1
|
Lei J, Zhai J, Qi J, Sun C. Identification of sepsis-associated encephalopathy biomarkers through machine learning and bioinformatics approaches. Sci Rep 2024; 14:31717. [PMID: 39738412 DOI: 10.1038/s41598-024-82885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
Sepsis-associated encephalopathy (SAE) is common in septic patients, characterized by acute and long-term cognitive impairment, and is associated with higher mortality. This study aimed to identify SAE-related biomarkers and evaluate their diagnostic potential. We analyzed three SAE-related sequencing datasets, using two as training sets and one as a validation set. Weighted Gene Co-expression Network Analysis and four machine learning methods-Elastic Net regression, LASSO, random forest, and XGBoost-were employed, dentifying 18 biomarkers with significant expression changes. External validation and in vitro experiments confirmed the differential expression of these biomarkers. These findings provide insights into SAE pathogenesis and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Jingchao Lei
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jia Zhai
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jing Qi
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Chuanzheng Sun
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Bjørnestad SA, Solbakken MH, Krokene P, Thiede B, Hylland K, Jakobsen KS, Jentoft S, Bakke O, Progida C. The Atlantic Cod MHC I compartment has the properties needed for cross-presentation in the absence of MHC II. Sci Rep 2024; 14:25404. [PMID: 39455705 PMCID: PMC11511864 DOI: 10.1038/s41598-024-76225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Atlantic cod has a peculiar immune system, characterized by the loss of Major Histocompatibility Complex (MHC) class II pathway, and an extreme expansion of the MHC class I gene repertoire. This has led to the hypothesis that some of the MHC I variants have replaced MHC II by presenting exogenous-peptides in a process similar to cross-presentation. In mammals, MHC I loads endogenous antigens in the endoplasmic reticulum, but we recently found that different Atlantic cod MHC I gene variants traffic to endolysosomes. There, they colocalize with Tapasin and other components of the peptide-loading complex, indicating a plausible peptide-loading system outside the endoplasmic reticulum. In this study, we further characterize the identity of the Atlantic cod MHC I compartment (cMIC). We found that, similarly to mammalian MHC II compartment, cMIC contains late endosomal markers such as Rab7, LAMP1 and CD63. Furthermore, we identified Hsp90b1 (also known as grp94) and LRP1 (also known as CD91) as interactors of MHC I by mass spectrometry. As these two proteins are involved in cross-presentation in mammals, this further suggests that Atlantic cod MHC I might use a similar mechanism to present exogenous peptides, thus, compensating for the absence of MHC II.
Collapse
Affiliation(s)
| | - Monica Hongrø Solbakken
- Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| | - Pia Krokene
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Sissel Jentoft
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Kojima R, Paslawski W, Lyu G, Arenas E, Zhang X, Svenningsson P. Secretome Analyses Identify FKBP4 as a GBA1-Associated Protein in CSF and iPS Cells from Parkinson's Disease Patients with GBA1 Mutations. Int J Mol Sci 2024; 25:683. [PMID: 38203854 PMCID: PMC10779269 DOI: 10.3390/ijms25010683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Mutations in the GBA1 gene increase the risk of developing Parkinson's disease (PD). However, most carriers of GBA1 mutations do not develop PD throughout their lives. The mechanisms of how GBA1 mutations contribute to PD pathogenesis remain unclear. Cerebrospinal fluid (CSF) is used for detecting pathological conditions of diseases, providing insights into the molecular mechanisms underlying neurodegenerative disorders. In this study, we utilized the proximity extension assay to examine the levels of metabolism-linked protein in the CSF from 17 PD patients carrying GBA1 mutations (GBA1-PD) and 17 idiopathic PD (iPD). The analysis of CSF secretome in GBA1-PD identified 11 significantly altered proteins, namely FKBP4, THOP1, GLRX, TXNDC5, GAL, SEMA3F, CRKL, APLP1, LRP11, CD164, and NPTXR. To investigate GBA1-associated CSF changes attributed to specific neuronal subtypes responsible for PD, we analyzed the cell culture supernatant from GBA1-PD-induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neurons. The secretome analysis of GBA1-PD iPSC-derived mDA neurons revealed that five differently regulated proteins overlapped with those identified in the CSF analysis: FKBP4, THOP1, GLRX, GAL, and CRKL. Reduced intracellular level of the top hit, FKPB4, was confirmed via Western Blot. In conclusion, our findings identify significantly altered CSF GBA1-PD-associated proteins with FKPB4 being firmly attributed to mDA neurons.
Collapse
Affiliation(s)
- Rika Kojima
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Guochang Lyu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| |
Collapse
|
4
|
Li J, Zhao J, Chen L, Gao H, Zhang J, Wang D, Zou Y, Qin Q, Qu Y, Li J, Xiong Y, Min Z, Yan M, Mao Z, Xue Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson's disease. Brain Behav Immun 2023; 108:32-44. [PMID: 36343753 DOI: 10.1016/j.bbi.2022.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons (DA) and the accumulation of Lewy body deposits composed of alpha-Synuclein (α-Syn), which act as antigenic epitopes to drive cytotoxic T-cell responses in PD. Increased T helper 17 (Th17) cells and dysfunctional regulatory T cells (Tregs) have been reported to be associated with the loss of DA in PD. However, the mechanism underlying the Th17/Treg imbalance remains unknown. METHODS Here, we examined the percentage of Th17 cells, the percentage of Tregs and the α-Syn level and analysed their correlations in the peripheral blood of PD patients and in the substantia nigra pars compacta (SNpc) and spleen of MPTP-treated mice and A53 transgenic mice. We assessed the effect of α-Syn on the stability and function of Tregs and the differentiation of Th17 cells and evaluated the role of retinoid-related orphan nuclear receptor (RORγt) upregulation in α-Syn stimulation in vivo and in vitro. RESULTS We found that the α-Syn level and severity of motor symptoms were positively correlated with the increase in Th17 cells and decrease in Tregs in PD patients. Moreover, α-Syn stimulation led to the loss of Forkhead box protein P3 (FOXP3) expression in Tregs, accompanied by the acquisition of IL-17A expression. Increased Th17 differentiation was detected upon α-Syn stimulation when naïve CD4+ T cells were cultured under Th17-polarizing conditions. Mechanistically, α-Syn promotes the transcription of RORC, encoding RORγt, in Tregs and Th17 cells, leading to increased Th17 differentiation and loss of Treg function. Intriguingly, the increase in Th17 cells, decrease in Tregs and apoptosis of DA were suppressed by a RORγt inhibitor (GSK805) in MPTP-treated mice. CONCLUSION Together, our data suggest that α-Syn promotes the transcription of RORC in circulating CD4+ T cells, including Tregs and Th17 cells, to impair the stability of Tregs and promote the differentiation of Th17 cells in PD. Inhibition of RORγt attenuated the apoptosis of DA and alleviated the increase in Th17 cells and decrease in Tregs in PD.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuan Zou
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Manli Yan
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
5
|
Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021; 10:cells10102596. [PMID: 34685574 PMCID: PMC8534281 DOI: 10.3390/cells10102596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/07/2023] Open
Abstract
The dysfunction of the proteostasis network is a molecular hallmark of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Molecular chaperones are a major component of the proteostasis network and maintain cellular homeostasis by folding client proteins, assisting with intracellular transport, and interfering with protein aggregation or degradation. Heat shock protein 70 kDa (Hsp70) and 90 kDa (Hsp90) are two of the most important chaperones whose functions are dependent on ATP hydrolysis and collaboration with their co-chaperones. Numerous studies implicate Hsp70, Hsp90, and their co-chaperones in neurodegenerative diseases. Targeting the specific protein–protein interactions between chaperones and their particular partner co-chaperones with small molecules provides an opportunity to specifically modulate Hsp70 or Hsp90 function for neurodegenerative diseases. Here, we review the roles of co-chaperones in Hsp70 or Hsp90 chaperone cycles, the impacts of co-chaperones in neurodegenerative diseases, and the development of small molecules modulating chaperone/co-chaperone interactions. We also provide a future perspective of drug development targeting chaperone/co-chaperone interactions for neurodegenerative diseases.
Collapse
|
6
|
Leal-Lasarte M, Mannini B, Chiti F, Vendruscolo M, Dobson CM, Roodveldt C, Pozo D. Distinct responses of human peripheral blood cells to different misfolded protein oligomers. Immunology 2021; 164:358-371. [PMID: 34043816 PMCID: PMC8442237 DOI: 10.1111/imm.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Increasing evidence indicates that peripheral immune cells play a prominent role in neurodegeneration connected to protein misfolding, which are associated with formation of aberrant aggregates, including soluble protein misfolded oligomers. The precise links, however, between the physicochemical features of diverse oligomers and their effects on the immune system, particularly on adaptive immunity, remain currently unexplored, due partly to the transient and heterogeneous nature of the oligomers themselves. To overcome these limitations, we took advantage of two stable and well‐characterized types of model oligomers (A and B), formed by HypF‐N bacterial protein, type B oligomers displaying lower solvent‐exposed hydrophobicity. Exposure to oligomers of human peripheral blood mononuclear cells (PBMCs) revealed differential effects, with type B, but not type A, oligomers leading to a reduction in CD4+ cells. Type A oligomers promoted enhanced differentiation towards CD4+CD25HighFoxP3+ Tregs and displayed a higher suppressive effect on lymphocyte proliferation than Tregs treated with oligomers B or untreated cells. Moreover, our results reveal Th1 and Th17 lymphocyte differentiation mediated by type A oligomers and a differential balance of TGF‐β, IL‐6, IL‐23, IFN‐γ and IL‐10 mediators. These results indicate that type B oligomers recapitulate some of the biological responses associated with Parkinson's disease in peripheral immunocompetent cells, while type A oligomers resemble responses associated with Alzheimer's disease. We anticipate that further studies characterizing the differential effects of protein misfolded oligomers on the peripheral immune system may lead to the development of blood‐based diagnostics, which could report on the type and properties of oligomers present in patients.
Collapse
Affiliation(s)
- Magdalena Leal-Lasarte
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Benedetta Mannini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
7
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Mannini B, Vecchi G, Labrador-Garrido A, Fabre B, Fani G, Franco JM, Lilley K, Pozo D, Vendruscolo M, Chiti F, Dobson CM, Roodveldt C. Differential Interactome and Innate Immune Response Activation of Two Structurally Distinct Misfolded Protein Oligomers. ACS Chem Neurosci 2019; 10:3464-3478. [PMID: 31313906 DOI: 10.1021/acschemneuro.9b00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation of misfolded protein oligomers during early stages of amyloid aggregation and the activation of neuroinflammatory responses are two key events associated with neurodegenerative diseases. Although it has been established that misfolded oligomers are involved in the neuroinflammatory process, the links between their structural features and their functional effects on the immune response remain unknown. To explore such links, we took advantage of two structurally distinct soluble oligomers (type A and B) of protein HypF-N and compared the elicited microglial inflammatory responses. By using confocal microscopy, protein pull-down, and high-throughput mass spectrometry, we found that, even though both types bound to a common pool of microglial proteins, type B oligomers-with a lower solvent-exposed hydrophobicity-showed enhanced protein binding, correlating with the observed inflammatory response. Furthermore, the interactome associated with inflammatory-mediated neurodegeneration revealed previously unidentified receptors and signaling molecules likely to be involved in the oligomer-elicited innate immune response.
Collapse
Affiliation(s)
- Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Giulia Vecchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Adahir Labrador-Garrido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Bertrand Fabre
- Cambridge Centre for Proteomics, Systems Biology Centre, Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, U.K
| | - Giulia Fani
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Jaime M. Franco
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Kathryn Lilley
- Cambridge Centre for Proteomics, Systems Biology Centre, Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, U.K
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| |
Collapse
|
9
|
Tansey MG, Romero-Ramos M. Immune system responses in Parkinson's disease: Early and dynamic. Eur J Neurosci 2019; 49:364-383. [PMID: 30474172 PMCID: PMC6391192 DOI: 10.1111/ejn.14290] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
The neuropathological hallmarks of Parkinson's disease (PD) are the degeneration and death of dopamine-producing neurons in the ventral midbrain, the widespread intraneuronal aggregation of alpha-synuclein (α) in Lewy bodies and neurites, neuroinflammation, and gliosis. Signs of microglia activation in the PD brain postmortem as well as during disease development revealed by neuroimaging, implicate immune responses in the pathophysiology of the disease. Intensive research during the last two decades has advanced our understanding of the role of these responses in the disease process, yet many questions remain unanswered. A transformative finding in the field has been the confirmation that in vivo microglia are able to respond directly to pathological a-syn aggregates but also to neuronal dysfunction due to intraneuronal a-syn toxicity well in advance of neuronal death. In addition, clinical research and disease models have revealed the involvement of both the innate and adaptive immune systems. Indeed, the data suggest that PD leads not only to a microglia response, but also to a cellular and humoral peripheral immune response. Together, these findings compel us to consider a more holistic view of the immunological processes associated with the disease. Central and peripheral immune responses aimed at maintaining neuronal health will ultimately have consequences on neuronal survival. We will review here the most significant findings that have contributed to the current understanding of the immune response in PD, which is proposed to occur early, involve peripheral and brain immune cells, evolve as neuronal dysfunction progresses, and is likely to influence disease progression.
Collapse
Affiliation(s)
- Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Marina Romero-Ramos
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, & AU IDEAS center NEURODIN, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
10
|
Lassen LB, Reimer L, Ferreira N, Betzer C, Jensen PH. Protein Partners of α-Synuclein in Health and Disease. Brain Pathol 2018; 26:389-97. [PMID: 26940507 DOI: 10.1111/bpa.12374] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
α-synuclein is normally situated in the nerve terminal but it accumulates and aggregates in axons and cell bodies in synucleinopathies such as Parkinson's disease. The conformational changes occurring during α-synucleins aggregation process affects its interactions with other proteins and its subcellular localization. This review focuses on interaction partners of α-synuclein within different compartments of the cell with a focus on those preferentially binding aggregated α-synuclein. The aggregation state of α-synuclein also affects its catabolism and we hypothesize impaired macroautophagy is involved neuronal excretion of α-synuclein species responsible for the prion-like spreading of α-synuclein pathology.
Collapse
Affiliation(s)
- Louise Berkhoudt Lassen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Lasse Reimer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Nelson Ferreira
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Cristine Betzer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Poul Henning Jensen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
11
|
Villadiego J, Labrador-Garrido A, Franco JM, Leal-Lasarte M, De Genst EJ, Dobson CM, Pozo D, Toledo-Aral JJ, Roodveldt C. Immunization with α-synuclein/Grp94 reshapes peripheral immunity and suppresses microgliosis in a chronic Parkinsonism model. Glia 2017; 66:191-205. [PMID: 29024008 DOI: 10.1002/glia.23237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Neuroinflammation mediated by chronically activated microglia, largely caused by abnormal accumulation of misfolded α-synuclein (αSyn) protein, is known to contribute to the pathophysiology of Parkinson's disease (PD). In this work, based on the immunomodulatory activities displayed by particular heat-shock proteins (HSPs), we tested a novel vaccination strategy that used a combination of αSyn and Grp94 (HSPC4 or Gp96) chaperone and a murine PD model. We used two different procedures, first, the adoptive transfer of splenocytes from αSyn/Grp94-immunized mice to recipient animals, and second, direct immunization with αSyn/Grp94, to study the effects in a chronic mouse MPTP-model of parkinsonism. We found that both approaches promoted a distinct profile in the peripheral system-supported by humoral and cellular immunity-consisting of a Th1-shifted αSyn-specific response accompanied by an immune-regulatory/Th2-skewed general phenotype. Remarkably, this mixed profile sustained by αSyn/Grp94 immunization led to strong suppression of microglial activation in the substantia nigra and striatum, pointing to a newly described positive effect of anti-αSyn Th1-responses in the context of PD. This strategy is the first to target αSyn and report the suppression of PD-associated microgliosis. Overall, we show that the αSyn/Grp94 combination supports a distinct and long-lasting immune profile in the peripheral system, which has an impact at the CNS level by suppressing chronic microglial activation in an MPTP model of PD. Furthermore, our study demonstrates that reshaping peripheral immunity by vaccination with appropriate misfolding protein/HSP combinations could be highly beneficial as a treatment for neurodegenerative misfolding diseases.
Collapse
Affiliation(s)
- Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio-CSIC-Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Adahir Labrador-Garrido
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER. Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.,Departamento de Bioquímica Médica, Biología Molecular e Inmunología. Universidad de Sevilla, Seville, Spain
| | - Jaime M Franco
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER. Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.,Departamento de Bioquímica Médica, Biología Molecular e Inmunología. Universidad de Sevilla, Seville, Spain
| | - Magdalena Leal-Lasarte
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER. Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Erwin J De Genst
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER. Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.,Departamento de Bioquímica Médica, Biología Molecular e Inmunología. Universidad de Sevilla, Seville, Spain
| | - Juan J Toledo-Aral
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio-CSIC-Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER. Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
12
|
Leal‐Lasarte MM, Franco JM, Labrador‐Garrido A, Pozo D, Roodveldt C. Extracellular TDP‐43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase‐3/IL‐18 signaling in microglia. FASEB J 2017; 31:2797-2816. [DOI: 10.1096/fj.201601163r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- María M. Leal‐Lasarte
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
| | - Jaime M. Franco
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
- Department of Medical BiochemistryMolecular Biology and ImmunologySchool of MedicineUniversity of SevilleSeville Spain
| | - Adahir Labrador‐Garrido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
- Department of Medical BiochemistryMolecular Biology and ImmunologySchool of MedicineUniversity of SevilleSeville Spain
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
- Department of Medical BiochemistryMolecular Biology and ImmunologySchool of MedicineUniversity of SevilleSeville Spain
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
| |
Collapse
|