1
|
Wang X, Cheng L, Lu X, Jin H, Cui L, Guo Y, Guo J, Xu EY. Cross-species comparative single-cell transcriptomics highlights the molecular evolution and genetic basis of male infertility. Cell Rep 2024; 44:115118. [PMID: 39739532 DOI: 10.1016/j.celrep.2024.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/24/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
In male animals, spermatogonia in testes differentiate into sperm, one of the most diverse cell types across species. Despite the evolutionary retention of key genes essential for spermatogenesis, the extent of their conservation remains unclear. To explore the genetic basis of spermatogenesis under strong selective pressure, we compare single-cell RNA sequencing (scRNA-seq) datasets from the testes of humans, mice, and fruit flies. Our analysis identifies conserved genes involved in key molecular programs, such as post-transcriptional regulation, meiosis, and energy metabolism. We perform gene knockout experiments of 20 candidate genes, three of which, when mutated in fruit flies, result in reduced male fertility, emphasizing the conservation of sperm centriole and steroid lipid processes across mammals and Drosophila. Additionally, deep-learning analysis uncovers potential transcriptional mechanisms driving gene-expression evolution. These findings establish a core genetic foundation for spermatogenesis, offering insights into sperm-phenotype evolution and the underlying mechanisms of male infertility.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liping Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Third Affiliated Hospital of Shenzhen University - Shenzhen Luohu District People's Hospital, Shenzhen, Guangdong, China
| | - Xiaojian Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - He Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China; Cellular Screening Center, The University of Chicago, Chicago, IL, USA; Department of Neurology, Center for Reproductive Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Tang Y, Zhang B, Shi H, Yan Z, Wang P, Yang Q, Huang X, Li J, Wang Z, Gun S. Cloning, expression analysis and localization of DAZL gene implicated in germ cell development of male Hezuo pig. Anim Biotechnol 2023; 34:4000-4014. [PMID: 37671929 DOI: 10.1080/10495398.2023.2249953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Deleted in azoospermia-like (DAZL) is essential for mammalian testicular function and spermatogenesis. To explore the molecular characterization, expression patterns, and cellular localization of the DAZL in Hezuo pig testes, testicular tissue was isolated from Hezuo pig at five development stages including 30 days old (30 d), 90 days old (90 d), 120 days old (120 d), 180 days old (180 d), and 240 days old (240 d). DAZL cDNA was first cloned using the RT-PCR method, and its molecular characterization was analyzed using relevant bioinformatics software. Subsequently, the expression patterns and cellular localization of DAZL were evaluated using quantitative real-time PCR (qRT-PCR), Western blot, and immunohistochemistry. The cloning and sequence analysis showed that the Hezuo pig DAZL cDNA fragment contained 888 bp open reading frame (ORF) capable of encoding 295 amino acid residues and exhibited high identities with some other mammals. The qRT-PCR and Western blot results indicated that DAZL was specifically expressed in Hezuo pig testes, and DAZL levels of both mRNA and protein were expressed at all five reproductive stages of Hezuo pig testes, with extremely significant higher expression levels in 90 d, 120 d, 180 d, and 240 d than those in 30 d (p < 0.01). Additionally, immunohistochemistry results revealed that DAZL protein was mainly localized in gonocytes at 30 d testes, primary spermatocytes, and spermatozoon at other developmental stages, and Leydig cells throughout five development stages. Together, these results suggested that DAZL may play an important role by regulating the proliferation or differentiation of gonocytes, development of primary spermatocytes and spermatozoon, and functional maintenance of Leydig cells in testicular development and spermatogenesis of Hezuo pig. Nevertheless, the specific regulatory mechanisms underlying these phenomena still requires further investigated and verified.
Collapse
Affiliation(s)
- Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiyou Li
- Gansu General Station of Animal Husbandry Technology Extension, Lanzhou, China
| | - Zike Wang
- Gansu General Station of Animal Husbandry Technology Extension, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
| |
Collapse
|
3
|
Kong W, Zhu Q, Zhang Q, Zhu Y, Yang J, Chai K, Lei W, Jiang M, Zhang S, Lin J, Zhang X. 5mC DNA methylation modification-mediated regulation in tissue functional differentiation and important flavor substance synthesis of tea plant ( Camellia sinensis L.). HORTICULTURE RESEARCH 2023; 10:uhad126. [PMID: 37560013 PMCID: PMC10407603 DOI: 10.1093/hr/uhad126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
In plants, 5mC DNA methylation is an important and conserved epistatic mark involving genomic stability, gene transcriptional regulation, developmental regulation, abiotic stress response, metabolite synthesis, etc. However, the roles of 5mC DNA methylation modification (5mC methylation) in tea plant growth and development (in pre-harvest processing) and flavor substance synthesis in pre- and post-harvest processing are unknown. We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues (root, leaf, flower, and fruit) and two processed leaves during oolong tea post-harvest processing. We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically, responsible for tissue-specific functions, maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes. Importantly, hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots. In addition, integration of 5mC DNA methylationomics, metabolomics, and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes, and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation. We further report that some key genes during processing are regulated by 5mC methylation, which can effectively explain the content changes of important aroma metabolites, including α-farnesene, nerolidol, lipids, and taste substances such as catechins. Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre- and post-harvest processing, but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties.
Collapse
Affiliation(s)
- Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Yiwang Zhu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jingjing Yang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Kun Chai
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Wenlong Lei
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Mengwei Jiang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Shengcheng Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| |
Collapse
|
4
|
Zhang H, Li W, Jiang Y, Li J, Chen M, Wang R, Zhao J, Peng Z, Huang H, Liu R. Whole Exome Sequencing Identifies Genes Associated With Non-Obstructive Azoospermia. Front Genet 2022; 13:872179. [PMID: 35495142 PMCID: PMC9043847 DOI: 10.3389/fgene.2022.872179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Non-obstructive azoospermia (NOA) affects nearly 1% of men; however, the landscape of the causative genes is largely unknown. Objective: To explore the genetic etiology which is the fundamental cause of NOA, a prospective case-control study and parental–proband trio linkage analysis were performed. Materials: A total of 133 patients with clinicopathological NOA and 343 fertile controls were recruited from a single large academic fertility center located in Northeast China; in addition, eleven trio families were available and enrolled. Results: Whole exome sequencing-based rare variant association study between the cases and controls was performed using the gene burden association testing. Linkage analysis on the trio families was also interrogated. In total, 648 genes were identified to be associated with NOA (three of which were previously reported), out of which six novel genes were found further associated based on the linkage analysis in the trio families, and involved in the meiosis-related network. Discussion and Conclusion: The six currently identified genes potentially account for a fraction (3.76%, 5 out of 133 patients) of the heritability of unidentified NOA, and combining the six novel genes and the three previously reported genes together would potentially account for an overall 6.77% (9 out of 133 patients) heritability of unidentified NOA in this study.
Collapse
Affiliation(s)
- Hongguo Zhang
- Reproductive Medicine and Prenatal Diagnosis Center, The First Hospital, Jilin University, Changchun, China
| | - Wei Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yuting Jiang
- Reproductive Medicine and Prenatal Diagnosis Center, The First Hospital, Jilin University, Changchun, China
| | - Jia Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Ruixue Wang
- Reproductive Medicine and Prenatal Diagnosis Center, The First Hospital, Jilin University, Changchun, China
| | - Jing Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Hui Huang, ; Ruizhi Liu,
| | - Ruizhi Liu
- Reproductive Medicine and Prenatal Diagnosis Center, The First Hospital, Jilin University, Changchun, China
- *Correspondence: Hui Huang, ; Ruizhi Liu,
| |
Collapse
|
5
|
Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, Acloque H, Weber M. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol 2022; 20:70. [PMID: 35317801 PMCID: PMC8941758 DOI: 10.1186/s12915-022-01270-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cytosine DNA methylation is a heritable epigenetic mark present in most eukaryotic groups. While the patterns and functions of DNA methylation have been extensively studied in mouse and human, their conservation in other vertebrates remains poorly explored. In this study, we interrogated the distribution and function of DNA methylation in primary fibroblasts of seven vertebrate species including bio-medical models and livestock species (human, mouse, rabbit, dog, cow, pig, and chicken). Results Our data highlight both divergence and conservation of DNA methylation patterns and functions. We show that the chicken genome is hypomethylated compared to other vertebrates. Furthermore, compared to mouse, other species show a higher frequency of methylation of CpG-rich DNA. We reveal the conservation of large unmethylated valleys and patterns of DNA methylation associated with X-chromosome inactivation through vertebrate evolution and make predictions of conserved sets of imprinted genes across mammals. Finally, using chemical inhibition of DNA methylation, we show that the silencing of germline genes and endogenous retroviruses (ERVs) are conserved functions of DNA methylation in vertebrates. Conclusions Our data highlight conserved properties of DNA methylation in vertebrate genomes but at the same time point to differences between mouse and other vertebrate species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01270-x.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Elouan Cleroux
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Sylvain Guibert
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté, Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, 21000, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction - CECOS, 14 rue Gaffarel, 21000, Dijon, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.
| |
Collapse
|
6
|
Wang Y, Ye W, Tian G, Zhang Y. Identification of a new RNA-binding proteins-based signature for prognostic prediction in gastric cancer. Medicine (Baltimore) 2022; 101:e28901. [PMID: 35212295 PMCID: PMC8878810 DOI: 10.1097/md.0000000000028901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers with high incidence and mortality worldwide. Recently, RNA-binding proteins (RBPs) have drawn more and more attention for its role in cancer pathophysiology. However, the function and clinical implication of RBPs in GC have not been fully elucidated. RNA sequencing data along with the corresponding clinical information of GC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed RNA-binding proteins (DERBPs) between tumor and normal tissues were identified by "limma" package. Functional enrichment analysis and the protein-protein interaction (PPI) network were harnessed to explore the function and interaction of DERBPs. Next, univariate and multiple Cox regression were applied to screen prognosis-related hub RBPs and to construct a signature for GC. Meanwhile, a nomogram was built on the basis of the independent factors. A total of 296 DERBPs were found, and most of them mainly related to post-transcriptional regulation of RNA and ribonucleoprotein. A PPI network of DERBPs was constructed, consisting of 262 nodes and 2567 edges. A prognostic signature was built depending on 7 prognosis-related hub RBPs that could divide GC patients into high-risk and low-risk groups. Survival analysis showed that high-risk group had a worse prognosis compared with the low-risk group and the time-dependent receiver operating characteristic (ROC) curves suggested that signature existed moderate predictive capacities of survival for GC patients. Similar results were obtained from another independent set GSE62254, confirming the robustness of signature. Besides, the genetic variation and immune heterogeneity differences were identified between the high-risk and low-risk groups by bioinformatics methods. These findings would provide evidence of the effect of RBPs and offer a novel potential biomarker in prognostic prediction and clinical decision for GC.
Collapse
Affiliation(s)
- Yuzhi Wang
- Department of Laboratory Medicine, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Weixia Ye
- Department of Gastroenterology, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Gang Tian
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Zhang
- Department of Blood Transfusion, People's Hospital of Deyang City, Deyang, Sichuan, China
| |
Collapse
|
7
|
Kalwar Q, Chu M, Ahmad AA, Xiong L, Zhang Y, Ding X, Yan P. Expressional Profiling of TEX11, ESRα and BOLL Genes in Yak under Different Feeding Conditions. BIOLOGY 2021; 10:biology10080731. [PMID: 34439962 PMCID: PMC8389634 DOI: 10.3390/biology10080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The yak (Bos grunniens) is regarded as one of the most magnificent domestic animals in the mountains of Asia, and it is well-adapted to the harsh environment of the Qinghai–Tibetan Plateau. Slow growth rate and low production and reproductive potential are the main limitations of yaks. It has been suggested that enhanced nutrition can improve reproductive efficiency in animals; however, this is still unclear for yaks. Hence, this study was designed to observe the effect of supplementary feeding on transcription and expression profiles of different genes related to reproduction. Such characterization under different feeding conditions can provide potential guidance for enhancement of the reproductive efficacy of yaks. Abstract Previous studies have demonstrated that nutrition plays a crucial part in improving the reproductive potential of farm animals; however, there is currently no research on the transcription and expression profiling of genes in yaks under different feeding conditions. Therefore, this research was planned to compare the transcription and expression profiles of TEX11, ESRα, and BOLL in yaks under natural grazing with concentrate supplementation (NG + CS) and NG without concentrate supplementation. The transcription and expressional levels of TEX11, ESRα, and BOLL mRNA were explored from the testes of yaks using qPCR, Western blotting, immunofluorescence, and immunochemistry. The results of the qPCR illustrated that the transcription levels of TEX11, ESRα, and BOLL were upregulated in the NG + CS group compared to those in the NG group. Moreover, the results of the immunochemistry and immunofluorescence showed that the expression of TEX11, ESRα, and BOLL proteins increased after concentrate supplementation. Meanwhile, ESRα protein levels were lower in the testes and epididymides of yaks in the NG group than in those in the NG + CS group. Similarly, BOLL protein expression was higher in the testes and epididymides of the NG + CS group, but its expression was lower in the epididymides of the NG group. Furthermore, Western blotting showed that the molecular weights of ESRα and BOLL proteins were 64 kDa and 31 kDa, respectively. Finally, in the conclusion we summarize how a proper level of dietary energy supplementation can improve the reproductive potential of yaks by upregulating genes related to reproduction.
Collapse
Affiliation(s)
- Qudratullah Kalwar
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (M.C.); (A.A.A.); (L.X.); (Y.Z.); (X.D.)
- Department of Animal Reproduction, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
- Correspondence: (Q.K.); (P.Y.); Tel.: +86-15-60-060-4684 (Q.K.); +86-931-211-5288 (P.Y.); Fax: +86-931-211-5191 (P.Y.)
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (M.C.); (A.A.A.); (L.X.); (Y.Z.); (X.D.)
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (M.C.); (A.A.A.); (L.X.); (Y.Z.); (X.D.)
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (M.C.); (A.A.A.); (L.X.); (Y.Z.); (X.D.)
| | - Yongfeng Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (M.C.); (A.A.A.); (L.X.); (Y.Z.); (X.D.)
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (M.C.); (A.A.A.); (L.X.); (Y.Z.); (X.D.)
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (M.C.); (A.A.A.); (L.X.); (Y.Z.); (X.D.)
- Correspondence: (Q.K.); (P.Y.); Tel.: +86-15-60-060-4684 (Q.K.); +86-931-211-5288 (P.Y.); Fax: +86-931-211-5191 (P.Y.)
| |
Collapse
|
8
|
Åsenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update 2021; 26:841-873. [PMID: 32790874 DOI: 10.1093/humupd/dmaa025] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies in non-human mammals suggest that environmental factors can influence spermatozoal DNA methylation, and some research suggests that spermatozoal DNA methylation is also implicated in conditions such as subfertility and imprinting disorders in the offspring. Together with an increased availability of cost-effective methods of interrogating DNA methylation, this premise has led to an increasing number of studies investigating the DNA methylation landscape of human spermatozoa. However, how the human spermatozoal DNA methylome is influenced by environmental factors is still unclear, as is the role of human spermatozoal DNA methylation in subfertility and in influencing offspring health. OBJECTIVE AND RATIONALE The aim of this systematic review was to critically appraise the quality of the current body of literature on DNA methylation in human spermatozoa, summarize current knowledge and generate recommendations for future research. SEARCH METHODS A comprehensive literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the search terms 'semen' OR 'sperm' AND 'DNA methylation'. Publications from 1 January 2003 to 2 March 2020 that studied human sperm and were written in English were included. Studies that used sperm DNA methylation to develop methodologies or forensically identify semen were excluded, as were reviews, commentaries, meta-analyses or editorial texts. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria were used to objectively evaluate quality of evidence in each included publication. OUTCOMES The search identified 446 records, of which 135 were included in the systematic review. These 135 studies were divided into three groups according to area of research; 56 studies investigated the influence of spermatozoal DNA methylation on male fertility and abnormal semen parameters, 20 studies investigated spermatozoal DNA methylation in pregnancy outcomes including offspring health and 59 studies assessed the influence of environmental factors on spermatozoal DNA methylation. Findings from studies that scored as 'high' and 'moderate' quality of evidence according to GRADE criteria were summarized. We found that male subfertility and abnormal semen parameters, in particular oligozoospermia, appear to be associated with abnormal spermatozoal DNA methylation of imprinted regions. However, no specific DNA methylation signature of either subfertility or abnormal semen parameters has been convincingly replicated in genome-scale, unbiased analyses. Furthermore, although findings require independent replication, current evidence suggests that the spermatozoal DNA methylome is influenced by cigarette smoking, advanced age and environmental pollutants. Importantly however, from a clinical point of view, there is no convincing evidence that changes in spermatozoal DNA methylation influence pregnancy outcomes or offspring health. WIDER IMPLICATIONS Although it appears that the human sperm DNA methylome can be influenced by certain environmental and physiological traits, no findings have been robustly replicated between studies. We have generated a set of recommendations that would enhance the reliability and robustness of findings of future analyses of the human sperm methylome. Such studies will likely require multicentre collaborations to reach appropriate sample sizes, and should incorporate phenotype data in more complex statistical models.
Collapse
Affiliation(s)
| | - Amy F Danson
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK.,Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
9
|
Zhang S, Xu L, Yu M, Zhang J. Hypomethylation of the DAZ3 promoter in idiopathic asthenospermia: a screening tool for liquid biopsy. Sci Rep 2020; 10:17996. [PMID: 33093613 PMCID: PMC7581813 DOI: 10.1038/s41598-020-75110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/08/2020] [Indexed: 11/27/2022] Open
Abstract
Given the role of the deleted in azoospermia gene in male infertility, whether the somatic deleted in azoospermia methylation status is associated with idiopathic asthenospermia should be determined. To investigate the methylation levels of the deleted in azoospermia promoter in peripheral white blood cells from idiopathic asthenospermia patients relative to those in normozoospermia controls, 61 ethylene diamine tetraacetic acid anticoagulant blood samples were drawn from all participants for DNA isolation. The deleted in azoospermia promoter methylation ratio was detected by MassARRAY-based methylation quantification and confirmed by quantitative methylation-specific polymerase chain reaction. A MassARRAY-based methylation analysis showed that the deleted in azoospermia 3 promoter (0 to − 2 kbp) was significantly hypomethylated in peripheral white blood cells from idiopathic asthenospermia males, specifically one CpG site (− 246 to − 247). Quantitative methylation-specific polymerase chain reaction data further confirmed that the methylation level of the deleted in azoospermia 3 promoter region in idiopathic asthenospermia patients was significantly lower than that in normozoospermia males. The area under the receiver operating characteristic curve determined by quantitative methylation-specific polymerase chain reaction was 0.737 (95% confidence interval: 0.552 to 0.924), with a sensitivity of 53.9% and a specificity of 88.2% at a cut-off level of 74.7%. Therefore, our results suggested that methylation ratio detection of the deleted in azoospermia 3 promoter region by real-time polymerase chain reaction assay is a promising and feasible tool for liquid biopsy in the clinical laboratories. The methylation status of other reported infertility-related genes should also be investigated in peripheral white blood cells.
Collapse
Affiliation(s)
- Shichang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Xu
- Department of Clinical Nutrition, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mengyao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Wu X, Luo C, Hu L, Chen X, Chen Y, Fan J, Cheng CY, Sun F. Unraveling epigenomic abnormality in azoospermic human males by WGBS, RNA-Seq, and transcriptome profiling analyses. J Assist Reprod Genet 2020; 37:789-802. [PMID: 32056059 DOI: 10.1007/s10815-020-01716-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/06/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To determine associations between genomic DNA methylation in testicular cells and azoospermia in human males. METHODS This was a case-control study investigating the differences and conservations in DNA methylation, genome-wide DNA methylation, and bulk RNA-Seq for transcriptome profiling using testicular biopsy tissues from NOA and OA patients. Differential methylation and different conserved methylation regions associated with azoospermia were identified by comparing genomic DNA methylation of testicular seminiferous cells derived from NOA and OA patients. RESULTS The genome methylation modification of testicular cells from NOA patients was disordered, and the reproductive-related gene expression was significantly different. CONCLUSION Our findings not only provide valuable knowledge of human spermatogenesis but also paved the way for the identification of genes/proteins involved in male germ cell development. The approach presented in this report provides a powerful tool to identify responsible biomolecules, and/or cellular changes (e.g., epigenetic abnormality) that induce male reproductive dysfunction such as OA and NOA.
Collapse
Affiliation(s)
- Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunhai Luo
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Longfei Hu
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - Xue Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunmei Chen
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - Jue Fan
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, USA.
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
11
|
Li T, Wang X, Zhang H, Chen H, Liu N, Xue R, Zhao X, Ma Y. Gene expression patterns and protein cellular localization suggest a novel role for DAZL in developing Tibetan sheep testes. Gene 2020; 731:144335. [PMID: 31927007 DOI: 10.1016/j.gene.2020.144335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Deleted in azoospermia-like (DAZL) is essential for mammalian spermatogenesis as it regulates proliferation, development, maturation and functional maintenance of male germ cells. Its expression and regulation vary with different species or in the same animal at different developmental stages, and despite its importance, very little is known about its roles in sheep, especially Tibetan sheep. To investigate the expression patterns and regulatory roles of DZAL in Tibetan sheep testis, testicular tissue was isolated from sheep at three crucial development stages: 3 months old, 1 year old and 3 years old. Using quantitative real-time PCR and Western blot, we found that DAZL mRNA first decreased and then increased with advancing age, while DAZL protein exhibited an opposite expression pattern, with first increased and subsequently decreased levels. Immunohistochemistry and immunofluorescence revealed that DAZL protein was located predominantly in the cytoplasm of Leydig cells and in both the cytoplasm and nucleus of spermatids. ELISA indicated that testosterone content within developing testes was first enhanced and then declined. Our results, taken together, demonstrate, for the first time, that DAZL gene is involved in Tibetan sheep spermatogenesis by regulating the development of spermatids in post-pubertal rams, along with a novel role in functional maintenance of Leydig cells in postnatal rams.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, Gansu, China; Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, Gansu, China
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, Gansu, China
| | - Hongyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, Gansu, China
| | - Haolin Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, Gansu, China
| | - Ningbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, Gansu, China
| | - Ruilin Xue
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, Gansu, China; Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, Gansu, China.
| |
Collapse
|
12
|
Savcı A, Koçpınar EF, Budak H, Çiftci M, Şişecioğlu M. The Effects of Amoxicillin, Cefazolin, and Gentamicin Antibiotics on the Antioxidant System in Mouse Heart Tissues. Protein Pept Lett 2020; 27:614-622. [PMID: 31721686 DOI: 10.2174/0929866526666191112125949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Free radicals lead to destruction in various organs of the organism. The improper use of antibiotics increases the formation of free radicals and causes oxidative stress. OBJECTIVE In this study, it was aimed to determine the effects of gentamicin, amoxicillin, and cefazolin antibiotics on the mouse heart. METHODS 20 male mice were divided into 4 groups (1st control, 2nd amoxicillin, 3rd cefazolin, and 4th gentamicin groups). The mice in the experimental groups were administered antibiotics intraperitoneally at a dose of 100 mg / kg for 6 days. The control group received normal saline in the same way. The gene expression levels and enzyme activities of SOD, CAT, GPx, GR, GST, and G6PD antioxidant enzymes were investigated. RESULTS GSH levels decreased in both the amoxicillin and cefazolin groups, while GR, CAT, and SOD enzyme activities increased. In the amoxicillin group, Gr, Gst, Cat, and Sod gene expression levels increased. CONCLUSION As a result, it was concluded that amoxicillin and cefazolin caused oxidative stress in the heart, however, gentamicin did not cause any effects.
Collapse
Affiliation(s)
- Ahmet Savcı
- Department of Chemistry, Faculty of Art and Science, Bingol University, Bingol, Turkey
| | - Enver Fehim Koçpınar
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Mus Alparslan University, Mus, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mehmet Çiftci
- Department of Chemistry, Faculty of Art and Science, Bingol University, Bingol, Turkey
| | - Melda Şişecioğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
13
|
Karaman M, Budak H, Çiftci M. Amoxicillin and gentamicin antibiotics treatment adversely influence the fertility and morphology through decreasing the Dazl gene expression level and increasing the oxidative stress. Arch Physiol Biochem 2019; 125:447-455. [PMID: 29925282 DOI: 10.1080/13813455.2018.1482354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present study was designed to explain the impact of amoxicillin, gentamicin, and cefazolin on the oxidative stress (OS) and reproductivity in the mouse testes. Our data showed that reduced glutathione (GSH) level, which is a marker for OS, strikingly reduced and hydrogen peroxide (H2O2) level, which acts as a signaling molecule in mammalian germ cells, strikingly increased with amoxicillin, gentamicin, and cefazolin treatment. The gene expression and enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), and glutathione-S-transferases (GST) were significantly affected in the presence of these antibiotics. Also, spermatogenesis was adversely affected by suppressing Deleted in Azoospermia (Dazl) gene expression. Finally, oxidative stress and spermatogenesis failure distorted to sperm viability, motility, and morphology in amoxicillin and gentamicin-treated mice.
Collapse
Affiliation(s)
- Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University , Kilis , Turkey
- Advanced Technology Application and Research Center (ATACR), Kilis 7 Aralik University , Kilis , Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University , Erzurum , Turkey
| | - Mehmet Çiftci
- Department of Chemistry, Faculty of Art and Science, Bingol University , Bingol , Turkey
| |
Collapse
|
14
|
Li H, Liang Z, Yang J, Wang D, Wang H, Zhu M, Geng B, Xu EY. DAZL is a master translational regulator of murine spermatogenesis. Natl Sci Rev 2019; 6:455-468. [PMID: 31355046 PMCID: PMC6660020 DOI: 10.1093/nsr/nwy163] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/12/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Expression of DAZ-like (DAZL) is a hallmark of vertebrate germ cells, and is essential for embryonic germ cell development and differentiation, yet the gametogenic function of DAZL has not been fully characterized and most of its in vivo direct targets remain unknown. We showed that postnatal stage-specific deletion of Dazl in mouse germ cells did not affect female fertility, but caused complete male sterility with gradual loss of spermatogonial stem cells, meiotic arrest and spermatid arrest. Using the genome-wide high-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation and mass spectrometry approach, we found that DAZL bound to a large number of testicular mRNA transcripts (at least 3008) at the 3'-untranslated region and interacted with translation proteins including poly(A) binding protein. In the absence of DAZL, polysome-associated target transcripts, but not their total transcripts, were significantly decreased, resulting in a drastic reduction of an array of spermatogenic proteins and thus developmental arrest. Thus, DAZL is a master translational regulator essential for spermatogenesis.
Collapse
Affiliation(s)
- Haixin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhuqing Liang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jian Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mengyi Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Baobao Geng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
15
|
Li T, Wang X, Zhang H, Chen Z, Zhao X, Ma Y. Histomorphological Comparisons and Expression Patterns of BOLL Gene in Sheep Testes at Different Development Stages. Animals (Basel) 2019; 9:ani9030105. [PMID: 30901845 PMCID: PMC6466207 DOI: 10.3390/ani9030105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
BOLL is implicated in mammalian testicular function maintenance and spermatogenesis. To understand the expression patterns and biological functions of sheep BOLL, we examined the expression and immunolocalization of BOLL in the developing testes of Small-Tail Han sheep aged 0 days (D0), 2 months (2M), 5 months (5M), 1 year (1Y), and 2 years (2Y), by qPCR, Western blot, and immunohistochemistry methods. Firstly, morphological studies revealed that, in addition to spermatogonia, ordered and clear spermatocytes, as well as round and elongated spermatids and sperm, were found in the 1Y and 2Y testicular seminiferous tubules of the sheep testes, compared with the D0, 2M, and 5M testes, as analyzed by hematoxylin and eosin (H&E) staining. The diameter and area of the seminiferous tubules, epithelial thickness, and the area and perimeter of the tubule lumens gradually increased with age. BOLL was specifically expressed in testes and upregulation of BOLL transcript expression was higher in the testes of the 1Y and 2Y groups than in those of the D0, 2M, and 5M groups. Similarly, BOLL protein was expressed mainly in the 1Y and 2Y testes, ranging from primary spermatocytes to round spermatids, as well as in the spermatozoa. This study is the first demonstration that sheep BOLL might serve as a key regulator of the spermiogenesis involved in sperm maturity, in addition to its role as a crucial meiotic regulator.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hongyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhili Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
16
|
Novel biomarker ZCCHC13 revealed by integrating DNA methylation and mRNA expression data in non-obstructive azoospermia. Cell Death Discov 2018. [PMID: 29531833 PMCID: PMC5841273 DOI: 10.1038/s41420-018-0033-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to identify genes regulated by methylation that were involved in spermatogenesis failure in non-obstructive azoospermia (NOA). Testis biopsies of patients with NOA and OA (with normal spermatogenesis) were evaluated by microarray analysis to examine DNA methylation and mRNA expression using our established integrative approach. Of the coordinately hypermethylated and down-regulated gene list, zinc-finger CCHC-type containing 13 (ZCCHC13) was present within the nuclei of germ cells of testicular tissues according immunohistochemistry, and there was decreased protein expression in men with NOA compared with OA controls. Mechanistic analyses indicated that ZCCHC13 increased c-MYC expression through the p-AKT and p-ERK pathways. To confirm the changes in ZCCHC13 expression in response to methylation, 5-aza-2′-deoxycitidine (5-Aza), a hypomethylating agent, was administered to mouse spermatogonia GC-1 cells. We demonstrated that 5-Aza enhanced protein and mRNA expression of ZCCHC13 epigenetically, which was accompanied by activation of p-AKT and p-ERK signaling. Our data, for the first time, demonstrate that ZCCHC13 is an important signaling molecule that positively regulates the AKT/MAPK/c-MYC pathway and that methylation aberrations of ZCCHC13 may cause defects in testis development in human disease, such as NOA.
Collapse
|
17
|
Han Y, Qian J, Zhang J, Hu C, Wang C. Structure-toxicity relationship of cefoperazone and its impurities to developing zebrafish by transcriptome and Raman analysis. Toxicol Appl Pharmacol 2017; 327:39-51. [DOI: 10.1016/j.taap.2017.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/20/2017] [Accepted: 04/28/2017] [Indexed: 11/30/2022]
|