1
|
Shabani Z, Do Prado LB, Zhang R, Zhu W, Shaligram SS, Yadav A, Wang C, Su H. Increasing Endoglin Deletion in Endothelial Cells Exacerbates the Severity of Brain Arteriovenous Malformation in Mouse. Biomedicines 2024; 12:1691. [PMID: 39200156 PMCID: PMC11352040 DOI: 10.3390/biomedicines12081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Endoglin (ENG) mutation causes type 1 hereditary hemorrhagic telangiectasia (HHT1). HHT1 patients have arteriovenous malformations (AVMs) in multiple organs, including the brain. In mice, Eng deletion induced by R26RCreER or SM22αCre leads to AVM development in the brain and other organs. We hypothesized that an increase in Eng- negative ECs will enhance AVM severity. To increase EC Eng deletion, we used a codon-improved cre (icre), which is more potent in recombination of the floxed alleles than the wild-type (WT) cre. R26RCreER;Engf/f mice that have a Rosa promoter driving and tamoxifen (TM)-inducible WT cre expression globally, and PdgfbiCreER;Engf/f mice that have a Pdgfb promoter driving and TM-inducible icre expression in ECs were treated with three intra-peritoneal injections of TM (2.5 mg/25 g of body weight) to delete Eng globally or in the ECs. AAV-VEGF was stereotactically injected into the brain to induce brain focal angiogenesis and brain AVM. We found that icre caused more Eng deletion in the brain, indicated by a lower level of Eng proteins (p < 0.001) and fewer Eng-positive ECs (p = 0.01) than mice with WT cre. Mice with icre-mediated Eng deletion have more abnormal vessels (p = 0.02), CD68+ macrophages (p = 0.002), and hemorrhage (p = 0.04) and less vascular pericyte and smooth muscle coverage than mice with WT cre. In addition, arteriovenous shunts were detected in the intestines of icre mice, a phenotype that has not been detected in WT cre mice before. RNA-seq analysis showed that 8 out of the 10 top upregulated pathways identified by gene ontology (GO) analysis are related to inflammation. Therefore, the increase in Eng deletion in ECs exacerbates AVM severity, which is associated with enhanced inflammation. Strategies that can reduce Eng-negative ECs could be used to develop new therapies to reduce AVM severity for HHT1 patients.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Leandro Barbosa Do Prado
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Rui Zhang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Sonali S. Shaligram
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Alka Yadav
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Calvin Wang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Eissazadeh S, Mohammadi S, Faradonbeh FA, Rathouska JU, Nemeckova I, Tripska K, Vitverova B, Dohnalkova E, Vasinova M, Fikrova P, Sa ICI, Micuda S, Nachtigal P. Endoglin and soluble endoglin in liver sinusoidal endothelial dysfunction in vivo. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166990. [PMID: 38110128 DOI: 10.1016/j.bbadis.2023.166990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) play a crucial role in regulating the hepatic function. Endoglin (ENG), a transmembrane glycoprotein, was shown to be related to the development of endothelial dysfunction. In this study, we hypothesized the relationship between changes in ENG expression and markers of liver sinusoidal endothelial dysfunction (LSED) during liver impairment. Male C57BL/6J mice aged 9-12 weeks were fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet (intrahepatic cholestasis) or choline-deficient l-amino acid defined high-fat diet (CDAA-HFD) (non-alcoholic steatohepatitis (NASH)). Significant increases in liver enzymes, fibrosis, and inflammation biomarkers were observed in both cholestasis and NASH. Decreased p-eNOS/eNOS and VE-cadherin protein expression and a significant increase in VCAM-1 and ICAM-1 expression were detected, indicating LSED in both mouse models of liver damage. A significant reduction of ENG in the DDC-fed mice, while a significant increase of ENG in the CDAA-HFD group was observed. Both DDC and CDAA-HFD-fed mice showed a significant increase in MMP-14 protein expression, which is related to significantly increased levels of soluble endoglin (sENG) in the plasma. In conclusion, we demonstrated that intrahepatic cholestasis and NASH result in an altered ENG expression, predominantly in LSECs, suggesting a critical role of ENG expression for the proper function of liver sinusoids. Both pathologies resulted in elevated sENG levels, cleaved by MMP-14 expressed predominantly from LSECs, indicating sENG as a liver injury biomarker.
Collapse
Affiliation(s)
- Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - SeyedehNiloufar Mohammadi
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Fatemeh Alaei Faradonbeh
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Urbankova Rathouska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ivana Nemeckova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Katarina Tripska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Barbora Vitverova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ester Dohnalkova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Martina Vasinova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Petra Fikrova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ivone Cristina Igreja Sa
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic.
| |
Collapse
|
3
|
Rossi E, Bernabeu C. Novel vascular roles of human endoglin in pathophysiology. J Thromb Haemost 2023; 21:2327-2338. [PMID: 37315795 DOI: 10.1016/j.jtha.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Endoglin, alias CD105, is a human membrane glycoprotein highly expressed in vascular endothelial cells. It is involved in angiogenesis and angiogenesis-related diseases, including the rare vascular pathology known as hereditary hemorrhagic telangiectasia type 1. Although endoglin acts as an accessory receptor for members of the transforming growth factor-β family, in recent years, emerging evidence has shown a novel functional role for this protein beyond the transforming growth factor-β system. In fact, endoglin has been found to be an integrin counterreceptor involved in endothelial cell adhesion processes during pathological inflammatory conditions and primary hemostasis. Furthermore, a circulating form of endoglin, also named as soluble endoglin, whose levels are abnormally increased in different pathological conditions, such as preeclampsia, seems to act as an antagonist of membrane-bound endoglin and as a competitor of the fibrinogen-integrin interaction in platelet-dependent thrombus formation. These studies suggest that membrane-bound endoglin and circulating endoglin are important components involved in vascular homeostasis and hemostasis.
Collapse
Affiliation(s)
- Elisa Rossi
- Université Paris Cité, INSERM U1140, Innovative Therapies in Haemostasis, Paris, France.
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
4
|
Eisa-Beygi S, Burrows PE, Link BA. Endothelial cilia dysfunction in pathogenesis of hereditary hemorrhagic telangiectasia. Front Cell Dev Biol 2022; 10:1037453. [PMID: 36438574 PMCID: PMC9686338 DOI: 10.3389/fcell.2022.1037453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 09/09/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is associated with defective capillary network, leading to dilated superficial vessels and arteriovenous malformations (AVMs) in which arteries connect directly to the veins. Loss or haploinsufficiency of components of TGF-β signaling, ALK1, ENG, SMAD4, and BMP9, have been implicated in the pathogenesis AVMs. Emerging evidence suggests that the inability of endothelial cells to detect, transduce and respond to blood flow, during early development, is an underpinning of AVM pathogenesis. Therefore, components of endothelial flow detection may be instrumental in potentiating TGF-β signaling in perfused blood vessels. Here, we argue that endothelial cilium, a microtubule-based and flow-sensitive organelle, serves as a signaling hub by coupling early flow detection with potentiation of the canonical TGF-β signaling in nascent endothelial cells. Emerging evidence from animal models suggest a role for primary cilia in mediating vascular development. We reason, on recent observations, that endothelial cilia are crucial for vascular development and that embryonic loss of endothelial cilia will curtail TGF-β signaling, leading to associated defects in arteriovenous development and impaired vascular stability. Loss or dysfunction of endothelial primary cilia may be implicated in the genesis of AVMs due, in part, to inhibition of ALK1/SMAD4 signaling. We speculate that AVMs constitute part of the increasing spectrum of ciliopathy-associated vascular defects.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Patricia E. Burrows
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Merabet O, Pietrosemoli N, Perthame E, Armengaud J, Gaillard JC, Borges-Cardoso V, Daniau M, Legras-Lachuer C, Carnec X, Baize S. Infection of Human Endothelial Cells with Lassa Virus Induces Early but Transient Activation and Low Type I IFN Response Compared to the Closely-Related Nonpathogenic Mopeia Virus. Viruses 2022; 14:v14030652. [PMID: 35337059 PMCID: PMC8953476 DOI: 10.3390/v14030652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lassa virus (LASV), an Old World arenavirus, is responsible for hemorrhagic fevers in western Africa. The privileged tropism of LASV for endothelial cells combined with a dysregulated inflammatory response are the main cause of the increase in vascular permeability observed during the disease. Mopeia virus (MOPV) is another arenavirus closely related to LASV but nonpathogenic for non-human primates (NHPs) and has never been described in humans. MOPV is more immunogenic than LASV in NHPs and in vitro in human immune cell models, with more intense type I IFN and adaptive cellular responses. Here, we compared the transcriptomic and proteomic responses of human umbilical vein endothelial cells (HUVECs) to infection with the two viruses to further decipher the mechanisms involved in their differences in immunogenicity and pathogenicity. Both viruses replicated durably and efficiently in HUVECs, but the responses they induced were strikingly different. Modest activation was observed at an early stage of LASV infection and then rapidly shut down. By contrast, MOPV induced a late but more intense response, characterized by the expression of genes and proteins mainly associated with the type I IFN response and antigen processing/presentation. Such a response is consistent with the higher immunogenicity of MOPV relative to LASV, whereas the lack of an innate response induced in HUVECs by LASV is consistent with its uncontrolled systemic dissemination through the vascular endothelium.
Collapse
Affiliation(s)
- Othmann Merabet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, 75015 Paris, France; (N.P.); (E.P.)
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, 75015 Paris, France; (N.P.); (E.P.)
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l’Energie Atomique, 30200 Bagnols-sur-Cèze, France; (J.A.); (J.-C.G.)
| | - Jean-Charles Gaillard
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l’Energie Atomique, 30200 Bagnols-sur-Cèze, France; (J.A.); (J.-C.G.)
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Maïlys Daniau
- ViroScan3D SAS, 01600 Trévoux, France; (M.D.); (C.L.-L.)
| | | | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
- Correspondence: ; Tel.: +33-4-3728-2440
| |
Collapse
|
6
|
Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Vavoulidis E, Gullo G, Alexandratou M, Dinas K, Sotiriadis A, Mavromatidis G. The role of endoglin and its soluble form in pathogenesis of preeclampsia. Mol Cell Biochem 2022; 477:479-491. [PMID: 34783962 DOI: 10.1007/s11010-021-04294-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022]
Abstract
Preeclampsia remains till today a leading cause of maternal and fetal morbidity and mortality. Pathophysiology of the disease is not yet fully elucidated, though it is evident that it revolves around placenta. Cellular ischemia in the preeclamptic placenta creates an imbalance between angiogenic and anti-angiogenic factors in maternal circulation. Endoglin, a transmembrane co-receptor of transforming growth factor β (TGF-β) demonstrating angiogenic effects, is involved in a variety of angiogenesis-dependent diseases with endothelial dysfunction, including preeclampsia. Endoglin expression is up-regulated in preeclamptic placentas, through mechanisms mainly induced by hypoxia, oxidative stress and oxysterol-mediated activation of liver X receptors. Overexpression of endoglin results in an increase of its soluble form in maternal circulation. Soluble endoglin represents the extracellular domain of membrane endoglin, cleaved by the action of metalloproteinases, predominantly matrix metalloproteinase-14. Released in circulation, soluble endoglin interferes in TGF-β1 and activin receptor-like kinase 1 signaling pathways and inhibits endothelial nitric oxide synthase activation, consequently deranging angiogenesis and promoting vasoconstriction. Due to these properties, soluble endoglin actively contributes to the impaired placentation observed in preeclampsia, as well as to the pathogenesis and manifestation of its clinical signs and symptoms, especially hypertension and proteinuria. The significant role of endoglin and soluble endoglin in pathophysiology of preeclampsia could have prognostic, diagnostic and therapeutic perspectives. Further research is essential to extensively explore the potential use of these molecules in the management of preeclampsia in clinical settings.
Collapse
Affiliation(s)
- Georgia Margioula-Siarkou
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece.
| | - Chrysoula Margioula-Siarkou
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Kosmas Margaritis
- 2nd Department of Pediatrics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, IVF Unit, Villa Sofia Cervello Hospital, University of Palermo, Palermo, Italy
| | - Maria Alexandratou
- Department of Radiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Alexandros Sotiriadis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Georgios Mavromatidis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| |
Collapse
|
7
|
Endoglin deficiency impairs VEGFR2 but not FGFR1 or TIE2 activation and alters VEGF-mediated cellular responses in human primary endothelial cells. Transl Res 2021; 235:129-143. [PMID: 33894400 PMCID: PMC8328903 DOI: 10.1016/j.trsl.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 01/23/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease characterized by vascular dysplasia. Mutations of the endoglin (ENG) gene that encodes a co-receptor of the transforming growth factor β1 signaling pathway cause type I HHT. ENG is primarily expressed in endothelial cells (ECs), but its interaction with other key angiogenic pathways to control angiogenesis has not been well addressed. The aim of this study is to investigate ENG interplay with VEGFR2, FGFR1 and TIE2 in primary human ECs. ENG was knocked-down with siRNA in human umbilical vein ECs (HUVECs) and human lung microvascular ECs (HMVEC-L). Gene expression was measured by RT-qPCR and Western blotting. Cell signaling pathway activation was analyzed by detecting phosphor-ERK and phosphor-AKT levels. Cell migration and apoptosis were assessed using the Boyden chamber assay and the CCK-8 Kit, respectively. Loss of ENG in HUVECs led to significantly reduced expression of VEGFR2 but not TIE2 or FGFR1, which was also confirmed in HMVEC-L. HUVECs lacking ENG had significantly lower levels of active Rac1 and a substantial reduction of the transcription factor Sp1, an activator of VEGFR2 transcription, in nuclei. Furthermore, VEGF- but not bFGF- or angiopoietin-1-induced phosphor-ERK and phosphor-AKT were suppressed in ENG deficient HUVECs. Functional analysis revealed that ENG knockdown inhibited cell migratory but enhanced anti-apoptotic activity induced by VEGF. In contrast, bFGF, angiopoietin-1 and -2 induced HUVEC migration and anti-apoptotic activities were not affected by ENG knockdown. In conclusion, ENG deficiency alters the VEGF/VEGFR2 pathway, which may play a role in HHT pathogenesis.
Collapse
|
8
|
Rossi E, Kauskot A, Saller F, Frezza E, Poirault-Chassac S, Lokajczyk A, Bourdoncle P, Saubaméa B, Gaussem P, Pericacho M, Bobe R, Bachelot-Loza C, Pasquali S, Bernabeu C, Smadja DM. Endoglin Is an Endothelial Housekeeper against Inflammation: Insight in ECFC-Related Permeability through LIMK/Cofilin Pathway. Int J Mol Sci 2021; 22:ijms22168837. [PMID: 34445542 PMCID: PMC8396367 DOI: 10.3390/ijms22168837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/- mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/- TNFα and +/- LIM kinase inhibitors (LIMKi). In silico modeling of TNFα-Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin-tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng-siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/-, and MLEC+/- compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.
Collapse
Affiliation(s)
- Elisa Rossi
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- Correspondence:
| | - Alexandre Kauskot
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - François Saller
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - Elisa Frezza
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France
| | - Sonia Poirault-Chassac
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Anna Lokajczyk
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Pierre Bourdoncle
- Plate-Forme IMAG’IC Institut Cochin Inserm U1016-CNRS UMR8104, Université Paris Descartes, F-75006 Paris, France;
| | - Bruno Saubaméa
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- UMR-S 1144, F-75006 Paris, France
| | - Pascale Gaussem
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Miguel Pericacho
- Department of Physiology and Pharmacology, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Regis Bobe
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - Christilla Bachelot-Loza
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Samuela Pasquali
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, 28040 Madrid, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - David M. Smadja
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Biosurgical Research Lab (Carpentier Foundation), F-75000 Paris, France
| |
Collapse
|
9
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
10
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
11
|
Vicen M, Igreja Sá IC, Tripská K, Vitverová B, Najmanová I, Eissazadeh S, Micuda S, Nachtigal P. Membrane and soluble endoglin role in cardiovascular and metabolic disorders related to metabolic syndrome. Cell Mol Life Sci 2021; 78:2405-2418. [PMID: 33185696 PMCID: PMC11072708 DOI: 10.1007/s00018-020-03701-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
Membrane endoglin (Eng, CD105) is a transmembrane glycoprotein essential for the proper function of vascular endothelium. It might be cleaved by matrix metalloproteinases to form soluble endoglin (sEng), which is released into the circulation. Metabolic syndrome comprises conditions/symptoms that usually coincide (endothelial dysfunction, arterial hypertension, hyperglycemia, obesity-related insulin resistance, and hypercholesterolemia), and are considered risk factors for cardiometabolic disorders such as atherosclerosis, type II diabetes mellitus, and liver disorders. The purpose of this review is to highlight current knowledge about the role of Eng and sEng in the disorders mentioned above, in vivo and in vitro extent, where we can find a wide range of contradictory results. We propose that reduced Eng expression is a hallmark of endothelial dysfunction development in chronic pathologies related to metabolic syndrome. Eng expression is also essential for leukocyte transmigration and acute inflammation, suggesting that Eng is crucial for the regulation of endothelial function during the acute phase of vascular defense reaction to harmful conditions. sEng was shown to be a circulating biomarker of preeclampsia, and we propose that it might be a biomarker of metabolic syndrome-related symptoms and pathologies, including hypercholesterolemia, hyperglycemia, arterial hypertension, and diabetes mellitus as well, despite the fact that some contradictory findings have been reported. Besides, sEng can participate in the development of endothelial dysfunction and promote the development of arterial hypertension, suggesting that high levels of sEng promote metabolic syndrome symptoms and complications. Therefore, we suggest that the treatment of metabolic syndrome should take into account the importance of Eng in the endothelial function and levels of sEng as a biomarker and risk factor of related pathologies.
Collapse
Affiliation(s)
- Matej Vicen
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Ivone Cristina Igreja Sá
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Katarína Tripská
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Barbora Vitverová
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Iveta Najmanová
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Samira Eissazadeh
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Stanislav Micuda
- Faculty of Medicine in Hradec Kralove, Department of Pharmacology, Charles University, Simkova 870, Hradec Kralove, 500 03, Czech Republic
| | - Petr Nachtigal
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic.
| |
Collapse
|
12
|
JCAD expression and localization in human blood endothelial cells. Heliyon 2020; 6:e05121. [PMID: 33083606 PMCID: PMC7550929 DOI: 10.1016/j.heliyon.2020.e05121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
Background Junctional Cadherin 5 Associated (JCAD) is an endothelial, cell-cell junction protein, and its expression is associated with cardiovascular diseases including atherosclerosis and hypertension. However, to date, there are few studies confirming JCAD expression and precise localization in human tissues by immunohistochemical staining. Methods JCAD expression and localization was assessed in four human submandibular gland (SMG) specimens by immunohistochemical staining. One specimen of SMG with sialoadenitis was accompanied by severe inflammation and fibrosis, while the other was largely normal. Other two SMGs were accompanied by severe fibrosis because of irradiation. Results Immunohistochemical analysis of human SMGs revealed JCAD localization at the blood endothelial cell-cell junctions. JCAD expression was more evident in microvessels and arteries in areas affected by inflammation. Conclusions The localization of JCAD at endothelial cell-cell junctions was confirmed in human tissues. JCAD expression may be affected by pathological conditions.
Collapse
|
13
|
Viallard C, Audiger C, Popovic N, Akla N, Lanthier K, Legault-Navarrete I, Melichar H, Costantino S, Lesage S, Larrivée B. BMP9 signaling promotes the normalization of tumor blood vessels. Oncogene 2020; 39:2996-3014. [PMID: 32042114 DOI: 10.1038/s41388-020-1200-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023]
Abstract
The presence of an immature tumor vascular network contributes to cancer dissemination and the development of resistance to therapies. Strategies to normalize the tumor vasculature are therefore of significant therapeutic interest for cancer treatments. VEGF inhibitors are used clinically to normalize tumor blood vessels. However, the time frame and dosage of these inhibitors required to achieve normalization is rather narrow, and there is a need to identify additional signaling targets to attain vascular normalization. In addition to VEGF, the endothelial-specific receptor Alk1 plays a critical role in vascular development and promotes vascular remodeling and maturation. Therefore, we sought to evaluate the effects of the Alk1 ligand BMP9 on tumor vascular formation. BMP9 overexpression in Lewis Lung Carcinoma (LLC) tumors significantly delayed tumor growth. Blood vessels in BMP9-overexpressing LLC tumors displayed markers of vascular maturation and were characterized by increased perivascular cell coverage. Tumor vasculature normalization was associated with decreased permeability and increased perfusion. These changes in vascular function in BMP9-overexpressing LLC tumors resulted in significant alterations of the tumor microenvironment, characterized by a decrease in hypoxia and an increase in immune infiltration. In conclusion, we show that BMP9 promotes vascular normalization in LLC tumors that leads to changes in the microenvironment.
Collapse
Affiliation(s)
- Claire Viallard
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Cindy Audiger
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Natalija Popovic
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Naoufal Akla
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Biochimie, Université de Montréal, Montréal, QC, Canada
| | - Kevin Lanthier
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | | | - Heather Melichar
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Santiago Costantino
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Bruno Larrivée
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada. .,Département de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada. .,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
14
|
Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, Silva-Sousa L, Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novoa JM, Pericacho M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 2020; 23:231-247. [PMID: 31897911 PMCID: PMC7160077 DOI: 10.1007/s10456-019-09703-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Endoglin (CD105) is an auxiliary receptor for members of the TFG-β superfamily. Whereas it has been demonstrated that the deficiency of endoglin leads to minor and defective angiogenesis, little is known about the effect of its increased expression, characteristic of several types of cancer. Angiogenesis is essential for tumor growth, so high levels of proangiogenic molecules, such as endoglin, are supposed to be related to greater tumor growth leading to a poor cancer prognosis. However, we demonstrate here that endoglin overexpression do not stimulate sprouting or vascularization in several in vitro and in vivo models. Instead, steady endoglin overexpression keep endothelial cells in an active phenotype that results in an impairment of the correct stabilization of the endothelium and the recruitment of mural cells. In a context of continuous enhanced angiogenesis, such as in tumors, endoglin overexpression gives rise to altered vessels with an incomplete mural coverage that permit the extravasation of blood. Moreover, these alterations allow the intravasation of tumor cells, the subsequent development of metastases and, thus, a worse cancer prognosis.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Cristina Egido-Turrión
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura Silva-Sousa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular Y Celular del Cáncer. CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Alicia Rodríguez-Barbero
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
15
|
Gallardo-Vara E, Tual-Chalot S, Botella LM, Arthur HM, Bernabeu C. Soluble endoglin regulates expression of angiogenesis-related proteins and induction of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia. Dis Model Mech 2018; 11:dmm.034397. [PMID: 30108051 PMCID: PMC6176985 DOI: 10.1242/dmm.034397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
Endoglin is a transmembrane glycoprotein expressed in vascular endothelium that plays a key role in angiogenesis. Mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1 (HHT1), characterized by arteriovenous malformations (AVMs) in different organs. These vascular lesions derive from abnormal processes of angiogenesis, whereby aberrant vascular remodeling leads to focal loss of capillaries. Current treatments for HHT1 include antiangiogenic therapies. Interestingly, a circulating form of endoglin (also known as soluble endoglin, sEng), proteolytically released from the membrane-bound protein and displaying antiangiogenic activity, has been described in several endothelial-related pathological conditions. Using human and mouse endothelial cells, we find that sEng downregulates several pro-angiogenic and pro-migratory proteins involved in angiogenesis. However, this effect is much reduced in endothelial cells that lack endogenous transmembrane endoglin, suggesting that the antiangiogenic activity of sEng is dependent on the presence of endogenous transmembrane endoglin protein. In fact, sEng partially restores the phenotype of endoglin-silenced endothelial cells to that of normal endothelial cells. Moreover, using an established neonatal retinal model of HHT1 with depleted endoglin in the vascular endothelium, sEng treatment decreases the number of AVMs and has a normalizing effect on the vascular phenotype with respect to vessel branching, vascular density and migration of the vascular plexus towards the retinal periphery. Taken together, these data show that circulating sEng can influence vascular development and AVMs by modulating angiogenesis, and that its effect on endothelial cells depends on the expression of endogenous endoglin. This article has an associated First Person interview with the first author of the paper. Summary: Soluble endoglin regulates vascular development and arteriovenous malformations by modulating angiogenesis, and its effect on endothelial cells depends on expression of endogenous membrane-bound endoglin.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| |
Collapse
|
16
|
Liu J, Chen G, Xu H, Hu K, Sun J, Liu M, Zhang F, Gu N. Pre-vascularization in fibrin Gel/PLGA microsphere scaffolds designed for bone regeneration. NPG ASIA MATERIALS 2018; 10:827-839. [DOI: 10.1038/s41427-018-0076-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 01/14/2025]
|
17
|
Paauwe M, Schoonderwoerd MJA, Helderman RFCP, Harryvan TJ, Groenewoud A, van Pelt GW, Bor R, Hemmer DM, Versteeg HH, Snaar-Jagalska BE, Theuer CP, Hardwick JCH, Sier CFM, Ten Dijke P, Hawinkels LJAC. Endoglin Expression on Cancer-Associated Fibroblasts Regulates Invasion and Stimulates Colorectal Cancer Metastasis. Clin Cancer Res 2018; 24:6331-6344. [PMID: 29945992 DOI: 10.1158/1078-0432.ccr-18-0329] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/23/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer-associated fibroblasts (CAF) are a major component of the colorectal cancer tumor microenvironment. CAFs play an important role in tumor progression and metastasis, partly through TGF-β signaling pathway. We investigated whether the TGF-β family coreceptor endoglin is involved in CAF-mediated invasion and metastasis. EXPERIMENTAL DESIGN CAF-specific endoglin expression was studied in colorectal cancer resection specimens using IHC and related to metastases-free survival. Endoglin-mediated invasion was assessed in vitro by transwell invasion, using primary colorectal cancer-derived CAFs. Effects of CAF-specific endoglin expression on tumor cell invasion were investigated in a colorectal cancer zebrafish model, whereas liver metastases were assessed in a mouse model. RESULTS CAFs specifically at invasive borders of colorectal cancer express endoglin and increased expression intensity correlated with increased disease stage. Endoglin-expressing CAFs were also detected in lymph node and liver metastases, suggesting a role in colorectal cancer metastasis formation. In stage II colorectal cancer, CAF-specific endoglin expression at invasive borders correlated with poor metastasis-free survival. In vitro experiments revealed that endoglin is indispensable for bone morphogenetic protein (BMP)-9-induced signaling and CAF survival. Targeting endoglin using the neutralizing antibody TRC105 inhibited CAF invasion in vitro. In zebrafish, endoglin-expressing fibroblasts enhanced colorectal tumor cell infiltration into the liver and decreased survival. Finally, CAF-specific endoglin targeting with TRC105 decreased metastatic spread of colorectal cancer cells to the mouse liver. CONCLUSIONS Endoglin-expressing CAFs contribute to colorectal cancer progression and metastasis. TRC105 treatment inhibits CAF invasion and tumor metastasis, indicating an additional target beyond the angiogenic endothelium, possibly contributing to beneficial effects reported during clinical evaluations.See related commentary by Becker and LeBleu, p. 6110.
Collapse
Affiliation(s)
- Madelon Paauwe
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Thrombosis & Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark J A Schoonderwoerd
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roxan F C P Helderman
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom J Harryvan
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arwin Groenewoud
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Rosalie Bor
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Danielle M Hemmer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henri H Versteeg
- Department of Thrombosis & Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - James C H Hardwick
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands. .,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Zeinvand-Lorestani H, Nili-Ahmadabadi A, Balak F, Hasanzadeh G, Sabzevari O. Protective role of thymoquinone against paraquat-induced hepatotoxicity in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:16-21. [PMID: 29891368 DOI: 10.1016/j.pestbp.2018.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/24/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Paraquat is a common and effective herbicide; although its poisoning could lead to severe oxidative organ damages and its main target organs are the lungs, kidneys, heart, and liver. Thymoquinone is the active ingredient of Nigella sativa which is traditionally used in herbal medicine; recent studies have shown that thymoquinone could inhibit oxidative stress. This study explores protective effects of thymoquinone on paraquat-induced hepatotoxicity in mice. Accordingly, adult male mice were randomly divided into nine groups for three continuous days intraperitoneal injection treatment: (1) control; (2) solvent; (3) 20 mg/kg vitamin E; (4) 20 mg/kg thymoquinone; (5) 20 mg/kg paraquat and Groups 6, 7, 8, and 9 received 20 mg/kg of vitamin E and 5, 10, and 20 mg/kg of thymoquinone, respectively. The last four groups, received 20 mg/kg paraquat just 24 h after pretreatments. We assessed serum liver enzymes activities, liver histopathology changes, oxidative (lipid peroxidation) and antioxidative (ferric reducing antioxidant power) potential, superoxide dismutase (SOD) and catalase activity, and total thiol groups content after administration of the poison and treatments. Pretreatment with 10 mg/kg thymoquinone inhibited, safely, the elevations in levels of liver function tests (LFTs) and lipid peroxidation, restored the activity of SOD, and ameliorated the histopathological alterations induced by paraquat. Eventually, our results indicate that thymoquinone performs its hepatoprotective role in mice by prevention of SOD suppression mediated by paraquat.
Collapse
Affiliation(s)
- Hamed Zeinvand-Lorestani
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Balak
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Hasanzadeh
- Department of Histopathology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| |
Collapse
|
19
|
Zhou H, Jin C, Cui L, Xing H, Liu J, Liao W, Liao H, Yu Y. HMGB1 contributes to the irradiation-induced endothelial barrier injury through receptor for advanced glycation endproducts (RAGE). J Cell Physiol 2018; 233:6714-6721. [PMID: 29215715 DOI: 10.1002/jcp.26341] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
This study aimed to investigate whether HMGB1 (high mobility group box-1 protein) and receptor for advanced glycation end products (RAGE) were involved in the irradiation-induced endothelial barrier damage and their mechanism. We constructed the damage model of endothelium barrier model with bEnd.3 cells. The permeability of endothelial barrier was detected by sodium fluorescein (Na-F) permeation test, and the irradiation dose which could induce permeability transition was determined by being exposed to different irradiation doses (5, 10, 15, 20 Gy). MTT assay was applied to detect cell viability under different concentrations of HMGB1, glycyrrhizic acid (GA, a specific inhibitor of HMGB1), and FPS-ZM1 (a blood-brain-barrier permeant blocker of RAGE V domain-mediated ligand binding). The expression of HMGB1, RAGE, and related molecules involved in MAPK signaling pathway, MMP-2, MMP-9, ZO-1, and claudin 5 of differently treated groups were measured by qRT-PCR, western blot, and immunofluorescence. Cells possessed stable endothelial barrier function on 4-7 days after seeded on transwell plates. The permeability of endothelial barrier would change under at least 10 Gy radiation. Both radiation and HMGB1 treatment alone could improve the permeability. After irradiation, the expressions of HMGB1 and RAGE increased and MAPK signal pathway was activated. Meanwhile, MMP-2 and MMP-9 were overexpressed, while the expression of tight junction proteins ZO-1 and claudin 5 was decreased. Radiation could activate MAPK signaling pathway through promoting the expression of HMGB1 and RAGE, which further led to endothelial barrier injury and changed its permeability.
Collapse
Affiliation(s)
- Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Congli Jin
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lili Cui
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huaijie Xing
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jun Liu
- Department of Neurology, SUN YAT-SEN Medical Hospital, SUN YAT-SEN University, Guangzhou, Guangdong, China
| | - Wang Liao
- Department of Neurology, SUN YAT-SEN Medical Hospital, SUN YAT-SEN University, Guangzhou, Guangdong, China
| | - Haojie Liao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yangsheng Yu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
20
|
Cheng C, Yu Z, Zhao S, Liao Z, Xing C, Jiang Y, Yang YG, Whalen MJ, Lo EH, Sun X, Wang X. Thrombospondin-1 Gene Deficiency Worsens the Neurological Outcomes of Traumatic Brain Injury in Mice. Int J Med Sci 2017; 14:927-936. [PMID: 28924363 PMCID: PMC5599915 DOI: 10.7150/ijms.18812] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Thrombospondin-1 (TSP-1) is an extracellular matrix protein that plays multiple physiological and pathophysiological roles in the brain. Experimental reports suggest that TSP-1 may have an adverse role in neuronal function recovery under certain injury conditions. However, the roles of TSP-1 in traumatic brain injury (TBI) have not been elucidated. In this study we for the first time investigated the roles of TSP-1 in a controlled cortical impact (CCI) model of TBI in TSP-1 knockout (TSP-1 KO) and wild type (WT) mice. Methods: We examined blood brain-barrier (BBB) damage using at 1 day post-TBI by measuring Evans Blue leakage, and neurological functional recovery at 3 weeks post-TBI by measuring neurological severity score (NSS), wire gripping, corner test and Morris Water Maze (MWM). Mechanistically, we quantified pro-angiogenic biomarkers including cerebral vessel density, vascular endothelial growth factors (VEGF) and angiopoietin-1 (Ang-1) protein expression, synaptic biomarker synaptophysin, and synaptogenesis marker brain-derived neurotrophic factor (BDNF) protein expression in contralateral and ipsilateral (peri-lesion) cortex at 21 days after TBI using immunohistochemistry and Western Blot. Results: TSP-1 is upregulated at early phase of TBI in WT mice. Compared to WT mice, TSP-1 KO (1) significantly worsened TBI-induced BBB leakage at 1 day after TBI; (2) had similar lesion size as WT mice at 3 weeks after TBI; (3) exhibited a significantly worse neurological deficits in motor and cognitive functions; (4) had no significant difference in cerebral vessel density, but significant increase of VEGF and Ang-1 protein expressions in peri-lesion cortex; (5) significantly increased BDNF but not synaptophysin protein level in peri-lesion cortex compared to sham, but both synaptophysin and BDNF expressions were significantly decreased in contralateral cortex compared to WT. Conclusion: Our results suggest that TSP-1 may be beneficial for maintaining BBB integrity in the early phase and functional recovery in late phase after TBI. The molecular mechanisms of TSP-1 in early BBB pathophysiology, and long-term neurological function recovery after TBI need to be further investigated.
Collapse
Affiliation(s)
- Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Song Zhao
- Departments of Orthopedic and Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengbu Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Changhong Xing
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yinghua Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yong-Guang Yang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael J. Whalen
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
21
|
Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis 2016; 20:1-24. [PMID: 27943030 DOI: 10.1007/s10456-016-9535-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.
Collapse
Affiliation(s)
- Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Spanish National Research Council (CIB, CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
22
|
Rossi E, Smadja DM, Boscolo E, Langa C, Arevalo MA, Pericacho M, Gamella-Pozuelo L, Kauskot A, Botella LM, Gaussem P, Bischoff J, Lopez-Novoa JM, Bernabeu C. Endoglin regulates mural cell adhesion in the circulatory system. Cell Mol Life Sci 2016; 73:1715-39. [PMID: 26646071 PMCID: PMC4805714 DOI: 10.1007/s00018-015-2099-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Adhesion/physiology
- Cell Line, Tumor
- Disease Models, Animal
- Endoglin
- Endothelium, Vascular/metabolism
- Female
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Integrin beta1/genetics
- Jurkat Cells
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Pathologic/metabolism
- Pericytes/metabolism
- Podocytes/metabolism
- Pre-Eclampsia/genetics
- Pre-Eclampsia/pathology
- Pregnancy
- Protein Binding
- RNA Interference
- RNA, Small Interfering
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Retina/metabolism
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/pathology
Collapse
Affiliation(s)
- Elisa Rossi
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Paris Descartes University, Sorbonne Paris Cite, Paris, France
- Hematology Department, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - David M Smadja
- Hematology Department, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Faculté de Pharmacie, Inserm UMR-S1140, Paris, France
| | - Elisa Boscolo
- Department of Surgery, Harvard Medical School, Children's Hospital, Boston, MA, 02115, USA
| | - Carmen Langa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Miguel A Arevalo
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Miguel Pericacho
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007, Salamanca, Spain
- Departamento de Fisiología y Farmacología, Unidad de Fisiopatología Renal y Cardiovascular, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Luis Gamella-Pozuelo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Departamento de Fisiología y Farmacología, Unidad de Fisiopatología Renal y Cardiovascular, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Alexandre Kauskot
- Inserm UMR-S1176, Le Kremlin Bicêtre, Paris, France
- Université Paris Sud, Le Kremlin Bicêtre, Paris, France
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Pascale Gaussem
- Hematology Department, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Faculté de Pharmacie, Inserm UMR-S1140, Paris, France
| | - Joyce Bischoff
- Department of Surgery, Harvard Medical School, Children's Hospital, Boston, MA, 02115, USA
| | - José M Lopez-Novoa
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007, Salamanca, Spain
- Departamento de Fisiología y Farmacología, Unidad de Fisiopatología Renal y Cardiovascular, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
| |
Collapse
|
23
|
Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:251-81. [PMID: 26907525 DOI: 10.1146/annurev-pathol-012615-044506] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
24
|
Paauwe M, Heijkants RC, Oudt CH, van Pelt GW, Cui C, Theuer CP, Hardwick JCH, Sier CFM, Hawinkels LJAC. Endoglin targeting inhibits tumor angiogenesis and metastatic spread in breast cancer. Oncogene 2016; 35:4069-79. [PMID: 26804178 DOI: 10.1038/onc.2015.509] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
Endoglin, a transforming growth factor-β co-receptor, is highly expressed on angiogenic endothelial cells in solid tumors. Therefore, targeting endoglin is currently being explored in clinical trials for anti-angiogenic therapy. In this project, the redundancy between endoglin and vascular endothelial growth factor (VEGF) signaling in angiogenesis and the effects of targeting both pathways on breast cancer metastasis were explored. In patient samples, increased endoglin signaling after VEGF inhibition was observed. In vitro TRC105, an endoglin-neutralizing antibody, increased VEGF signaling in endothelial cells. Moreover, combined targeting of the endoglin and VEGF pathway, with the VEGF receptor kinase inhibitor SU5416, increased antiangiogenic effects in vitro and in a zebrafish angiogenesis model. Next, in a mouse model for invasive lobular breast cancer, the effects of TRC105 and SU5416 on tumor growth and metastasis were explored. Although TRC105 and SU5416 decreased tumor vascular density, tumor volume was unaffected. Strikingly, in mice treated with TRC105, or TRC105 and SU5416 combined, a strong inhibition in the number of metastases was seen. Moreover, upon resection of the primary tumor, strong inhibition of metastatic spread by TRC105 was observed in an adjuvant setting. To confirm these data, we assessed the effects of endoglin-Fc (an endoglin ligand trap) on metastasis formation. Similar to treatment with TRC105 in the resection model, endoglin-Fc-expressing tumors showed strong inhibition of distant metastases. These results show, for the first time, that targeting endoglin, either with neutralizing antibodies or a ligand trap, strongly inhibits metastatic spread of breast cancer in vivo.
Collapse
Affiliation(s)
- M Paauwe
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R C Heijkants
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - C H Oudt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - G W van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - C Cui
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - C P Theuer
- Tracon Pharmaceuticals, San Diego, CA, USA
| | - J C H Hardwick
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - C F M Sier
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - L J A C Hawinkels
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Mutchler SM, Straub AC. Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide 2015; 49:8-15. [PMID: 26028569 DOI: 10.1016/j.niox.2015.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/23/2023]
Abstract
Nitric oxide (NO) was first described as a bioactive molecule through its ability to stimulate soluble guanylate cyclase, but the revelation that NO was the endothelium derived relaxation factor drove the field to its modern state. The wealth of research conducted over the past 30 years has provided us with a picture of how diverse NO signaling can be within the vascular wall, going beyond simple vasodilation to include such roles as signaling through protein S-nitrosation. This expanded view of NO's actions requires highly regulated and compartmentalized production. Importantly, resistance arteries house multiple proteins involved in the production and transduction of NO allowing for efficient movement of the molecule to regulate vascular tone and reactivity. In this review, we focus on the many mechanisms regulating NO production and signaling action in the vascular wall, with a focus on the control of endothelial nitric oxide synthase (eNOS), the enzyme responsible for synthesizing most of the NO within these confines. We also explore how cross talk between the endothelium and smooth muscle in the microcirculation can modulate NO signaling, illustrating that this one small molecule has the capability to produce a plethora of responses.
Collapse
Affiliation(s)
- Stephanie M Mutchler
- Heart, Lung, Blood and Vascular Medicine Institute, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|