collapse
|
3
|
Wood CP, Alvarez C, DiPatrizio NV. Cholinergic Neurotransmission Controls Orexigenic Endocannabinoid Signaling in the Gut in Diet-Induced Obesity. J Neurosci 2024; 44:e0813232024. [PMID: 38594069 PMCID: PMC11097264 DOI: 10.1523/jneurosci.0813-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The brain bidirectionally communicates with the gut to control food intake and energy balance, which becomes dysregulated in obesity. For example, endocannabinoid (eCB) signaling in the small-intestinal (SI) epithelium is upregulated in diet-induced obese (DIO) mice and promotes overeating by a mechanism that includes inhibiting gut-brain satiation signaling. Upstream neural and molecular mechanism(s) involved in overproduction of orexigenic gut eCBs in DIO, however, are unknown. We tested the hypothesis that overactive parasympathetic signaling at the muscarinic acetylcholine receptors (mAChRs) in the SI increases biosynthesis of the eCB, 2-arachidonoyl-sn-glycerol (2-AG), which drives hyperphagia via local CB1Rs in DIO. Male mice were maintained on a high-fat/high-sucrose Western-style diet for 60 d, then administered several mAChR antagonists 30 min prior to tissue harvest or a food intake test. Levels of 2-AG and the activity of its metabolic enzymes in the SI were quantitated. DIO mice, when compared to those fed a low-fat/no-sucrose diet, displayed increased expression of cFos protein in the dorsal motor nucleus of the vagus, which suggests an increased activity of efferent cholinergic neurotransmission. These mice exhibited elevated levels of 2-AG biosynthesis in the SI, that was reduced to control levels by mAChR antagonists. Moreover, the peripherally restricted mAChR antagonist, methylhomatropine bromide, and the peripherally restricted CB1R antagonist, AM6545, reduced food intake in DIO mice for up to 24 h but had no effect in mice conditionally deficient in SI CB1Rs. These results suggest that hyperactivity at mAChRs in the periphery increases formation of 2-AG in the SI and activates local CB1Rs, which drives hyperphagia in DIO.
Collapse
Affiliation(s)
- Courtney P Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California 92521
- University of California Riverside Center for Cannabinoid Research, Riverside, California 92521
| | - Camila Alvarez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California 92521
- University of California Riverside Center for Cannabinoid Research, Riverside, California 92521
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California 92521
- University of California Riverside Center for Cannabinoid Research, Riverside, California 92521
| |
Collapse
|
4
|
de Wouters d’Oplinter A, Huwart SJP, Cani PD, Everard A. Gut microbes and food reward: From the gut to the brain. Front Neurosci 2022; 16:947240. [PMID: 35958993 PMCID: PMC9358980 DOI: 10.3389/fnins.2022.947240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inappropriate food intake behavior is one of the main drivers for fat mass development leading to obesity. Importantly the gut microbiota-mediated signals have emerged as key actors regulating food intake acting mainly on the hypothalamus, and thereby controlling hunger or satiety/satiation feelings. However, food intake is also controlled by the hedonic and reward systems leading to food intake based on pleasure (i.e., non-homeostatic control of food intake). This review focus on both the homeostatic and the non-homeostatic controls of food intake and the implication of the gut microbiota on the control of these systems. The gut-brain axis is involved in the communications between the gut microbes and the brain to modulate host food intake behaviors through systemic and nervous pathways. Therefore, here we describe several mediators of the gut-brain axis including gastrointestinal hormones, neurotransmitters, bioactive lipids as well as bacterial metabolites and compounds. The modulation of gut-brain axis by gut microbes is deeply addressed in the context of host food intake with a specific focus on hedonic feeding. Finally, we also discuss possible gut microbiota-based therapeutic approaches that could lead to potential clinical applications to restore food reward alterations. Therapeutic applications to tackle these dysregulations is of utmost importance since most of the available solutions to treat obesity present low success rate.
Collapse
|
5
|
Berland C, Castel J, Terrasi R, Montalban E, Foppen E, Martin C, Muccioli GG, Luquet S, Gangarossa G. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis. Mol Psychiatry 2022; 27:2340-2354. [PMID: 35075269 DOI: 10.1038/s41380-021-01428-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
The regulation of food intake, a sine qua non requirement for survival, thoroughly shapes feeding and energy balance by integrating both homeostatic and hedonic values of food. Unfortunately, the widespread access to palatable food has led to the development of feeding habits that are independent from metabolic needs. Among these, binge eating (BE) is characterized by uncontrolled voracious eating. While reward deficit seems to be a major contributor of BE, the physiological and molecular underpinnings of BE establishment remain elusive. Here, we combined a physiologically relevant BE mouse model with multiscale in vivo approaches to explore the functional connection between the gut-brain axis and the reward and homeostatic brain structures. Our results show that BE elicits compensatory adaptations requiring the gut-to-brain axis which, through the vagus nerve, relies on the permissive actions of peripheral endocannabinoids (eCBs) signaling. Selective inhibition of peripheral CB1 receptors resulted in a vagus-dependent increased hypothalamic activity, modified metabolic efficiency, and dampened activity of mesolimbic dopamine circuit, altogether leading to the suppression of palatable eating. We provide compelling evidence for a yet unappreciated physiological integrative mechanism by which variations of peripheral eCBs control the activity of the vagus nerve, thereby in turn gating the additive responses of both homeostatic and hedonic brain circuits which govern homeostatic and reward-driven feeding. In conclusion, we reveal that vagus-mediated eCBs/CB1R functions represent an interesting and innovative target to modulate energy balance and counteract food-reward disorders.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Julien Castel
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Enrica Montalban
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Ewout Foppen
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Claire Martin
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Serge Luquet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Giuseppe Gangarossa
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
6
|
Abstract
The endocannabinoid system is found in most, if not all, mammalian organs and is involved in a variety of physiological functions, ranging from the control of synaptic plasticity in the brain to the modulation of smooth muscle motility in the gastrointestinal tract. This signaling complex consists of G protein-coupled cannabinoid receptors, endogenous ligands for those receptors (endocannabinoids) and enzymes/transporters responsible for the formation and deactivation of these ligands. There are two subtypes of cannabinoid receptors, CB1 and CB2, and two major endocannabinoids, arachidonoylethanolamide (anandamide) and 2-arachidonoyl-sn-glycerol (2-AG), which are produced upon demand through cleavage of distinct phospholipid precursors. All molecular components of the endocannabinoid system are represented in the adipose organ, where endocannabinoid signals are thought to regulate critical homeostatic processes, including adipogenesis, lipogenesis and thermogenesis. Importantly, obesity was found to be associated with excess endocannabinoid activity in visceral fat depots, and the therapeutic potential of normalizing such activity by blocking CB1 receptors has been the focus of substantial preclinical and clinical research. Results have been mixed thus far, mostly owing to the emergence of psychiatric side effects rooted in the protective functions served by brain endocannabinoids in mood and affect regulation. Further studies about the roles played by the endocannabinoid system in the adipose organ will offer new insights into the pathogenesis of obesity and might help identify new ways to leverage this signaling complex for therapeutic benefit.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA.
- Department of Pharmacology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
7
|
The Endocannabinoid System, an Underexploited and Promising Niche for the Pharmacological Treatment of Obesity and Metabolic Diseases. Nutrients 2022; 14:nu14030421. [PMID: 35276776 PMCID: PMC8838739 DOI: 10.3390/nu14030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity represents the most prevalent metabolic disease in the world at present, posing an important public health challenge [...].
Collapse
|
8
|
Khan RN, Maner-Smith K, A. Owens J, Barbian ME, Jones RM, R. Naudin C. At the heart of microbial conversations: endocannabinoids and the microbiome in cardiometabolic risk. Gut Microbes 2022; 13:1-21. [PMID: 33896380 PMCID: PMC8078674 DOI: 10.1080/19490976.2021.1911572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiometabolic syndrome encompasses intertwined risk factors such as hypertension, dyslipidemia, elevated triglycerides, abdominal obesity, and other maladaptive metabolic and inflammatory aberrations. As the molecular mechanisms linking cardiovascular disease and metabolic disorders are investigated, endocannabinoids have emerged as molecules of interest. The endocannabinoid system (ECS) of biologically active lipids has been implicated in several conditions, including chronic liver disease, osteoporosis, and more recently in cardiovascular diseases. The gut microbiome is a major regulator of inflammatory and metabolic signaling in the host, and if disrupted, has the potential to drive metabolic and cardiovascular diseases. Extensive studies have unraveled the impact of the gut microbiome on host physiology, with recent reports showing that gut microbes exquisitely control the ECS, with significant influences on host metabolic and cardiac health. In this review, we outline how modulation of the gut microbiome affects host metabolism and cardiovascular health via the ECS, and how these findings could be exploited as novel therapeutic targets for various metabolic and cardiac diseases.
Collapse
Affiliation(s)
- Ramsha Nabihah Khan
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Kristal Maner-Smith
- Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, Georgia, USA
| | - Joshua A. Owens
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Maria Estefania Barbian
- Division of Neonatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Crystal R. Naudin
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA,CONTACT Crystal R. Naudin Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA30322, United States of America
| |
Collapse
|
9
|
Schmill MP, Thompson Z, Argueta DA, DiPatrizio NV, Garland T. Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium. Physiol Behav 2021; 245:113675. [PMID: 34929258 DOI: 10.1016/j.physbeh.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
The endocannabinoid (eCB) system in the gut communicates with the body and brain as part of the homeostatic mechanisms that affect energy balance. Although perhaps best known for its effects on energy intake, the eCB system also regulates voluntary locomotor behavior. Here, we examined gut eCB concentrations in relation to voluntary exercise, specifically in mice selectively bred for high voluntary wheel running behavior. We measured gut eCBs in four replicate non-selected Control (C) lines and four replicate lines of High Runner (HR) mice that had been selectively bred for 74 generations based on the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access when young adults. On average, mice from HR lines run voluntarily on wheels ∼3-fold more than C mice on a daily basis. A recent study showed that circulating levels of primary endocannabinoids 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA) are altered by six days of wheel access, by acute wheel running, and differ between HR and C mice in sex-specific ways [1]. We hypothesized that eCBs in the upper small-intestinal epithelium (i.e., proximal jejunum), a region firmly implicated in eCB signaling, would differ between HR and C mice (linetype), between the sexes, between mice housed with vs. without wheels for six days, and would covary with amounts of acute running and/or home-cage activity (during the previous 30 minutes). We used the same 192 mice as in [1] , half males and half females, half HR and half C (all 8 lines), and half either given or not given access to wheels for six days. We assessed the eCBs, 2-AG and AEA, and their analogs docosahexaenoylglycerol (DHG), docosahexaenoylethanolamide (DHEA), and oleoylethanolamide (OEA). Both 2-AG and DHG showed a significant 3-way interaction of linetype, wheel access, and sex. In addition, HR mice had lower concentrations of 2-AG in the small-intestinal epithelium when compared to C mice, which may be functionally related to differences in locomotor activity or to differences in body composition and/or food consumption. Moreover, the amount of home-cage activity during the prior 30 min was a negative predictor of 2-AG and AEA concentrations in jejunum mucosa, particularly in the mice with no wheel access. Lastly, 2-AG, but not AEA, was significantly correlated with 2-AG in plasma in the same mice.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Biology, Utah Valley University, Orem, UT, 84058, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA; Department of Medicine, School of Medicine, University of California, Irvine, 92697, USA
| | - Nicholas V DiPatrizio
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 92521, USA.
| |
Collapse
|
10
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
11
|
DiPatrizio NV. Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity. Nutrients 2021; 13:nu13041214. [PMID: 33916974 PMCID: PMC8067588 DOI: 10.3390/nu13041214] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gut-brain signaling controls food intake and energy homeostasis, and its activity is thought to be dysregulated in obesity. We will explore new studies that suggest the endocannabinoid (eCB) system in the upper gastrointestinal tract plays an important role in controlling gut-brain neurotransmission carried by the vagus nerve and the intake of palatable food and other reinforcers. A focus will be on studies that reveal both indirect and direct interactions between eCB signaling and vagal afferent neurons. These investigations identify (i) an indirect mechanism that controls nutrient-induced release of peptides from the gut epithelium that directly interact with corresponding receptors on vagal afferent neurons, and (ii) a direct mechanism via interactions between eCBs and cannabinoid receptors expressed on vagal afferent neurons. Moreover, the impact of diet-induced obesity on these pathways will be considered.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Oral Signals of Short and Long Chain Fatty Acids: Parallel Taste Pathways to Identify Microbes and Triglycerides. CURRENT OPINION IN PHYSIOLOGY 2021; 20:126-133. [PMID: 33738372 DOI: 10.1016/j.cophys.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both short chain fatty acids (SCFAs) and long chain fatty acids (LCFAs) rely on free fatty acid receptors to signal their presence to the body, but their individual detection and putative reward systems are different. These separate, yet parallel, taste signaling pathways allow us to distinguish microbe-produced from triglyceride-based fatty acids. Free SCFAs indicate that the food has been fermented and may still contain living, probiotic microbes that can colonize the gut. Free LCFAs indicate the presence of calorie-rich triglycerides in foods. By contrast, LCFAs stimulate endocannabinoids, which reinforce overconsumption of triglycerides. Here we examine the separate oral detection and putative reward systems for both LCFA and SCFAs, and introduce a novel dietary LC:SC ratio as a guideline to improve metabolism and health.
Collapse
|
13
|
Ye Y, Abu El Haija M, Morgan DA, Guo D, Song Y, Frank A, Tian L, Riedl RA, Burnett CML, Gao Z, Zhu Z, Shahi SK, Zarei K, Couvelard A, Poté N, Ribeiro-Parenti L, Bado A, Noureddine L, Bellizzi A, Kievit P, Mangalam AK, Zingman LV, Le Gall M, Grobe JL, Kaplan LM, Clegg D, Rahmouni K, Mokadem M. Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Rep 2020; 33:108270. [PMID: 33113371 PMCID: PMC7660289 DOI: 10.1016/j.celrep.2020.108270] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The exact mechanisms underlying the metabolic effects of bariatric surgery remain unclear. Here, we demonstrate, using a combination of direct and indirect calorimetry, an increase in total resting metabolic rate (RMR) and specifically anaerobic RMR after Roux-en-Y gastric bypass (RYGB), but not sleeve gastrectomy (SG). We also show an RYGB-specific increase in splanchnic sympathetic nerve activity and "browning" of visceral mesenteric fat. Consequently, selective splanchnic denervation abolishes all beneficial metabolic outcomes of gastric bypass that involve changes in the endocannabinoid signaling within the small intestine. Furthermore, we demonstrate that administration of rimonabant, an endocannabinoid receptor-1 (CB1) inverse agonist, to obese mice mimics RYGB-specific effects on energy balance and splanchnic nerve activity. On the other hand, arachidonoylethanolamide (AEA), a CB1 agonist, attenuates the weight loss and metabolic signature of this procedure. These findings identify CB1 as a key player in energy regulation post-RYGB via a pathway involving the sympathetic nervous system.
Collapse
Affiliation(s)
- Yuanchao Ye
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marwa Abu El Haija
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Deng Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yang Song
- College of Pharmacy, China Medical University, 77 Puhe Rd., Liaoning 110122, P.R. China
| | - Aaron Frank
- The Biomedical Research Department, Diabetes and Obesity Research Division, Cedars Sinai Medical Center, Beverly Hills, CA 90048, USA
| | - Liping Tian
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Ruth A Riedl
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Colin M L Burnett
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhan Gao
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shailesh K Shahi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kasra Zarei
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Anne Couvelard
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of Pathology, Bichat Hospital, AP-HP, Paris 75018, France
| | - Nicolas Poté
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of Pathology, Bichat Hospital, AP-HP, Paris 75018, France
| | - Lara Ribeiro-Parenti
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of General and Digestive Surgery, Bichat Hospital, AP-HP, Paris 75018, France
| | - André Bado
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France
| | - Lama Noureddine
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew Bellizzi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Paul Kievit
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology and Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Maude Le Gall
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France
| | - Justin L Grobe
- Departments of Physiology and Biomedical Engineering, Medical College of Wisconsin, Milwaukee, MI 53226, USA
| | - Lee M Kaplan
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Obesity, Metabolism, and Nutrition Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Deborah Clegg
- College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA
| | - Kamal Rahmouni
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Mohamad Mokadem
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
Avalos B, Argueta DA, Perez PA, Wiley M, Wood C, DiPatrizio NV. Cannabinoid CB 1 Receptors in the Intestinal Epithelium Are Required for Acute Western-Diet Preferences in Mice. Nutrients 2020; 12:nu12092874. [PMID: 32962222 PMCID: PMC7551422 DOI: 10.3390/nu12092874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
The endocannabinoid system plays an important role in the intake of palatable food. For example, endocannabinoid signaling in the upper small-intestinal epithelium is increased (i) in rats after tasting dietary fats, which promotes intake of fats, and (ii) in a mouse model of diet-induced obesity, which promotes overeating via impaired nutrient-induced gut-brain satiation signaling. We now utilized a combination of genetic, pharmacological, and behavioral approaches to identify roles for cannabinoid CB1Rs in upper small-intestinal epithelium in preferences for a western-style diet (WD, high-fat/sucrose) versus a standard rodent diet (SD, low-fat/no sucrose). Mice were maintained on SD in automated feeding chambers. During testing, mice were given simultaneous access to SD and WD, and intakes were recorded. Mice displayed large preferences for the WD, which were inhibited by systemic pretreatment with the cannabinoid CB1R antagonist/inverse agonist, AM251, for up to 3 h. We next used our novel intestinal epithelium-specific conditional cannabinoid CB1R-deficient mice (IntCB1-/-) to investigate if intestinal CB1Rs are necessary for WD preferences. Similar to AM251 treatment, preferences for WD were largely absent in IntCB1-/- mice when compared to control mice for up to 6 h. Together, these data suggest that CB1Rs in the murine intestinal epithelium are required for acute WD preferences.
Collapse
Affiliation(s)
- Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Donovan A. Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Pedro A. Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Mark Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Courtney Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Correspondence: ; Tel.: +1-951-827-7252
| |
Collapse
|
15
|
Yagin NL, Hajjarzadeh S, Aliasgharzadeh S, Aliasgari F, Mahdavi R. The association of dietary patterns with endocannabinoids levels in overweight and obese women. Lipids Health Dis 2020; 19:161. [PMID: 32631352 PMCID: PMC7339382 DOI: 10.1186/s12944-020-01341-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Higher levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), the main arachidonic acid-derived endocannabinoids, are frequently reported in overweight and obese individuals. Recently, endocannabinoids have become a research interest in obesity area regarding their role in food intake. The relationship between dietary patterns and endocannabinoids is poorly understood; therefore, this study evaluated the association of the dietary patterns with AEA and 2-AG levels in overweight and obese women. METHODS In this cross sectional study, 183 overweight and obese females from Tabriz, Iran who aged between 19 and 50 years old and with mean BMI = 32.44 ± 3.79 kg/m2 were interviewed. The AEA and 2-AG levels were measured, and the dietary patterns were assessed using food frequency questionnaire. To extract the dietary patterns, factor analysis was applied. The association between AEA and 2-AG levels and dietary patterns was analyzed by linear regression. RESULTS Three major dietary patterns including "Western", "healthy", and "traditional" were extracted. After adjusting for age, physical activity, BMI, waist circumference, and fat mass, higher levels of AEA and 2-AG were observed in participants who were in the highest quintile of the Western pattern (P < 0.05). Also, in both unadjusted and adjusted models, significantly lower levels of AEA and 2-AG were detected in the women of the highest quintile of the healthy pattern (P < 0.01). Moreover, there was no significant association between "traditional" pattern and AEA and 2- AG levels in both unadjusted and adjusted models (P > 0.05). CONCLUSION In regard with the lower levels of endocannabinoids in healthy dietary pattern, adherence to healthy pattern might have promising results in regulating endocannabinoids levels.
Collapse
Affiliation(s)
- Neda Lotfi Yagin
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hajjarzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Aliasgharzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasgari
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Quarta C, Cota D. Anti-obesity therapy with peripheral CB1 blockers: from promise to safe(?) practice. Int J Obes (Lond) 2020; 44:2179-2193. [PMID: 32317751 DOI: 10.1038/s41366-020-0577-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Pharmacological blockers of the cannabinoid receptor type-1 (CB1) have been considered for a long time as the holy grail of obesity pharmacotherapy. These agents were hastily released in the clinical setting, due to their clear-cut therapeutic efficacy. However, the first generation of these drugs, which were able to target both the brain and peripheral tissues, had serious neuropsychiatric effects, leading authorities to ban their clinical use. New peripherally restricted CB1 blockers, characterized by low brain penetrance, have been developed over the past 10 years. In preclinical studies, these molecules seem to overcome the neuropsychiatric negative effects previously observed with brain-penetrant CB1 inhibitors, while retaining or even outperforming their efficacy. The mechanisms of action of these peripherally restricted compounds are only beginning to emerge, and a balanced discussion of the risk/benefits ratio associated to their possible clinical use is urgently needed, in order to avoid repeating past mistakes. Here, we will critically discuss the advantages and the possible hidden threats associated with the use of peripheral CB1 blockers for the pharmacotherapy of obesity and its associated metabolic complications. We will address whether this novel pharmacological approach might 'compete' with current pharmacotherapies for obesity and diabetes, while also conceptualizing future CB1-based pharmacological trends that may significantly lower the risk/benefits ratio associated with the use of these drugs.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
17
|
Tarragon E, Moreno JJ. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior. Chem Senses 2020; 44:73-89. [PMID: 30481264 DOI: 10.1093/chemse/bjy068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation. However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis. Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia. Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding. In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Psychobiology, Faculty of Health Sciences, University Jaume I of Castellon, Castellon, Spain.,Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, Madrid, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain.,IBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Argueta DA, Perez PA, Makriyannis A, DiPatrizio NV. Cannabinoid CB 1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front Physiol 2019; 10:704. [PMID: 31281260 PMCID: PMC6597959 DOI: 10.3389/fphys.2019.00704] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
Gut-brain signaling controls feeding behavior and energy homeostasis; however, the underlying molecular mechanisms and impact of diet-induced obesity (DIO) on these pathways are poorly defined. We tested the hypothesis that elevated endocannabinoid activity at cannabinoid CB1 receptor (CB1Rs) in the gut of mice rendered DIO by chronic access to a high fat and sucrose diet for 60 days inhibits nutrient-induced release of satiation peptides and promotes overeating. Immunoreactivity for CB1Rs was present in enteroendocrine cells in the mouse’s upper small-intestinal epithelium that produce and secrete the satiation peptide, cholecystokinin (CCK), and expression of mRNA for CB1Rs was greater in these cells when compared to non-CCK producing cells. Oral gavage of corn oil increased levels of bioactive CCK (CCK-8) in plasma from mice fed a low fat no-sucrose diet. Pretreatment with the cannabinoid receptor agonist, WIN55,212-2, blocked this response, which was reversed by co-administration with the peripherally-restricted CB1R neutral antagonist, AM6545. Furthermore, monoacylglycerol metabolic enzyme function was dysregulated in the upper small-intestinal epithelium from DIO mice, which was met with increased levels of a variety of monoacylglycerols including the endocannabinoid, 2-arachidonoyl-sn-glycerol. Corn oil failed to affect levels of CCK in DIO mouse plasma; however, pretreatment with AM6545 restored the ability for corn oil to stimulate increases in levels of CCK, which suggests that elevated endocannabinoid signaling at small intestinal CB1Rs in DIO mice inhibits nutrient-induced CCK release. Moreover, the hypophagic effect of AM6545 in DIO mice was reversed by co-administration with the CCKA receptor antagonist, devazepide. Collectively, these results provide evidence that hyperphagia associated with DIO is driven by a mechanism that includes CB1R-mediated inhibition of gut-brain satiation signaling.
Collapse
Affiliation(s)
- Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | | | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
19
|
Cannabis: From a Plant That Modulates Feeding Behaviors toward Developing Selective Inhibitors of the Peripheral Endocannabinoid System for the Treatment of Obesity and Metabolic Syndrome. Toxins (Basel) 2019; 11:toxins11050275. [PMID: 31096702 PMCID: PMC6563239 DOI: 10.3390/toxins11050275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022] Open
Abstract
In this review, we discuss the role of the endocannabinoid (eCB) system in regulating energy and metabolic homeostasis. Endocannabinoids, via activating the cannabinoid type-1 receptor (CB1R), are commonly known as mediators of the thrifty phenotype hypothesis due to their activity in the central nervous system, which in turn regulates food intake and underlies the development of metabolic syndrome. Indeed, these findings led to the clinical testing of globally acting CB1R blockers for obesity and various metabolic complications. However, their therapeutic potential was halted due to centrally mediated adverse effects. Recent observations that highlighted the key role of the peripheral eCB system in metabolic regulation led to the preclinical development of various novel compounds that block CB1R only in peripheral organs with very limited brain penetration and without causing behavioral side effects. These unique molecules, which effectively ameliorate obesity, type II diabetes, fatty liver, insulin resistance, and chronic kidney disease in several animal models, are likely to be further developed in the clinic and may revive the therapeutic potential of blocking CB1R once again.
Collapse
|
20
|
Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci 2019; 76:1341-1363. [PMID: 30599065 PMCID: PMC11105297 DOI: 10.1007/s00018-018-2994-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox suggests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating the entire body's energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Brain/metabolism
- Endocannabinoids/metabolism
- Energy Metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany.
| | - Beat Lutz
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany
| |
Collapse
|
21
|
Weltens N, Depoortere I, Tack J, Van Oudenhove L. Effect of acute Δ9-tetrahydrocannabinol administration on subjective and metabolic hormone responses to food stimuli and food intake in healthy humans: a randomized, placebo-controlled study. Am J Clin Nutr 2019; 109:1051-1063. [PMID: 30949710 DOI: 10.1093/ajcn/nqz007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is considered a key player in the neurophysiology of food reward. Animal studies suggest that the ECS stimulates the sensory perception of food, thereby increasing its incentive-motivational and/or hedonic properties and driving consumption, possibly via interactions with metabolic hormones. However, it remains unclear to what extent this can be extrapolated to humans. OBJECTIVE We aimed to investigate the effect of oral Δ9-tetrahydrocannabinol (THC) on subjective and metabolic hormone responses to visual food stimuli and food intake. METHODS Seventeen healthy subjects participated in a single-blinded, placebo-controlled, 2 × 2 crossover trial. In each of the 4 visits, subjective "liking" and "wanting" ratings of high- and low-calorie food images were acquired after oral THC or placebo administration. The effect on food intake was quantified in 2 ways: via ad libitum oral intake (half of the visits) and intragastric infusion (other half) of chocolate milkshake. Appetite-related sensations and metabolic hormones were measured at set time points throughout each visit. RESULTS THC increased "liking" (P = 0.031) and "wanting" ratings (P = 0.0096) of the high-calorie, but not the low-calorie images, compared with placebo. Participants consumed significantly more milkshake after THC than after placebo during oral intake (P = 0.0005), but not intragastric infusion, of milkshake. Prospective food consumption ratings during the food image paradigm were higher after THC than after placebo (P = 0.0039). THC also increased plasma motilin (P = 0.0021) and decreased octanoylated ghrelin (P = 0.023) concentrations before milkshake consumption (i.e., in both oral intake and intragastric infusion test sessions), whereas glucagon-like peptide 1 responses to milkshake intake were attenuated by THC during both oral (P = 0.0002) and intragastric (P = 0.0055) administration. CONCLUSIONS These findings suggest that the ECS drives food intake by interfering with anticipatory, cephalic phase, and metabolic hormone responses. This trial was registered at clinicaltrials.gov as NCT02310347.
Collapse
Affiliation(s)
| | | | - Jan Tack
- GI Motility and Sensitivity Group, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | | |
Collapse
|
22
|
Tarragon E, Moreno JJ. Role of Endocannabinoids on Sweet Taste Perception, Food Preference, and Obesity-related Disorders. Chem Senses 2019; 43:3-16. [PMID: 29293950 DOI: 10.1093/chemse/bjx062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of obesity and obesity-related disorders such as type 2 diabetes (T2D) and metabolic syndrome has increased significantly in the past decades, reaching epidemic levels and therefore becoming a major health issue worldwide. Chronic overeating of highly palatable foods is one of the main responsible aspects behind overweight. Food choice is driven by food preference, which is influenced by environmental and internal factors, from availability to rewarding properties of food. Consequently, the acquisition of a dietary habit that may lead to metabolic alterations is the result of a learning process in which many variables take place. From genetics to socioeconomic status, the response to food and how this food affects energy metabolism is heavily influenced, even before birth. In this work, we review how food preference is acquired and established, particularly as regards sweet taste; towards which flavors and tastes we are positively predisposed by our genetic background, our early experience, further lifestyle, and our surroundings; and, especially, the role that the endocannabinoid system (ECS) plays in all of this. Ultimately, we try to summarize why this system is relevant for health purposes and how this is linked to important aspects of eating behavior, as its function as a modulator of energy homeostasis affects, and is affected by, physiological responses directly associated with obesity.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Germany
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Spain.,CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| |
Collapse
|
23
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
24
|
Perez PA, DiPatrizio NV. Impact of maternal western diet-induced obesity on offspring mortality and peripheral endocannabinoid system in mice. PLoS One 2018; 13:e0205021. [PMID: 30273406 PMCID: PMC6166980 DOI: 10.1371/journal.pone.0205021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Over two-thirds of adults in the United States are obese or overweight, which is largely due to chronic overconsumption of diets high in fats and sugars (i.e., Western diet). Recent studies reveal that maternal obesity may predispose offspring to development of obesity and other metabolic diseases; however, the molecular underpinnings of these outcomes are largely unknown. The endocannabinoid system is an important signaling pathway that controls feeding behavior and energy homeostasis, and its activity becomes upregulated in the upper small intestinal epithelium of Western diet-induced obese mice, which drives overeating. In the current investigation, we examined the impact of chronic maternal consumption of Western diet on the expression and function of the endocannabinoid system in several peripheral organs important for food intake and energy homeostasis in offspring. Female C57BL/6Tac mice were fed a Western diet or low-fat/no-sucrose control chow for 10 weeks, then males were introduced for mating. Dams were maintained on their respective diets through weaning of pups, at which time pups were maintained on low-fat/no-sucrose chow for 10 weeks. Neonates born from dams fed Western diet, when compared to those born from mice fed control chow, unexpectedly displayed increases in mortality that occurred exclusively within six days following birth (greater than 50% mortality). Males comprised a larger fraction of surviving offspring from obese dams. Furthermore, surviving offspring displayed transient increases in body mass for first two days post weaning, and no marked changes in feeding patterns and endocannabinoid levels in upper small intestinal epithelium, pancreas, and plasma, or in expression of key endocannabinoid system genes in the upper small intestinal epithelium and pancreas at 10 weeks post-weaning. Collectively, these results suggest that maternal diet composition greatly influences survival of neonate C57BL/6Tac mice, and that surviving offspring from dams chronically fed a Western diet do not display marked changes in body mass, eating patterns, or expression and function of the endocannabinoid system in several peripheral organs important for feeding behavior and energy homeostasis.
Collapse
Affiliation(s)
- Pedro A. Perez
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, Riverside CA, United States of America
| | - Nicholas V. DiPatrizio
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, Riverside CA, United States of America
| |
Collapse
|
25
|
Little TJ, Cvijanovic N, DiPatrizio NV, Argueta DA, Rayner CK, Feinle-Bisset C, Young RL. Plasma endocannabinoid levels in lean, overweight, and obese humans: relationships to intestinal permeability markers, inflammation, and incretin secretion. Am J Physiol Endocrinol Metab 2018; 315:E489-E495. [PMID: 29438631 PMCID: PMC6230711 DOI: 10.1152/ajpendo.00355.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022]
Abstract
Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation; however, little is known of these effects in humans. This study aimed to 1) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl- sn-glycerol (2-AG), and OEA in humans; and 2) examine relationships to intestinal permeability, inflammation markers, and incretin hormone secretion. Twenty lean, 18 overweight, and 19 obese participants underwent intraduodenal Intralipid infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumor necrosis factor-α (TNFα), glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and Toll-like receptor 4 (TLR4) (by RT-PCR) were assessed. Fasting plasma AEA was increased in obese compared with lean and overweight patients ( P < 0.05), with no effect of BMI group or ID lipid infusion on plasma 2-AG or OEA. Duodenal expression of IAP and ZO-1 was reduced in obese compared with lean ( P < 0.05), and these levels related negatively to plasma AEA ( P < 0.05). The iAUC for AEA was positively related to iAUC GIP ( r = 0.384, P = 0.005). Obese individuals have increased plasma AEA and decreased duodenal expression of ZO-1 and IAP compared with lean and overweight subjects. The relationships between plasma AEA with duodenal ZO-1, IAP, and GIP suggest that altered endocannabinoid signaling may contribute to changes in intestinal permeability, inflammation, and incretin release in human obesity.
Collapse
Affiliation(s)
- Tanya J Little
- University of Adelaide School of Medicine , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
| | - Nada Cvijanovic
- University of Adelaide School of Medicine , Adelaide , Australia
- South Australian Health and Medical Research Institute , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Christopher K Rayner
- University of Adelaide School of Medicine , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital , Adelaide , Australia
| | - Christine Feinle-Bisset
- University of Adelaide School of Medicine , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
| | - Richard L Young
- University of Adelaide School of Medicine , Adelaide , Australia
- South Australian Health and Medical Research Institute , Adelaide , Australia
- National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; Adelaide , Australia
| |
Collapse
|
26
|
Effects of feeding a source of omega-3 fatty acid during the early postpartum period on the endocannabinoid system in the bovine endometrium. Theriogenology 2018; 121:141-146. [PMID: 30145543 DOI: 10.1016/j.theriogenology.2018.07.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/05/2023]
Abstract
A total of sixteen Holstein dairy cows (35 ± 1.1 kg/d of milk yield) were randomly assigned to consider the effects of feeding omega-3 sources on endometrial endocannabinoids system (ECS) genes expression to understand the effect mechanism of omega-3 on reproductive performances during the early postpartum period to evaluate to what extent can be intervened in reproduction, e.g. via nutrition to improve fertility. Experimental diets were 1) either protected palm oil (control) or 2) extruded linseed (linseed). Cows (n = 16) were fed from calving date to 70 days in milk (DIM). There was no difference between groups (mean ± S.E.M.) in parity (3.0 ± 1.00) or body condition score (BCS) at calving day (3.1 ± 0.25). At 30 DIM, the ovulatory cycles of cows were synchronized using two injections of prostaglandin F2α (PGF2α) with a 14-day interval. On day 15 of synchronized estrous cycle (d0 = ovulation) uterine endometrial biopsies were collected to evaluate the expression of genes related to ECS (endocannabinoid receptor (CNR2), N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), monoglyceride lipase (MGLL)) and PGF2α. Results showed that dry matter intake and milk yield were not affected by diets. Uterine endometrial NAAA (7.69 fold), and MGLL (1.96 fold) genes expression were greater (P < 0.05) in cows fed linseed compared with control ones. The messenger RNA (mRNA) levels of CNR-2 (4.26 fold), and NAPEPLD (20.0 fold) were decreased (P < 0.05) in animals fed linseed compared to control cows. The expression of mRNA for the FAAH was not influenced by the diets. First service conception rate was greater in cows fed linseed compared to control cows (75 vs. 25%). Pregnancy loss within 32-60 day after artificial insemination (AI) was lower in cows fed linseed compared to control cows (0 vs. 100%). In conclusion these data demonstrated that positive effect of omega-3 on reproduction may act through a mechanism involving the ECS. However, more studies to be undertaken to confirm these results.
Collapse
|
27
|
Price CA, Argueta DA, Medici V, Bremer AA, Lee V, Nunez MV, Chen GX, Keim NL, Havel PJ, Stanhope KL, DiPatrizio NV. Plasma fatty acid ethanolamides are associated with postprandial triglycerides, ApoCIII, and ApoE in humans consuming a high-fructose corn syrup-sweetened beverage. Am J Physiol Endocrinol Metab 2018; 315:E141-E149. [PMID: 29634315 PMCID: PMC6335011 DOI: 10.1152/ajpendo.00406.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological and clinical research studies have provided ample evidence demonstrating that consumption of sugar-sweetened beverages increases risk factors involved in the development of obesity, Type 2 diabetes, and cardiovascular disease (CVD). Our previous study demonstrated that when compared with aspartame (Asp), 2 wk of high-fructose corn syrup (HFCS)-sweetened beverages provided at 25% of daily energy requirement was associated with increased body weight, postprandial (pp) triglycerides (TG), and fasting and pp CVD risk factors in young adults. The fatty acid ethanolamide, anandamide (AEA), and the monoacylglycerol, 2-arachidonoyl- sn-glycerol (2-AG), are two primary endocannabinoids (ECs) that play a role in regulating food intake, increasing adipose storage, and regulating lipid metabolism. Therefore, we measured plasma concentrations of ECs and their analogs, oleoylethanolamide (OEA), docosahexaenoyl ethanolamide (DHEA), and docosahexaenoyl glycerol (DHG), in participants from our previous study who consumed HFCS- or Asp-sweetened beverages to determine associations with weight gain and CVD risk factors. Two-week exposure to either HFCS- or Asp-sweetened beverages resulted in significant differences in the changes in fasting levels of OEA and DHEA between groups after the testing period. Subjects who consumed Asp, but not HFCS, displayed a reduction in AEA, OEA, and DHEA after the testing period. In contrast, there were significant positive relationships between AEA, OEA, and DHEA vs. ppTG, ppApoCIII, and ppApoE in those consuming HFCS, but not in those consuming Asp. Our findings reveal previously unknown associations between circulating ECs and EC-related molecules with markers of lipid metabolism and CVD risk after HFCS consumption.
Collapse
Affiliation(s)
- Candice Allister Price
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, School of Medicine, University of California, Davis, Davis, California
| | - Andrew A Bremer
- Division of Gastroenterology and Hepatology, School of Medicine, University of California, Davis, Davis, California
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Marinelle V Nunez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Guoxia X Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Nancy L Keim
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, California
- U.S. Department of Agriculture, Western Human Nutrition Research Center , Davis, California
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| |
Collapse
|
28
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
29
|
Coccurello R, Maccarrone M. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back. Front Neurosci 2018; 12:271. [PMID: 29740277 PMCID: PMC5928395 DOI: 10.3389/fnins.2018.00271] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Palatable food can be seductive and hedonic eating can become irresistible beyond hunger and negative consequences. This is witnessed by the subtle equilibrium between eating to provide energy intake for homeostatic functions, and reward-induced overeating. In recent years, considerable efforts have been devoted to study neural circuits, and to identify potential factors responsible for the derangement of homeostatic eating toward hedonic eating and addiction-like feeding behavior. Here, we examined recent literature on “old” and “new” players accountable for reward-induced overeating and possible liability to eating addiction. Thus, the role of midbrain dopamine is positioned at the intersection between selected hormonal signals involved in food reward information processing (namely, leptin, ghrelin, and insulin), and lipid-derived neural mediators such as endocannabinoids. The impact of high fat palatable food and dietary lipids on endocannabinoid formation is reviewed in its pathogenetic potential for the derangement of feeding homeostasis. Next, endocannabinoid signaling that regulates synaptic plasticity is discussed as a key mechanism acting both at hypothalamic and mesolimbic circuits, and affecting both dopamine function and interplay between leptin and ghrelin signaling. Outside the canonical hypothalamic feeding circuits involved in energy homeostasis and the notion of “feeding center,” we focused on lateral hypothalamus as neural substrate able to confront food-associated homeostatic information with food salience, motivation to eat, reward-seeking, and development of compulsive eating. Thus, the lateral hypothalamus-ventral tegmental area-nucleus accumbens neural circuitry is reexamined in order to interrogate the functional interplay between ghrelin, dopamine, orexin, and endocannabinoid signaling. We suggested a pivotal role for endocannabinoids in food reward processing within the lateral hypothalamus, and for orexin neurons to integrate endocrine signals with food reinforcement and hedonic eating. In addition, the role played by different stressors in the reinstatement of preference for palatable food and food-seeking behavior is also considered in the light of endocannabinoid production, activation of orexin receptors and disinhibition of dopamine neurons. Finally, type-1 cannabinoid receptor-dependent inhibition of GABA-ergic release and relapse to reward-associated stimuli is linked to ghrelin and orexin signaling in the lateral hypothalamus-ventral tegmental area-nucleus accumbens network to highlight its pathological potential for food addiction-like behavior.
Collapse
Affiliation(s)
- Roberto Coccurello
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.,Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC), IRRCS Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC), IRRCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
30
|
Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron 2017; 93:1252-1274. [PMID: 28334603 DOI: 10.1016/j.neuron.2017.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.
Collapse
Affiliation(s)
- Pier Vincenzo Piazza
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| | - Daniela Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| |
Collapse
|
31
|
Oleoylethanolamide: A fat ally in the fight against obesity. Physiol Behav 2017; 176:50-58. [DOI: 10.1016/j.physbeh.2017.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/24/2023]
|
32
|
Simon V, Cota D. MECHANISMS IN ENDOCRINOLOGY: Endocannabinoids and metabolism: past, present and future. Eur J Endocrinol 2017; 176:R309-R324. [PMID: 28246151 DOI: 10.1530/eje-16-1044] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
The endocannabinoid system (ECS), including cannabinoid type 1 and type 2 receptors (CB1R and CB2R), endogenous ligands called endocannabinoids and their related enzymatic machinery, is known to have a role in the regulation of energy balance. Past information generated on the ECS, mainly focused on the involvement of this system in the central nervous system regulation of food intake, while at the same time clinical studies pointed out the therapeutic efficacy of brain penetrant CB1R antagonists like rimonabant for obesity and metabolic disorders. Rimonabant was removed from the market in 2009 and its obituary written due to its psychiatric side effects. However, in the meanwhile a number of investigations had started to highlight the roles of the peripheral ECS in the regulation of metabolism, bringing up new hope that the ECS might still represent target for treatment. Accordingly, peripherally restricted CB1R antagonists or inverse agonists have shown to effectively reduce body weight, adiposity, insulin resistance and dyslipidemia in obese animal models. Very recent investigations have further expanded the possible toolbox for the modulation of the ECS, by demonstrating the existence of endogenous allosteric inhibitors of CB1R, the characterization of the structure of the human CB1R, and the likely involvement of CB2R in metabolic disorders. Here we give an overview of these findings, discussing what the future may hold in the context of strategies targeting the ECS in metabolic disease.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Cannabinoid Receptor Antagonists/adverse effects
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Drug Inverse Agonism
- Endocannabinoids/metabolism
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Humans
- Models, Biological
- Obesity/drug therapy
- Obesity/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Vincent Simon
- INSERM and University of BordeauxNeurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Daniela Cota
- INSERM and University of BordeauxNeurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| |
Collapse
|
33
|
Niot I, Besnard P. Appetite control by the tongue-gut axis and evaluation of the role of CD36/SR-B2. Biochimie 2017; 136:27-32. [PMID: 28238842 DOI: 10.1016/j.biochi.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms governing food intake is a public health issue given the dramatic rise of obesity over the world. The overconsumption of tasty energy-dense foods rich in lipids is considered to be one of the nutritional causes of this epidemic. Over the last decade, the identification of fatty acid receptors in strategic places in the body (i.e. oro-intestinal tract and brain) has provided a major progress in the deciphering of regulatory networks involved in the control of dietary intake. Among these lipid sensors, CD36/SR-B2 appears to play a significant role since this membrane protein, known to bind long-chain fatty acid with a high affinity, was specifically found both in enterocytes and in a subset of taste bud cells and entero-endocrine cells. After a short overview on CD36/SR-B2 structure, function and regulation, this mini-review proposes to analyze the key findings about the role of CD36/SR-B2 along of the tongue-gut axis in relation to appetite control. In addition, we discuss whether obesogenic diets might impair lipid sensing mediated by CD36/SR-B2 along this axis.
Collapse
Affiliation(s)
- Isabelle Niot
- Physiologie de la Nutrition et Toxicologie (NUTox), LCN UMR 1231, INSERM/AgroSupDijon/Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Philippe Besnard
- Physiologie de la Nutrition et Toxicologie (NUTox), LCN UMR 1231, INSERM/AgroSupDijon/Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
34
|
Grabner GF, Zimmermann R, Schicho R, Taschler U. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 2017; 175:35-46. [PMID: 28213089 DOI: 10.1016/j.pharmthera.2017.02.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
35
|
Abstract
Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
36
|
Argueta DA, DiPatrizio NV. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity. Physiol Behav 2017; 171:32-39. [PMID: 28065722 DOI: 10.1016/j.physbeh.2016.12.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023]
Abstract
The endocannabinoid system in the brain and periphery plays a major role in controlling food intake and energy balance. We reported that tasting dietary fats was met with increased levels of the endocannabinoids, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide, in the rat upper small intestine, and pharmacological inhibition of this local signaling event dose-dependently blocked sham feeding of fats. We now investigated the contribution of peripheral endocannabinoid signaling in hyperphagia associated with chronic consumption of a western-style diet in mice ([WD] i.e., high fat and sucrose). Feeding patterns were assessed in male C57BL/6Tac mice maintained for 60days on WD or a standard rodent chow (SD), and the role for peripheral endocannabinoid signaling at CB1Rs in controlling food intake was investigated via pharmacological interventions. In addition, levels of the endocannabinoids, 2-AG and anandamide, in the upper small intestine and circulation of mice were analyzed via liquid chromatography coupled to tandem mass spectrometry to evaluate diet-related changes in endocannabinoid signaling and the potential impact on food intake. Mice fed WD for 60days exhibited large increases in body weight, daily caloric intake, average meal size, and rate of feeding when compared to control mice fed SD. Inhibiting peripheral CB1Rs with the peripherally-restricted neutral cannabinoid CB1 receptor antagonist, AM6545 (10mg/kg), significantly reduced intake of WD during a 6h test, but failed to modify intake of SD in mice. AM6545 normalized intake of WD, average meal size, and rate of feeding to levels found in SD control mice. These results suggest that endogenous activity at peripheral CB1Rs in WD mice is critical for driving hyperphagia. In support of this hypothesis, levels of 2-AG and anandamide in both, jejunum mucosa and plasma, of ad-libitum fed WD mice increased when compared to SC mice. Furthermore, expression of genes for primary components of the endocannabinoid system (i.e., cannabinoid receptors, and endocannabinoid biosynthetic and degradative enzymes) was dysregulated in WD mice when compared to SC mice. Our results suggest that hyperphagia associated with WD-induced obesity is driven by enhanced endocannabinoid signaling at peripheral CB1Rs.
Collapse
Affiliation(s)
| | - Nicholas V DiPatrizio
- University of California Riverside, Riverside, CA, USA; School of Medicine, Riverside, CA, USA; Division of Biomedical Sciences, Riverside, CA, USA.
| |
Collapse
|
37
|
Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat 2016; 125:90-9. [PMID: 27350414 DOI: 10.1016/j.prostaglandins.2016.06.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The modern Western diet has been consumed in developed English speaking countries for the last 50 years, and is now gradually being adopted in Eastern and developing countries. These nutrition transitions are typified by an increased intake of high linoleic acid (LA) plant oils, due to their abundance and low price, resulting in an increase in the PUFA n-6:n-3 ratio. This increase in LA above what is estimated to be required is hypothesised to be implicated in the increased rates of obesity and other associated non-communicable diseases which occur following a transition to a modern Westernised diet. LA can be converted to the metabolically active arachidonic acid, which has roles in inducing inflammation and adipogenesis, and endocannabinoid system regulation. This review aims to address the possible implications of excessive LA and its metabolites in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Shaan S Naughton
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Michael L Mathai
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia; Florey Neuroscience Institutes, The University of Melbourne, Melbourne, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
38
|
Abstract
Obesity is undoubtedly one of the major public health challenges worldwide because of its rapid progression and deleterious effects of associated diseases. The easier access to tasty and energy-dense foods is thought to greatly contribute to this epidemic. Studies also report that obese subjects and animals (rats and mice) preferentially consume foods rich in fat when they can choose. The origin of this eating behavior remains elusive. Over the last decade, the existence of a taste of fat, besides textural and olfactory cues, was supported by a growing number of studies. The existence of a sixth taste modality devoted to the detection/perception of dietary lipids might offer additive information on the quality of food. While the sense of taste is recognized to be a driving-force guiding food choice, interest in the putative relationships between lipids, gustation and obesity is only now emerging. This mini-review will attempt to summarize our current knowledge on this new field of research.
Collapse
Affiliation(s)
- Philippe Besnard
- UMR 866 Lipides/Nutrition/Cancer, AgroSup Dijon/INSERM/Univ Bourgogne-Franche Comté, Dijon, France.
- Physiologie de la Nutrition & Toxicologie (NUTox), 1 Esplanade Erasme, 21000, Dijon, France.
| |
Collapse
|
39
|
Abstract
Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract. The discovery of our bodies' own "cannabis-like molecules" and associated receptors and metabolic machinery - collectively called the endocannabinoid system - enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease. Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system. This review highlights research that reveals an important - and at times surprising - role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota.
Collapse
Affiliation(s)
- Nicholas V. DiPatrizio
- Address correspondence to: Nicholas V. DiPatrizio, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave., Riverside, CA 92521, E-mail:
| |
Collapse
|
40
|
|
41
|
Mazier W, Saucisse N, Gatta-Cherifi B, Cota D. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease. Trends Endocrinol Metab 2015; 26:524-537. [PMID: 26412154 DOI: 10.1016/j.tem.2015.07.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.
Collapse
Affiliation(s)
- Wilfrid Mazier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France
| | - Nicolas Saucisse
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France
| | - Blandine Gatta-Cherifi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; Endocrinology Department, Haut-Lévêque Hospital, 33604 Pessac, France
| | - Daniela Cota
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France.
| |
Collapse
|
42
|
Gatta-Cherifi B, Cota D. New insights on the role of the endocannabinoid system in the regulation of energy balance. Int J Obes (Lond) 2015; 40:210-9. [PMID: 26374449 DOI: 10.1038/ijo.2015.179] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/26/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022]
Abstract
Within the past 15 years, the endocannabinoid system (ECS) has emerged as a lipid signaling system critically involved in the regulation of energy balance, as it exerts a regulatory control on every aspect related to the search, the intake, the metabolism and the storage of calories. An overactive endocannabinoid cannabinoid type 1 (CB1) receptor signaling promotes the development of obesity, insulin resistance and dyslipidemia, representing a valuable pharmacotherapeutic target for obesity and metabolic disorders. However, because of the psychiatric side effects, the first generation of brain-penetrant CB1 receptor blockers developed as antiobesity treatment were removed from the European market in late 2008. Since then, recent studies have identified new mechanisms of action of the ECS in energy balance and metabolism, as well as novel ways of targeting the system that may be efficacious for the treatment of obesity and metabolic disorders. These aspects will be especially highlighted in this review.
Collapse
Affiliation(s)
- B Gatta-Cherifi
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Bordeaux, Pessac, France
| | - D Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| |
Collapse
|
43
|
Mennella I, Ferracane R, Zucco F, Fogliano V, Vitaglione P. Food Liking Enhances the Plasma Response of 2-Arachidonoylglycerol and of Pancreatic Polypeptide upon Modified Sham Feeding in Humans. J Nutr 2015; 145:2169-75. [PMID: 26180248 DOI: 10.3945/jn.114.207704] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/22/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Food palatability increases food intake and may lead to overeating. The mechanisms behind this observation are still largely unknown. OBJECTIVES The aims of this study were the following: 1) to elucidate the plasma responses of endocannabinoids, N-acylethanolamines, and gastrointestinal peptides to a palatable (sweet), unpalatable (bitter), and sensory-acceptable (tasteless control) food, and 2) to verify whether some of these bioactive compounds can serve as plasma biomarkers of food liking in humans. METHODS Three puddings providing 60 kcal (35% from proteins, 62% from carbohydrates, and 3% from fats) but with different taste were developed. Twenty healthy subjects (11 women and 9 men; mean age 28 y and BMI 22.7 kg/m(2)), selected because they liked the puddings in the order sweet > control > bitter, participated in a randomized crossover study based on a modified sham feeding (MSF) protocol. Blood samples at baseline and every 5 min up to 20 min after the MSF were analyzed for gastrointestinal peptides, endocannabinoids, and N-acylethanolamines. Thirty minutes after the MSF, energy intake at an ad libitum breakfast was measured. RESULTS After the MSF, no response was observed in 7 of 9 gastrointestinal peptides measured. The plasma ghrelin concentration at 20 min after the sweet and bitter puddings was 25% lower than after the control pudding (P = 0.04), and the pancreatic polypeptide response after the sweet pudding was 23% greater than after the bitter pudding (P = 0.02). The plasma response of 2-arachidonoylglycerol after the sweet pudding was 37% and 15% higher than after the bitter (P < 0.001) and control (P = 0.03) puddings, respectively. Trends for greater responses of anandamide (P = 0.06), linoleoylethanolamide (P = 0.07), palmitoylethanolamide (P = 0.06), and oleoylethanolamide (P = 0.09) were found after the sweet pudding than after the bitter pudding. No differences in subsequent energy intake were recorded. CONCLUSIONS The data demonstrated that food palatability influenced some plasma endocannabinoid and N-acylethanolamine concentrations during the cephalic phase response and indicated that 2-arachidonoylglycerol and pancreatic polypeptide can be used as biomarkers of food liking in humans.
Collapse
Affiliation(s)
- Ilario Mennella
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; and Food Quality and Design Group, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; and
| | - Francine Zucco
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; and
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; and
| |
Collapse
|
44
|
DiPatrizio NV, Igarashi M, Narayanaswami V, Murray C, Gancayco J, Russell A, Jung KM, Piomelli D. Fasting stimulates 2-AG biosynthesis in the small intestine: role of cholinergic pathways. Am J Physiol Regul Integr Comp Physiol 2015; 309:R805-13. [PMID: 26290104 DOI: 10.1152/ajpregu.00239.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/15/2015] [Indexed: 12/29/2022]
Abstract
The endocannabinoids are lipid-derived signaling molecules that control feeding and energy balance by activating CB1-type cannabinoid receptors in the brain and peripheral tissues. Previous studies have shown that oral exposure to dietary fat stimulates endocannabinoid signaling in the rat small intestine, which provides positive feedback that drives further food intake and preference for fat-rich foods. We now describe an unexpectedly broader role for cholinergic signaling of the vagus nerve in the production of the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), in the small intestine. We show that food deprivation increases levels of 2-AG and its lipid precursor, 1,2-diacylglycerol, in rat jejunum mucosa in a time-dependent manner. This response is abrogated by surgical resection of the vagus nerve or pharmacological blockade of small intestinal subtype-3 muscarinic acetylcholine (m3 mAch) receptors, but not inhibition of subtype-1 muscarinic acetylcholine (m1 mAch). We further show that blockade of peripheral CB1 receptors or intestinal m3 mAch receptors inhibits refeeding in fasted rats. The results suggest that food deprivation stimulates 2-AG-dependent CB1 receptor activation through a mechanism that requires efferent vagal activation of m3 mAch receptors in the jejunum, which, in turn, may promote feeding after a fast.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Division of Biomedical Sciences, University of California, Riverside, School of Medicine, Riverside, California; Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Miki Igarashi
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Vidya Narayanaswami
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Conor Murray
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Joseph Gancayco
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Amy Russell
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California; Department of Pharmacology, University of California, Irvine, School of Medicine, Irvine, California; Department of Biological Chemistry, University of California, Irvine, School of Medicine, Irvine, California; and Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
45
|
Busquets-Garcia A, Desprez T, Metna-Laurent M, Bellocchio L, Marsicano G, Soria-Gomez E. Dissecting the cannabinergic control of behavior: Thewherematters. Bioessays 2015; 37:1215-25. [DOI: 10.1002/bies.201500046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnau Busquets-Garcia
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Tifany Desprez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Mathilde Metna-Laurent
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Luigi Bellocchio
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Giovanni Marsicano
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Edgar Soria-Gomez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| |
Collapse
|
46
|
Sasaki T, Kinoshita Y, Matsui S, Kakuta S, Yokota-Hashimoto H, Kinoshita K, Iwasaki Y, Kinoshita T, Yada T, Amano N, Kitamura T. N-methyl-d-aspartate receptor coagonist d-serine suppresses intake of high-preference food. Am J Physiol Regul Integr Comp Physiol 2015; 309:R561-75. [PMID: 26157056 DOI: 10.1152/ajpregu.00083.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
d-Serine is abundant in the forebrain and physiologically important for modulating excitatory glutamatergic neurotransmission as a coagonist of synaptic N-methyl-d-aspartate (NMDA) receptor. NMDA signaling has been implicated in the control of food intake. However, the role of d-serine on appetite regulation is unknown. To clarify the effects of d-serine on appetite, we investigated the effect of oral d-serine ingestion on food intake in three different feeding paradigms (one-food access, two-food choice, and refeeding after 24-h fasting) using three different strains of male mice (C57Bl/6J, BKS, and ICR). The effect of d-serine was also tested in leptin signaling-deficient db/db mice and sensory-deafferented (capsaicin-treated) mice. The expression of orexigenic neuropeptides [neuropeptide Y (Npy) and agouti-related protein (Agrp)] in the hypothalamus was compared in fast/refed experiments. Conditioned taste aversion for high-fat diet (HFD) was tested in the d-serine-treated mice. Under the one-food-access paradigm, some of the d-serine-treated mice showed starvation, but not when fed normal chow. HFD feeding with d-serine ingestion did not cause aversion. Under the two-food-choice paradigm, d-serine suppressed the intake of high-preference food but not normal chow. d-Serine also effectively suppressed HFD intake but not normal chow in db/db mice and sensory-deafferented mice. In addition, d-serine suppressed normal chow intake after 24-h fasting despite higher orexigenic gene expression in the hypothalamus. d-Serine failed to suppress HFD intake in the presence of L-701,324, the selective and full antagonist at the glycine-binding site of the NMDA receptor. Therefore, d-serine suppresses the intake of high-preference food through coagonism toward NMDA receptors.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan;
| | - Yoshihiro Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Sho Matsui
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Shigeru Kakuta
- Research Center for Human and Environmental Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Hiromi Yokota-Hashimoto
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kuni Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Yusaku Iwasaki
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Toshio Kinoshita
- Department of Analytical Chemistry, School of Pharmacy, Kitasato University, Tokyo, Tokyo, Japan
| | - Toshihiko Yada
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Naoji Amano
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
47
|
Tkatcheva V, Poirier D, Chong-Kit R, Furdui VI, Burr C, Leger R, Parmar J, Switzer T, Maedler S, Reiner EJ, Sherry JP, Simmons DBD. Lithium an emerging contaminant: bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:85-93. [PMID: 25678467 DOI: 10.1016/j.aquatox.2015.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
Worldwide production of lithium (Li) has increased dramatically during the past decade, driven by the demand for high charge density batteries. Information about Li in the aquatic environment is limited. The present study was designed to explore the effects of Li in rainbow trout (Oncorhynchus mykiss). Juvenile trout were exposed to a nominal concentration of 1.0mg Li/L in three separate exposures. Major ion concentrations were measured in brain and plasma by ion chromatography. Plasma proteins and fatty acids were measured by HPLC-MS/MS. Lithium accumulated in the brain and plasma. Arachidonic acid was elevated in plasma after 48h. Elevated concentrations of Li in brain were associated with depressed concentrations of sodium, magnesium, potassium and ammonium relative to the control. In plasma, sodium and calcium were also depressed. Several changes occurred to plasma proteins corresponding to Li exposure: inhibition of prostaglandin synthase (Ptgs2), increased expression of copper transporting ATP synthases, and Na(+)/K(+) ATPase. To our knowledge, ours is the first study to demonstrate elevated Li concentrations in fish brain, with associated effects on ion regulation.
Collapse
Affiliation(s)
- Victoria Tkatcheva
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada.
| | - David Poirier
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Richard Chong-Kit
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Vasile I Furdui
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Christopher Burr
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Ray Leger
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Jaspal Parmar
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Teresa Switzer
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Stefanie Maedler
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada; University of Toronto, Department of Chemistry, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Eric J Reiner
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada; University of Toronto, Department of Chemistry, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON L7R 4A6, Canada
| | - Denina B D Simmons
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON L7R 4A6, Canada
| |
Collapse
|
48
|
Abstract
Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.
Collapse
Affiliation(s)
- Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| |
Collapse
|
49
|
Abstract
Fat is a vital macronutrient, and its intake is closely monitored by an array of molecular sensors distributed throughout the alimentary canal. In the mouth, dietary fat constituents such as mono- and diunsaturated fatty acids give rise to taste signals that stimulate food intake, in part by enhancing the production of lipid-derived endocannabinoid messengers in the gut. As fat-containing chyme enters the small intestine, it causes the formation of anorexic lipid mediators, such as oleoylethanolamide, which promote satiety. These anatomically and functionally distinct responses may contribute to the homeostatic control and, possibly, the pathological dysregulation of food intake.
Collapse
Affiliation(s)
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology
- Department of Pharmacology, and
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
50
|
Abstract
The endocannabinoid system (ECS) is known to exert regulatory control on essentially every aspect related to the search for, and the intake, metabolism and storage of calories, and consequently it represents a potential pharmacotherapeutic target for obesity, diabetes and eating disorders. While the clinical use of the first generation of cannabinoid type 1 (CB(1)) receptor blockers has been halted due to the psychiatric side effects that their use occasioned, recent research in animals and humans has provided new knowledge on the mechanisms of actions of the ECS in the regulation of eating behavior, energy balance, and metabolism. In this review, we discuss these recent advances and how they may allow targeting the ECS in a more specific and selective manner for the future development of therapies against obesity, metabolic syndrome, and eating disorders.
Collapse
Affiliation(s)
- Blandine Gatta-Cherifi
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, 33000, Bordeaux, France.
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, 33000, Bordeaux, France.
- Endocrinology Department, Haut-Lévêque Hospital, 33607, Pessac, France.
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, 33000, Bordeaux, France.
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, 33000, Bordeaux, France.
| |
Collapse
|