1
|
Benavente-Perez A. Evidence of vascular involvement in myopia: a review. Front Med (Lausanne) 2023; 10:1112996. [PMID: 37275358 PMCID: PMC10232763 DOI: 10.3389/fmed.2023.1112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
The benign public perception of myopia (nearsightedness) as a visual inconvenience masks the severity of its sight-threatening consequences. Myopia is a significant risk factor for posterior pole conditions such as maculopathy, choroidal neovascularization and glaucoma, all of which have a vascular component. These associations strongly suggest that myopic eyes might experience vascular alterations prior to the development of complications. Myopic eyes are out of focus because they are larger in size, which in turn affects their overall structure and function, including those of the vascular beds. By reviewing the vascular changes that characterize myopia, this review aims to provide an understanding of the gross, cellular and molecular alterations identified at the structural and functional levels with the goal to provide an understanding of the latest evidence in the field of experimental and clinical myopia vascular research. From the evidence presented, we hypothesize that the interaction between excessive myopic eye growth and vascular alterations are tipping-points for the development of sight-threatening changes.
Collapse
|
2
|
Gnanaguru G, Tabor SJ, Bonilla GM, Sadreyev R, Yuda K, Köhl J, Connor KM. Microglia refine developing retinal astrocytic and vascular networks through the complement C3/C3aR axis. Development 2023; 150:dev201047. [PMID: 36762625 PMCID: PMC10110418 DOI: 10.1242/dev.201047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Microglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development. Ablation of microglia increased astrocyte density and altered spatial patterning. Mechanistically, we show that microglia regulate the formation of the spatially organized astrocyte template required for subsequent vascular growth, through the complement C3/C3aR axis during neuroretinal development. Lack of C3 or C3aR hindered the developmental phagocytic removal of astrocyte bodies and resulted in increased astrocyte density. In addition, increased astrocyte density was associated with elevated proangiogenic extracellular matrix gene expression in C3- and C3aR-deficient retinas, resulting in increased vascular density. These data demonstrate that microglia regulate developmental astrocyte and vascular network spatial patterning in the neuroretina via the complement axis.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Steven J. Tabor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Gracia M. Bonilla
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kentaro Yuda
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Toll-like Receptor 2 Facilitates Oxidative Damage-Induced Retinal Degeneration. Cell Rep 2021; 30:2209-2224.e5. [PMID: 32075760 PMCID: PMC7179253 DOI: 10.1016/j.celrep.2020.01.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal degeneration is a form of neurodegenerative disease and is the leading cause of vision loss globally. The Toll-like receptors (TLRs) are primary components of the innate immune system involved in signal transduction. Here we show that TLR2 induces complement factors C3 and CFB, the common and rate-limiting factors of the alternative pathway in both retinal pigment epithelial (RPE) cells and mononuclear phagocytes. Neutralization of TLR2 reduces opsonizing fragments of C3 in the outer retina and protects photoreceptor neurons from oxidative stress-induced degeneration. TLR2 deficiency also preserves tight junction expression and promotes RPE resistance to fragmentation. Finally, oxidative stress-induced formation of the terminal complement membrane attack complex and Iba1+ cell infiltration are strikingly inhibited in the TLR2-deficient retina. Our data directly implicate TLR2 as a mediator of retinal degeneration in response to oxidative stress and present TLR2 as a bridge between oxidative damage and complement-mediated retinal pathology. Oxidative stress and complement deposition are common to many retinal degenerative diseases. Mulfaul et al. demonstrate that TLR2 blockade protects against photoreceptor neuronal cell death and RPE fragmentation in experimental models of oxidative stress-induced retinal degeneration and present TLR2 as a bridge between oxidative damage and complement-mediated retinal pathology.
Collapse
|
4
|
Park DH, Connor KM, Lambris JD. The Challenges and Promise of Complement Therapeutics for Ocular Diseases. Front Immunol 2019; 10:1007. [PMID: 31156618 PMCID: PMC6529562 DOI: 10.3389/fimmu.2019.01007] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023] Open
Abstract
Ocular inflammation is a defining feature of sight threating diseases and its dysregulation can catalyze and or propagate ocular neurodegenerative maladies such as age-related macular degeneration (AMD). The complement system, an intrinsic component of the innate immunity, has an integral role in maintaining immune-surveillance and homeostasis in the ocular microenvironment; however, overstimulation can drive ocular inflammatory diseases. The mechanism for complement disease propagation in AMD is not fully understood, although there is accumulating evidence showing that targeted modulation of complement-specific proteins has the potential to become a viable therapeutic approach. To date, a major focus of complement therapeutics has been on targeting the alternative complement system in AMD. Recent studies have outlined potential complement cascade inhibitors that might mitigate AMD disease progression. First-in-class complement inhibitors target the modulation of complement proteins C3, C5, factor B, factor D, and properdin. Herein, we will summarize ocular inflammation in the context of AMD disease progression, current clinical outcomes and complications of complement-mediated therapeutics. Given the need for additional therapeutic approaches for ocular inflammatory diseases, targeted complement modulation has emerged as a leading candidate for eliminating inflammation-driven ocular maladies.
Collapse
Affiliation(s)
- Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Stellar Chance Laboratories, Philadelphia, PA, United States
| |
Collapse
|
5
|
Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol 2018; 11:1856-1864. [PMID: 30450319 DOI: 10.18240/ijo.2018.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Pathological neovascularisation, which is a critical component of diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP), is a frequent cause of compromised vision or blindness. Researchers continuously investigate the role of the complement system in the pathogenesis of retinopathy. Studies have confirmed the role of factors H and I in the development of AMD, and factors H and B in the development of DR. Other components, such as C2, C3, and C5, have also been considered. However, findings on the involvement of the complement system in the pathogenesis of ROP are still inconclusive. This paper presents a review of the current literature data, pointing to the novel results and achievements from research into the role of complement components in the development of retinopathy. There is still a need to continue research in new directions, and to gather more detailed information about this problem which will be useful in the treatment of these diseases.
Collapse
Affiliation(s)
- Martyna Chrzanowska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Anna Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Monika Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| |
Collapse
|
6
|
Ansardamavandi A, Tafazzoli-Shadpour M, Shokrgozar MA. Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus. Cell Adh Migr 2018; 12:472-488. [PMID: 29969940 PMCID: PMC6363025 DOI: 10.1080/19336918.2018.1475803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
The micro-environment of cancer cells in the body is mechanically stiffer than that of normal cells. We cultured three breast cell lines of MCF10A-normal, MCF7-noninvasive, and MDA-MB-231-invasive on PDMS substrates with different elastic moduli and different cellular features were examined.Effects of substrate stiffness on cell behavior were evident among all cell lines. Cancerous cells were more sensitive to substrate stiffness for cell behaviors related to cell motility and migration which are necessary for invasion. The invasive cancerous cells were the most motile on substrates with moderate stiffness followed by non-invasive cancerous cells. Gene markers alterations were generally according to the analyzed cell movement parameters. Results suggest that alterations in matrix stiffness may be related to cancer disease and progression.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | |
Collapse
|
7
|
Inafuku S, Klokman G, Connor KM. The Alternative Complement System Mediates Cell Death in Retinal Ischemia Reperfusion Injury. Front Mol Neurosci 2018; 11:278. [PMID: 30174588 PMCID: PMC6107794 DOI: 10.3389/fnmol.2018.00278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Ischemia reperfusion (IR) injury induces retinal cell death and contributes to visual impairment. Previous studies suggest that the complement cascade plays a key role in IR injury in several systemic diseases. However, the role of the complement pathway in the ischemic retina has not been investigated. The aim of this study is to determine if the alternative complement cascade plays a role in retinal IR injury, and identify which components of the pathway mediate retinal degeneration in response to IR injury. To accomplish this, we utilized the mouse model of retinal IR injury, wherein the intraocular pressure (IOP) is elevated for 45 min, collapsing the retinal blood vessels and inducing retinal ischemia, followed by IOP normalization and subsequent reperfusion. We found that mRNA expression of complement inhibitors complement receptor 1-related gene/protein-y (Crry), Cd55 and Cd59a was down-regulated after IR. Moreover, genetic deletion of complement component 3 (C3−/−) and complement factor b (Fb−/−) decreased IR-induced retinal apoptosis. Because vascular dysfunction is central to IR injury, we also assessed the role of complement in a model of shear stress. In human retinal endothelial cells (HRECs), shear stress up-regulated complement inhibitors Cd46, Cd55, and Cd59, and suppressed complement-mediated cell death, indicating that a lack of vascular flow, commonly observed in IR injury, allows for complement mediated attack of the retinal vasculature. These results suggested that in retinal IR injury, the alternative complement system is activated by suppression of complement inhibitors, leading to vascular dysfunction and neuronal cell death.
Collapse
Affiliation(s)
- Saori Inafuku
- Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Garrett Klokman
- Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Kip M Connor
- Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
8
|
Kuehn S, Reinehr S, Stute G, Rodust C, Grotegut P, Hensel AT, Dick HB, Joachim SC. Interaction of complement system and microglia activation in retina and optic nerve in a NMDA damage model. Mol Cell Neurosci 2018; 89:95-106. [PMID: 29738834 DOI: 10.1016/j.mcn.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/14/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023] Open
Abstract
It is known that intravitreally injected N-methyl-d-aspartate (NMDA) leads to fast retina and optic nerve degeneration and can directly activate microglia. Here, we analyzed the relevance for microglia related degenerating factors, the proteins of the complement system, at a late stage in the NMDA damage model. Therefore, different doses of NMDA (0 (PBS), 20, 40, 80 nmol) were intravitreally injected in rat eyes. Proliferative and activated microglia/macrophages (MG/Mϕ) were found in retina and optic nerve 2 weeks after NMDA injection. All three complement pathway proteins were activated in retinas after 40 and 80 nmol NMDA treatment. 80 nmol NMDA injection also lead to more numerous depositions of complement factors C3 and membrane attack complex (MAC) in retina and MAC in optic nerve. Additionally, more MAC+ depositions were detected in optic nerves of the 40 nmol NMDA group. In this NMDA model, the retina is first affected followed by optic nerve damage. However, we found initiating complement processes in the retina, while more deposits of the terminal complex were present 2 weeks after NMDA injection in the optic nerve. The complement system can be activated in waves and possibly a second wave is still on-going in the retina, while the first activation wave is in the final phase in the optic nerve. Only the damaged tissues showed microglia activation as well as proliferation and an increase of complement proteins. Interestingly, the microglia/macrophages (MG/Mϕ) in this model were closely connected with the inductors of the classical and lectin pathway, but not with the alternative pathway. However, all three initiating complement pathways were upregulated in the retina. The alternative pathway seems to be triggered by other mechanisms in this NMDA model. Our study showed an ongoing interaction of microglia and complement proteins in a late stage of a degenerative process.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Cara Rodust
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Alexander-Tobias Hensel
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany.
| |
Collapse
|
9
|
Mukai R, Okunuki Y, Husain D, Kim CB, Lambris JD, Connor KM. The Complement System Is Critical in Maintaining Retinal Integrity during Aging. Front Aging Neurosci 2018; 10:15. [PMID: 29497373 PMCID: PMC5818470 DOI: 10.3389/fnagi.2018.00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system is a key component of innate immunity comprised of soluble components that form a proteolytic cascade leading to the generation of effector molecules involved in cellular clearance. This system is highly activated not only under general inflammatory conditions such as infections, collagen diseases, nephritis, and liver diseases, but also in focal ocular diseases. However, little is known about the role of the complement system in retinal homeostasis during aging. Using young (6-week-old) and adult (6-month-old) mice in wild type (C57BL/6) and complement knockout strains (C1q−/−, Mbl a/c−/−, Fb−/−, C3−/−, and C5−/−), we compared amplitudes of electroretinograms (ERG) and thicknesses of retinal layers in spectral domain optical coherence tomography between young and adult mice. The ERG amplitudes in adult mice were significantly decreased (p < 0.001, p < 0.0001) compared to that of young mice in all complement knockout strains, and there were significant decreases in the inner nuclear layer (INL) thickness in adult mice compared to young mice in all complement knockout strains (p < 0.0001). There were no significant differences in ERG amplitude or thickness of the INL between young and adult control mice. These data suggest that the complement system plays an important role in maintaining normal retinal integrity over time.
Collapse
Affiliation(s)
- Ryo Mukai
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States.,Department Ophthalmology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoko Okunuki
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Deeba Husain
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Clifford B Kim
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kip M Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
10
|
Mirabelli P, Mukwaya A, Lennikov A, Xeroudaki M, Peebo B, Schaupper M, Lagali N. Genome-wide expression differences in anti-Vegf and dexamethasone treatment of inflammatory angiogenesis in the rat cornea. Sci Rep 2017; 7:7616. [PMID: 28811496 PMCID: PMC5557983 DOI: 10.1038/s41598-017-07129-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/22/2017] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis as a pathological process in the eye can lead to blindness. In the cornea, suppression of angiogenesis by anti-VEGF treatment is only partially effective while steroids, although effective in treating inflammation and angiogenesis, have broad activity leading to undesirable side effects. In this study, genome-wide expression was investigated in a suture-induced corneal neovascularization model in rats, to investigate factors differentially targeted by dexamethasone and anti-Vegf. Topical treatment with either rat-specific anti-Vegf, dexamethasone, or normal goat IgG (sham) was given to sutured corneas for 48 hours, after which in vivo imaging, tissue processing for RNA microarray, and immunofluorescence were performed. Dexamethasone suppressed limbal vasodilation (P < 0.01) and genes in PI3K-Akt, focal adhesion, and chemokine signaling pathways more effectively than anti-Vegf. The most differentially expressed genes were confirmed by immunofluorescence, qRTPCR and Western blot. Strong suppression of Reg3g and the inflammatory chemokines Ccl2 and Cxcl5 and activation of classical complement pathway factors C1r, C1s, C2, and C3 occurred with dexamethasone treatment, effects absent with anti-Vegf treatment. The genome-wide results obtained in this study provide numerous potential targets for specific blockade of inflammation and angiogenesis in the cornea not addressed by anti-Vegf treatment, as possible alternatives to broad-acting immunosuppressive therapy.
Collapse
Affiliation(s)
- Pierfrancesco Mirabelli
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine,Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine,Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine,Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Maria Xeroudaki
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine,Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine,Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Mira Schaupper
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine,Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine,Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden.
| |
Collapse
|