1
|
Gonçalves A, Machado R, Gomes AC. Self-assembled nanoparticles of hybrid elastin-like and Oncostatin M polymers for improved wound healing. BIOMATERIALS ADVANCES 2025; 169:214150. [PMID: 39693870 DOI: 10.1016/j.bioadv.2024.214150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine that can significantly enhance wound healing. Here, we report on the use of nanoparticles (NPs) formulated from a genetically engineered A200_hOSM protein polymer, which combines an elastin-like recombinamer (A200) with human OSM (hOSM) in the same molecule, aiming at enhancing wound healing processes. A200_hOSM NPs were obtained by self-assembly and evaluated for their bioactivity in human keratinocytes and fibroblasts. The NPs demonstrated superior efficacy in promoting cell proliferation in a dose-dependent manner, exhibiting nearly threefold greater proliferation at 48 and 72 h, compared to cells treated with commercial hOSM. Moreover, the NPs stimulated cell migration and collagen production through activation of JAK/STAT3 signaling. They also promoted the production of IL-6 and IL-8, pro-inflammatory cytokines with a critical role for wound healing. Promotion of keratinocyte proliferation and differentiation were further validated in non-commercial 3D skin equivalents. The A200_hOSM NPs revealed potential in accelerating wound healing, evidenced by reduced wound size and a thicker epidermal layer. This system represents a significant advancement in the field of bioinspired biomaterials by improving cytokine bioavailability, allowing for localized therapy and offering a cost-effective strategy for employing hOSM in wound healing management.
Collapse
Affiliation(s)
- Anabela Gonçalves
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
2
|
Stadelmann N, Horch RE, Schmid R, Ostendorf D, Peddi A, Promny T, Boos AM, Kengelbach-Weigand A. Growth factors IGF-1 and KGF and adipose-derived stem cells promote migration and viability of primary human keratinocytes in an in vitro wound model. Front Med (Lausanne) 2025; 12:1516116. [PMID: 39981084 PMCID: PMC11839819 DOI: 10.3389/fmed.2025.1516116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction In the field of plastic surgery, epidermal transplantation is a potential treatment for chronic wounds that results in only minor donor site morbidity. Improving the regenerative capacities of epidermal grafts or single-cell suspensions and therefore accelerating healing processes would be of significant interest. Methods In the present study, we analyzed the effects of growth factors and adipose-derived stem cells (ADSCs) on keratinocyte properties. For optimum translation into the clinical setting, primary human keratinocytes and patient-matched ADSCs were isolated and used in an in vitro wound model. Results The keratinocyte migration and viability increased after treatment with the growth factors insulin-like growth factor 1 (IGF-1) and keratinocyte growth factor (KGF). A similar effect was observed with the use of a concentrated ADSC-conditioned medium (ADSC-CM). It was further possible to isolate the keratinocytes in a xenogen-free medium, which is essential for clinical translation. Importantly, a patient-dependent influence on the effects of the growth factors and ADSC-CM was observed. Discussion This study provides potential for the improvement of epidermal transplantation in the treatment of chronic wounds using xenogen-free isolated and cultivated keratinocytes, growth factors, and ADSC. Translating these results into clinical application may help accelerate wound healing and shorten the time until patients can return to everyday life.
Collapse
Affiliation(s)
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Berlanga-Acosta J, Garcia-Ojalvo A, Fernández-Montequin J, Falcon-Cama V, Acosta-Rivero N, Guillen-Nieto G, Pujol-Ferrer M, Limonta-Fernandez M, Ayala-Avila M, Eriksson E. Epidermal Growth Factor Intralesional Delivery in Chronic Wounds: The Pioneer and Standalone Technique for Reversing Wound Chronicity and Promoting Sustainable Healing. Int J Mol Sci 2024; 25:10883. [PMID: 39456666 PMCID: PMC11507032 DOI: 10.3390/ijms252010883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The early expectations about growth factors' (GFs') discovery as an undisputed therapeutic solution for chronic wounds progressively eclipsed when they failed to accelerate acute wound closure and restore the healing trajectory of stagnant ulcers. Critical knowledge about chronic wound biology and GF pharmacology was a conundrum at that time. Diabetes undermines keratinocytes' and fibroblasts' physiology, impairing skin healing abilities. Diabetic ulcers, as other chronic wounds, are characterized by hyperinflammation, unbalanced proteolytic activity, catabolism, and free radical cytotoxicity. This hostile scenario for the chemical stability, integrity, and functionality of GFs led to the conclusion that topical administration may jeopardize GFs' clinical effectiveness. Epidermal growth factor (EGF) has a proximal position in tissues homeostasis by activating survival and mitogenic pathways from embryonic life to adulthood. Seminal experiments disclosed unprecedented pharmacological bounties of parenterally administered EGF. Accordingly, the experience accumulated for more than 20 years of EGF intralesional infiltration of diabetic wound bottoms and edges has translated into sustained healing responses, such as low recurrences and amputation rates. This delivery route, in addition to being safe and tolerated, has shown to restore a variety of circulating biochemical markers ordinarily disturbed in diabetic conditions. EGF infiltration triggers a cascade of local fibroblast reactions, supporting its molecular integrity, prolonged mean residence time, and ultimately eliciting its receptor trafficking and nuclear translocation. The intralesional delivery route seems to warrant that EGF reaches wound fibroblasts' epigenetic core, mitigating the consequences of metabolic memory imprinting.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Ariana Garcia-Ojalvo
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Jose Fernández-Montequin
- National Institute of Angiology and Vascular Surgery—Diabetic Angiopathy Service, Calzada del Cerro 1551 esq, Domínguez, Cerro, Havana 12000, Cuba;
| | - Viviana Falcon-Cama
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Nelson Acosta-Rivero
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Gerardo Guillen-Nieto
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Merardo Pujol-Ferrer
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Miladys Limonta-Fernandez
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Marta Ayala-Avila
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Elof Eriksson
- Joseph E. Murray Professor of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Main Pike, ASB-2, 75 Francis St, Boston, MA 02115, USA;
| |
Collapse
|
4
|
Krause HB, Karls AL, McClean MN, Kreeger PK. Cellular context alters EGF-induced ERK dynamics and reveals potential crosstalk with GDF-15. BIOMICROFLUIDICS 2022; 16:054104. [PMID: 36217350 PMCID: PMC9547670 DOI: 10.1063/5.0114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Cellular signaling dynamics are sensitive to differences in ligand identity, levels, and temporal patterns. These signaling patterns are also impacted by the larger context that the cell experiences (i.e., stimuli such as media formulation or substrate stiffness that are constant in an experiment exploring a particular variable but may differ between independent experiments which explore that variable) although the reason for different dynamics is not always obvious. Here, we compared extracellular-regulated kinase (ERK) signaling in response to epidermal growth factor treatment of human mammary epithelial cells cultures in either well culture or a microfluidic device. Using a single-cell ERK kinase translocation reporter, we observed extended ERK activation in well culture and only transient activity in microfluidic culture. The activity in microfluidic culture resembled that of the control condition, suggesting that shear stress led to the early activity and a loss of autocrine factors dampened extended signaling. Through experimental analysis we identified growth differentiation factor-15 as a candidate factor that led to extended ERK activation through a protein kinase C-α/β dependent pathway. Our results demonstrate that context impacts ERK dynamics and that comparison of distinct contexts can be used to elucidate new aspects of the cell signaling network.
Collapse
Affiliation(s)
- Harris B. Krause
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Alexis L. Karls
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Pamela K. Kreeger
- Author to whom correspondence should be addressed:. Telephone: 608-890-2915
| |
Collapse
|
5
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
6
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
7
|
Kim CS, Yang X, Jacobsen S, Masters KS, Kreeger PK. Leader cell PLCγ1 activation during keratinocyte collective migration is induced by EGFR localization and clustering. Bioeng Transl Med 2019; 4:e10138. [PMID: 31572796 PMCID: PMC6764804 DOI: 10.1002/btm2.10138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
Re-epithelialization is a critical step in wound healing and results from the collective migration of keratinocytes. Previous work demonstrated that immobilized, but not soluble, epidermal growth factor (EGF) resulted in leader cell-specific activation of phospholipase C gamma 1 (PLCγ1) in HaCaT keratinocytes, and that this PLCγ1 activation was necessary to drive persistent cell migration. To determine the mechanism responsible for wound edge-localized PLCγ1 activation, we examined differences in cell area, cell-cell interactions, and EGF receptor (EGFR) localization between wound edge and bulk cells treated with vehicle, soluble EGF, or immobilized EGF. Our results support a multistep mechanism where EGFR translocation from the lateral membrane to the basolateral/basal membrane allows clustering in response to immobilized EGF. This analysis of factors regulating PLCγ1 activation is a crucial step toward developing therapies or wound dressings capable of modulating this signal and, consequently, cell migration.
Collapse
Affiliation(s)
- Chloe S. Kim
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
| | - Xinhai Yang
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
| | - Sarah Jacobsen
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
| | - Kristyn S. Masters
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
- Carbone Cancer CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWI53705
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI53705
| | - Pamela K. Kreeger
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
- Carbone Cancer CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWI53705
- Department of Cell and Regenerative BiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWI53705
| |
Collapse
|
8
|
Fukuyama T, Nakamura Y, Kanemaru K, Toyoda C, Jang HJ, Suh PG, Fukami K. Phospholipase Cγ1 is required for normal irritant contact dermatitis responses and sebaceous gland homeostasis. Exp Dermatol 2019; 28:1051-1057. [PMID: 31338881 DOI: 10.1111/exd.14009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Differentiation and proliferation of keratinocyte are controlled by various signalling pathways. The epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Inhibition of EGFR signalling disturbs keratinocyte proliferation, differentiation and migration. Previous studies have revealed that one of the EGFR downstream signalling molecules, phospholipase Cγ1 (PLCγ1), regulates differentiation, proliferation and migration of keratinocytes in in vitro cell culture system. However, the role of PLCγ1 in the regulation of keratinocyte functions in animal epidermis remains unexplored. In this study, we generated keratinocyte-specific PLCγ1 knockout (KO) mice (PLCγ1 cKO mice). Contrary to our expectations, loss of PLCγ1 did not affect differentiation, proliferation and migration of interfollicular keratinocytes. We further examined the role of PLCγ1 in irritant contact dermatitis (ICD), in which epidermal cells play a pivotal role. Upon irritant stimulation, PLCγ1 cKO mice showed exaggerated ICD responses. Further study revealed that epidermal loss of PLCγ1 induced sebaceous gland hyperplasia, indicating that PLCγ1 regulates homeostasis of one of the epidermal appendages. Taken together, our results indicate that, although PLCγ1 is dispensable in interfollicular keratinocyte for normal differentiation, proliferation and migration, it is required for normal ICD responses. Our results also indicate that PLCγ1 regulates homeostasis of sebaceous glands.
Collapse
Affiliation(s)
- Takatsugu Fukuyama
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kaori Kanemaru
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Chiho Toyoda
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Korea Brain Reaseach Institute, Daegu, Korea
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
9
|
Affiliation(s)
- Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Bizzarro V, Belvedere R, Pessolano E, Parente L, Petrella F, Perretti M, Petrella A. Mesoglycan induces keratinocyte activation by triggering syndecan‐4 pathway and the formation of the annexin A1/S100A11 complex. J Cell Physiol 2019; 234:20174-20192. [DOI: 10.1002/jcp.28618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Luca Parente
- Department of Pharmacy University of Salerno Salerno Italy
| | - Francesco Petrella
- Department of Primary Care, Wound Care Service Health Local Agency Naples 3 South Napoli Italy
| | - Mauro Perretti
- William Harvey Research Institute Queen Mary University of London London UK
| | | |
Collapse
|
11
|
Abstract
In their native environment, cells are immersed in a complex milieu of biochemical and biophysical cues. These cues may include growth factors, the extracellular matrix, cell-cell contacts, stiffness, and topography, and they are responsible for regulating cellular behaviors such as adhesion, proliferation, migration, apoptosis, and differentiation. The decision-making process used to convert these extracellular inputs into actions is highly complex and sensitive to changes both in the type of individual cue (e.g., growth factor dose/level, timing) and in how these individual cues are combined (e.g., homotypic/heterotypic combinations). In this review, we highlight recent advances in the development of engineering-based approaches to study the cellular decision-making process. Specifically, we discuss the use of biomaterial platforms that enable controlled and tailored delivery of individual and combined cues, as well as the application of computational modeling to analyses of the complex cellular decision-making networks.
Collapse
Affiliation(s)
- Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , .,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin 53705, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | - Laura E Strong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| |
Collapse
|