1
|
Verdys P, Rey Barroso J, Girel A, Vermeil J, Bergert M, Sanchez T, Métais A, Mangeat T, Bellard E, Bigot C, Astarie-Dequeker C, Labrousse A, Girard JP, Maridonneau-Parini I, Vérollet C, Lagarrigue F, Diz-Muñoz A, Heuvingh J, Piel M, du Roure O, Le Cabec V, Carréno S, Poincloux R. Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics. EMBO J 2024; 43:4822-4845. [PMID: 39026000 PMCID: PMC11535515 DOI: 10.1038/s44318-024-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.
Collapse
Affiliation(s)
- Perrine Verdys
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada
| | - Javier Rey Barroso
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adeline Girel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joseph Vermeil
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Sanchez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claire Bigot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Lagarrigue
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julien Heuvingh
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Olivia du Roure
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Véronique Le Cabec
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Sébastien Carréno
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
2
|
Gilbert T, Gorlt C, Barbier M, Duployer B, Plozza M, Dufrancais O, Martet LE, Dalbard E, Segot L, Tenailleau C, Haren L, Vérollet C, Bierkamp C, Merdes A. Loss of ninein interferes with osteoclast formation and causes premature ossification. eLife 2024; 13:e93457. [PMID: 38836552 PMCID: PMC11175614 DOI: 10.7554/elife.93457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.
Collapse
Affiliation(s)
- Thierry Gilbert
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Camille Gorlt
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Merlin Barbier
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | | | - Marianna Plozza
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Ophélie Dufrancais
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Laure-Elene Martet
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Elisa Dalbard
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Loelia Segot
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | | | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
- International Research Project CNRS “MAC-TB/HIV”ToulouseFrance
| | - Christiane Bierkamp
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| |
Collapse
|
3
|
Luo S, Du S, Tao M, Cao J, Cheng P. Insights on hematopoietic cell kinase: An oncogenic player in human cancer. Biomed Pharmacother 2023; 160:114339. [PMID: 36736283 DOI: 10.1016/j.biopha.2023.114339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src family and is expressed in hematopoietic cells. By regulating multiple signaling pathways, HCK can interact with multiple receptors to regulate signaling events involved in cell adhesion, proliferation, migration, invasion, apoptosis, and angiogenesis. However, aberrant expression of Hck in various hematopoietic cells and solid tumors plays a crucial role in tumor-related properties, including cell proliferation and epithelial-mesenchymal transition. In addition, Hck signaling regulates the function of immune cells such as macrophages, contributing to an immunosuppressive tumor microenvironment. The clinical success of various kinase inhibitors targeting the Src kinase family has validated the efficacy of targeting Src, and therapies with highly selective Hck kinase inhibitors are in clinical trials. This article reviews Hck inhibition as an emerging cancer treatment strategy, focusing on the expressions and functions of Hck in tumors and its impact on the tumor microenvironment. It also explores preclinical and clinical pharmacological strategies for Hck targeting to shed light on Hck-targeted tumor therapy.
Collapse
Affiliation(s)
- Shuyan Luo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shaonan Du
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Jingyuan Cao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
4
|
IgSF11-mediated phosphorylation of pyruvate kinase M2 regulates osteoclast differentiation and prevents pathological bone loss. Bone Res 2023; 11:17. [PMID: 36928396 PMCID: PMC10020456 DOI: 10.1038/s41413-023-00251-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/04/2023] [Accepted: 02/12/2023] [Indexed: 03/18/2023] Open
Abstract
Osteoclasts are primary bone-resorbing cells, and receptor-activated NF-kB ligand (RANKL) stimulation is the key driver of osteoclast differentiation. During late-stage differentiation, osteoclasts become multinucleated and enlarged (so-called "maturation"), suggesting their need to adapt to changing metabolic demands and a substantial increase in size. Here, we demonstrate that immunoglobulin superfamily 11 (IgSF11), which is required for osteoclast differentiation through an association with the postsynaptic scaffolding protein PSD-95, regulates osteoclast differentiation by controlling the activity of pyruvate kinase M isoform 2 (PKM2). By using a system that directly induces the activation of IgSF11 in a controlled manner, we identified PKM2 as a major IgSF11-induced tyrosine-phosphorylated protein. IgSF11 activates multiple Src family tyrosine kinases (SFKs), including c-Src, Fyn, and HcK, which phosphorylate PKM2 and thereby inhibit PKM2 activity. Consistently, IgSF11-deficient cells show higher PKM2 activity and defective osteoclast differentiation. Furthermore, inhibiting PKM2 activities with the specific inhibitor Shikonin rescues the impaired osteoclast differentiation in IgSF11-deficient cells, and activating PKM2 with the specific activator TEPP46 suppresses osteoclast differentiation in wild-type cells. Moreover, PKM2 activation further suppresses osteoclastic bone loss without affecting bone formation in vivo. Taken together, these results show that IgSF11 controls osteoclast differentiation through PKM2 activity, which is a metabolic switch necessary for optimal osteoclast maturation.
Collapse
|
5
|
Zhao J, Zhang X, Guan J, Su Y, Jiang J. Identification of key biomarkers in steroid-induced osteonecrosis of the femoral head and their correlation with immune infiltration by bioinformatics analysis. BMC Musculoskelet Disord 2022; 23:67. [PMID: 35042504 PMCID: PMC8767711 DOI: 10.1186/s12891-022-04994-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Objective This study aimed to identify key diagnostic markers and immune infiltration of (SONFH) by bioinformatics analysis. Methods Related SONFH datasets were downloaded from the Gene Expression Omnibus (GEO) database. First, we identified the differentially expressed genes (DEGs) and performed the functional enrichment analysis. Then weighted correlation network analysis (WGCNA) and the MCODE plug-in in Cytoscape were used to identify the diagnostic markers of SONFH. Finally, CIBERSORT was used to analyze the immune infiltration between SONFH and healthy controls, and the correlation between infiltrating immune cells and diagnostic markers was analyzed. Results TYROBP, TLR2, P2RY13, TLR8, HCK, MNDA, and NCF2 may be key diagnostic markers of SONFH. Immune cell infiltration analysis revealed that Memory B cells and activated dendritic cells may be related to the SONFH process. Moreover, HCK was negatively correlated with CD8 T cells, and neutrophils were positively correlated with those key diagnostic markers. Conclusions TYROBP, TLR2, P2RY13, TLR8, HCK, MNDA, and NCF2 may be used as diagnostic markers of SONFH, and immune-related mechanism of SONFH and the potential immunotherapy are worthy of further study. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-04994-7.
Collapse
|
6
|
Mascarau R, Bertrand F, Labrousse A, Gennero I, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. HIV-1-Infected Human Macrophages, by Secreting RANK-L, Contribute to Enhanced Osteoclast Recruitment. Int J Mol Sci 2020; 21:ijms21093154. [PMID: 32365752 PMCID: PMC7246503 DOI: 10.3390/ijms21093154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
HIV-1 infection is frequently associated with low bone density, which can progress to osteoporosis leading to a high risk of fractures. Only a few mechanisms have been proposed to explain the enhanced osteolysis in the context of HIV-1 infection. As macrophages are involved in bone homeostasis and are critical host cells for HIV-1, we asked whether HIV-1-infected macrophages could participate in bone degradation. Upon infection, human macrophages acquired some osteoclast features: they became multinucleated, upregulated the osteoclast markers RhoE and β3 integrin, and organized their podosomes as ring superstructures resembling osteoclast sealing zones. However, HIV-1-infected macrophages were not fully differentiated in osteoclasts as they did not upregulate NFATc-1 transcription factor and were unable to degrade bone. Investigating whether infected macrophages participate indirectly to virus-induced osteolysis, we showed that they produce RANK-L, the key osteoclastogenic cytokine. RANK-L secreted by HIV-1-infected macrophages was not sufficient to stimulate multinucleation, but promoted the protease-dependent migration of osteoclast precursors. In conclusion, we propose that, by stimulating RANK-L secretion, HIV-1-infected macrophages contribute to create a microenvironment that favors the recruitment of osteoclasts, participating in bone disorders observed in HIV-1 infected patients.
Collapse
Affiliation(s)
- Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Florent Bertrand
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Arnaud Labrousse
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Isabelle Gennero
- Centre de Physiopathologie de Toulouse-Purpan, INSERM-CNRS UMR 1043, Université Toulouse III Paul Sabatier, 31024 Toulouse, France;
- Institut Fédératif de Biologie, Centre Hospitalier Universitaire Toulouse, 31059 Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
- Correspondence: (B.R.-M.); (C.V.)
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
- Correspondence: (B.R.-M.); (C.V.)
| |
Collapse
|
7
|
Raynaud-Messina B, Verollet C, Maridonneau-Parini I. The osteoclast, a target cell for microorganisms. Bone 2019; 127:315-323. [PMID: 31233933 DOI: 10.1016/j.bone.2019.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
Abstract
Bone is a highly adaptive tissue with regenerative properties that is subject to numerous diseases. Infection is one of the causes of altered bone homeostasis. Bone infection happens subsequently to bone surgery or to systemic spreading of microorganisms. In addition to osteoblasts, osteoclasts (OCs) also constitute cell targets for pathogens. OCs are multinucleated cells that have the exclusive ability to resorb bone mineral tissue. However, the OC is much more than a bone eater. Beyond its role in the control of bone turnover, the OC is an immune cell that produces and senses inflammatory cytokines, ingests microorganisms and presents antigens. Today, increasing evidence shows that several pathogens use OC as a host cell to grow, generating debilitating bone defects. In this review, we exhaustively inventory the bacteria and viruses that infect OC and report the present knowledge in this topic. We point out that most of the microorganisms enhance the bone resorption activity of OC. We notice that pathogen interactions with the OC require further investigation, in particular to validate the OC as a host cell in vivo and to identify the cellular mechanisms involved in altered bone resorption. Thus, we conclude that the OC is a new cell target for pathogens; this new research area paves the way for new therapeutic strategies in the infections causing bone defects.
Collapse
Affiliation(s)
- Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Kim Y, Hayashi M, Ono T, Yoda T, Takayanagi H, Nakashima T. Suppression of hematopoietic cell kinase ameliorates the bone destruction associated with inflammation. Mod Rheumatol 2019; 30:85-92. [PMID: 30486712 DOI: 10.1080/14397595.2018.1553266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objectives: To investigate the role of non-receptor tyrosine kinases (NRTKs) in inflammation-induced osteoclastogenesis.Methods: Microarray analyses of global mRNA expression during receptor activator of NF-κB ligand (RANKL) and RANKL plus tumor necrosis factor (TNF)-α-induced osteoclast differentiation were performed. The inhibitory effect on TNF-α-induced osteoclast differentiation of A-419259, a potent inhibitor of hematopoietic cell kinase (Hck), was examined. The in vivo therapeutic effect of A-419259 treatment on lipopolysaccharide (LPS)-induced inflammatory bone destruction was evaluated.Results: We confirmed that Hck expression was selectively increased among the NRTKs during the osteoclast differentiation induced by RANKL and TNF-α, but not by RANKL alone. RANKL and TNF-α-induced osteoclast differentiation and they were dose-dependently inhibited by A-419259 treatment through inhibition of the expression of key regulators of osteoclastogenesis, including Prdm1 and Nfatc1. Notably, LPS-induced inflammatory bone loss in murine calvarial bones was ameliorated by the administration of A-419259.Conclusions: Our results demonstrate that the administration of A-419259 is effective for the inhibition of osteoclast differentiation induced by TNF-α in the presence of RANKL. Therefore, an inhibitor of Hck may be useful as a potent anti-osteoclastogenic agent for the treatment of inflammatory bone destruction.
Collapse
Affiliation(s)
- Yusoon Kim
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan
| |
Collapse
|
9
|
Cougoule C, Lastrucci C, Guiet R, Mascarau R, Meunier E, Lugo-Villarino G, Neyrolles O, Poincloux R, Maridonneau-Parini I. Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells. Front Immunol 2018; 9:846. [PMID: 29760696 PMCID: PMC5936769 DOI: 10.3389/fimmu.2018.00846] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/05/2018] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo, or in collagen matrices in vitro. However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam3CSK4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE2, known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
Collapse
Affiliation(s)
- Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Lastrucci
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Romain Guiet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proc Natl Acad Sci U S A 2018; 115:E2556-E2565. [PMID: 29463701 DOI: 10.1073/pnas.1713370115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.
Collapse
|
11
|
Andrade K, Fornetti J, Zhao L, Miller SC, Randall RL, Anderson N, Waltz SE, McHale M, Welm AL. RON kinase: A target for treatment of cancer-induced bone destruction and osteoporosis. Sci Transl Med 2018; 9:9/374/eaai9338. [PMID: 28123075 DOI: 10.1126/scitranslmed.aai9338] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
Abstract
Bone destruction occurs in aging and numerous diseases, including osteoporosis and cancer. Many cancer patients have bone osteolysis that is refractory to state-of-the-art treatments, which block osteoclast activity with bisphosphonates or by inhibiting the receptor activator of nuclear factor κB ligand (RANKL) pathway. We previously showed that macrophage-stimulating protein (MSP) signaling, which is elevated in about 40% of breast cancers, promotes osteolytic bone metastasis by activation of the MSP signaling pathway in tumor cells or in the bone microenvironment. We show that MSP signals through its receptor, RON tyrosine kinase, expressed on host cells, to activate osteoclasts directly by a previously undescribed pathway that is complementary to RANKL signaling and converges on proto-oncogene, non-receptor tyrosine kinase SRC (SRC). Genetic or pharmacologic inhibition of RON kinase blocked cancer-mediated bone destruction and osteoporosis in several mouse models. Furthermore, the RON kinase inhibitor BMS-777607/ASLAN002 altered markers of bone turnover in a first-in-human clinical cancer study, indicating the inhibitor's potential for normalizing bone loss in patients. These findings uncover a new therapeutic target for pathogenic bone loss and provide a rationale for treatment of bone destruction in various diseases with RON inhibitors.
Collapse
Affiliation(s)
- Kelsi Andrade
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ling Zhao
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott C Miller
- Department of Radiology and Imaging Sciences, Division of Radiobiology, University of Utah, Salt Lake City, UT 84112, USA
| | - R Lor Randall
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Neysi Anderson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Susan E Waltz
- Department of Cancer and Cell Biology, University of Cincinnati and Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| | - Mark McHale
- Aslan Pharmaceuticals, Singapore 089824, Singapore
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Mitchell J, Kim SJ, Seelmann A, Veit B, Shepard B, Im E, Rhee SH. Src family kinase tyrosine phosphorylates Toll-like receptor 4 to dissociate MyD88 and Mal/Tirap, suppressing LPS-induced inflammatory responses. Biochem Pharmacol 2017; 147:119-127. [PMID: 29175418 DOI: 10.1016/j.bcp.2017.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022]
Abstract
Src family kinases (SFKs) are a family of protein tyrosine kinases containing nine members: Src, Lyn, Fgr, Hck, Lck, Fyn, Blk, Yes, and Ylk. Although SFK activation is a major immediate signaling event in LPS/Toll-like receptor 4 (TLR4) signaling, its precise role has remained elusive due to various contradictory results obtained from a certain SFK member-deficient mice or cells. The observed inconsistencies may be due to the compensation or redundancy by other SFKs upon a SFK deficiency. The chemical rescuing approach was suggested to induce temporal and precise SFK activation in living cells, thereby limiting the chance of cellular adaption to a SFK-deficient condition. Using the rescuing approach, we demonstrate that restoring SFK activity not only induces tyrosine phosphorylation of TLR4, but also inhibits LPS-induced NFκB and JNK1/2 activation and consequently suppresses LPS-induced cytokine production. TLR4 normally recruits TIR domain-containing adaptors in response to LPS, however, temporally restored SFK activation disrupts the LPS-induced association of MyD88 and Mal/Tirap with TLR4. Additionally, using kinase-dead SFK-Lyn (Y397/508F) and constitutively active SFK-Lyn (Y508F), we found that the kinase-dead SFK inhibits TLR4 tyrosine phosphorylation with reduced binding affinity to TLR4, while the kinase-active SFK strongly binds to TLR4 and promotes TLR4 tyrosine phosphorylation, suggesting that SFK kinase activity is required for TLR4 tyrosine phosphorylation and TLR4-SFK interaction. Together, our results demonstrate that SFK activation induces TLR4 tyrosine phosphorylation, consequently dissociating MyD88 and Mal/Tirap from TLR4 and inhibiting LPS-induced inflammatory responses, suggesting a negative feedback loop regulated by SFK-induced tyrosine phosphorylation in TLR4.
Collapse
Affiliation(s)
- Jonathon Mitchell
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Su Jin Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Alexandra Seelmann
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Brendan Veit
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Brooke Shepard
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, South Korea.
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
13
|
Abstract
Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain.
Collapse
Affiliation(s)
- Violeta Chitu
- Albert Einstein College of Medicine, Bronx, NY, United States
| | | |
Collapse
|
14
|
Sutherland A, Forsyth A, Cong Y, Grant L, Juan TH, Lee JK, Klimowicz A, Petrillo SK, Hu J, Chan A, Boutillon F, Goffin V, Egan C, Tang PA, Cai L, Morris D, Magliocco A, Shemanko CS. The Role of Prolactin in Bone Metastasis and Breast Cancer Cell-Mediated Osteoclast Differentiation. J Natl Cancer Inst 2015; 108:djv338. [PMID: 26586670 DOI: 10.1093/jnci/djv338] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Metastasis to the bone is a deleterious aspect of breast cancer and is a preferred site that results in bone loss. Hormones such as prolactin (PRL) have not yet been studied for their role in modulating the secondary tumor bone microenvironment. METHODS We used quantitative immunohistochemistry with 134 samples of human primary breast cancer and 17 matched primary breast cancers and bone metastases. A Cox proportional hazards regression model was fitted to evaluate the associations between high prolactin receptor (PRLR) expression and time to bone metastasis, adjusting for estrogen receptor status, lymph node status, and chemotherapy status. We assessed osteoclast differentiation, osteoclast size, and measured pit formation in dentine slices. Statistical tests were two-sided. RESULTS High PRLR expression in the primary breast tumor was associated with a shorter time to metastasis that includes bone (PRLRAQUA Max-per 100 unit hazard ratio = 1.04, 95% confidence interval = 1.00 to 1.07, P = .03). We observed the PRLR in rare samples of bone metastases and matched primary breast cancer. PRL treatment of breast cancer cells induced osteoclast differentiation and bone lysis via secreted factors and was abrogated by a PRLR antagonist (delta1-9-G129R-hPRL). We demonstrated that sonic hedgehog is a PRL-regulated cytokine in breast cancer cells and part of the mechanism that induces osteoclast differentiation. CONCLUSIONS Our evidence indicates that PRL-PRLR can escalate the impact of breast cancer on bone metastasis and that the presence of the PRLR in the tumor microenvironment of breast cancer bone metastasis has the potential to modulate the microenvironment to induce lytic osteoclast formation.
Collapse
Affiliation(s)
- Ashley Sutherland
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Amanda Forsyth
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Yingying Cong
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Laurel Grant
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Tzu-Hua Juan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Jae K Lee
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Alexander Klimowicz
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Stephanie K Petrillo
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Jinghui Hu
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Angela Chan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Florence Boutillon
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Vincent Goffin
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Cay Egan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Patricia A Tang
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Li Cai
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Don Morris
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Anthony Magliocco
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Carrie S Shemanko
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| |
Collapse
|
15
|
Georgess D, Machuca-Gayet I, Blangy A, Jurdic P. Podosome organization drives osteoclast-mediated bone resorption. Cell Adh Migr 2015; 8:191-204. [PMID: 24714644 DOI: 10.4161/cam.27840] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Irma Machuca-Gayet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Anne Blangy
- Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier University; Montpellier, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| |
Collapse
|
16
|
Linder S, Wiesner C. Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 2015; 72:121-35. [PMID: 25300510 PMCID: PMC11113205 DOI: 10.1007/s00018-014-1731-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesion and invasion structures that are particularly prominent in cells of the monocytic lineage such as macrophages, dendritic cells, and osteoclasts. They are multifunctional organelles that combine several key abilities required for cell migration and invasion. The podosome repertoire includes well-established functions such as cell-substrate adhesion, and extracellular matrix degradation, recently discovered abilities such as rigidity and topology sensing as well as antigen sampling, and also more speculative functions such as cell protrusion stabilization and transmigration. Collectively, podosomes not only enable dynamic interactions of cells with their surroundings, they also gather information about the pericellular environment, and are actively involved in its reshaping. This review presents an overview of the current knowledge on podosome composition, architecture, and regulation. We focus in particular on the growing list of podosome functions and discuss the specific properties of podosomes in macrophages, dendritic cells, and osteoclasts. Moreover, this article highlights podosome-related intracellular transport processes, the formation of podosomes in 3D environments as well as potentially podosome-associated diseases involving monocytic cells.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | |
Collapse
|
17
|
Abstract
Macrophages are motile leukocytes, targeted by HIV-1, thought to play a critical role in host dissemination of the virus. However, whether infection impacts their migration capacity remains unknown. We show that 2-dimensional migration and the 3-dimensional (3D) amoeboid migration mode of HIV-1-infected human monocyte-derived macrophages were inhibited, whereas the 3D mesenchymal migration was enhanced. The viral protein Nef was necessary and sufficient for all HIV-1-mediated effects on migration. In Nef transgenic mice, tissue infiltration of macrophages was increased in a tumor model and in several tissues at steady state, suggesting a dominant role for mesenchymal migration in vivo. The mesenchymal motility involves matrix proteolysis and podosomes, cell structures constitutive of monocyte-derived cells. Focusing on the mechanisms used by HIV-1 Nef to control the mesenchymal migration, we show that the stability, size, and proteolytic function of podosomes are increased via the phagocyte-specific kinase Hck and Wiskott-Aldrich syndrome protein (WASP), 2 major regulators of podosomes. In conclusion, HIV-1 reprograms macrophage migration, which likely explains macrophage accumulation in several patient tissues, which is a key step for virus spreading and pathogenesis. Moreover, Nef points out podosomes and the Hck/WASP signaling pathway as good candidates to control tissue infiltration of macrophages, a detrimental phenomenon in several diseases.
Collapse
|
18
|
Park H, Dovas A, Hanna S, Lastrucci C, Cougoule C, Guiet R, Maridonneau-Parini I, Cox D. Tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) by Hck regulates macrophage function. J Biol Chem 2014; 289:7897-906. [PMID: 24482227 DOI: 10.1074/jbc.m113.509497] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have shown previously that tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) is important for diverse macrophage functions including phagocytosis, chemotaxis, podosome dynamics, and matrix degradation. However, the specific tyrosine kinase mediating WASP phosphorylation is still unclear. Here, we provide evidence that Hck, which is predominantly expressed in leukocytes, can tyrosine phosphorylate WASP and regulates WASP-mediated macrophage functions. We demonstrate that tyrosine phosphorylation of WASP in response to stimulation with CX3CL1 or via Fcγ receptor ligation were severely reduced in Hck(-/-) bone marrow-derived macrophages (BMMs) or in RAW/LR5 macrophages in which Hck expression was silenced using RNA-mediated interference (Hck shRNA). Consistent with reduced WASP tyrosine phosphorylation, phagocytosis, chemotaxis, and matrix degradation are reduced in Hck(-/-) BMMs or Hck shRNA cells. In particular, WASP phosphorylation was primarily mediated by the p61 isoform of Hck. Our studies also show that Hck and WASP are required for passage through a dense three-dimensional matrix and transendothelial migration, suggesting that tyrosine phosphorylation of WASP by Hck may play a role in tissue infiltration of macrophages. Consistent with a role for this pathway in invasion, WASP(-/-) BMMs do not invade into tumor spheroids with the same efficiency as WT BMMs and cells expressing phospho-deficient WASP have reduced ability to promote carcinoma cell invasion. Altogether, our results indicate that tyrosine phosphorylation of WASP by Hck is required for proper macrophage functions.
Collapse
Affiliation(s)
- Haein Park
- From the Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 and
| | | | | | | | | | | | | | | |
Collapse
|