1
|
Zhou L, Wang S, Hu W, Liu X, Xu L, Tong B, Zhang T, Xue Z, Guo Y, Zhao J, Lu L, Fan H, Qian W, Chen J, Chen W, Wang L. T cell proliferation requires ribosomal maturation in nucleolar condensates dependent on DCAF13. J Cell Biol 2023; 222:e202201096. [PMID: 37615668 PMCID: PMC10450623 DOI: 10.1083/jcb.202201096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/16/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
T cells require rapid proliferation to initiate adaptive immunity to prevent pathogen attacks. The nucleolus, a distinct subnuclear membrane-less compartment for ribosomal biogenesis, is indispensable for cell proliferation. However, specific nucleolar proteins involved in rapid T cell proliferation and their underlying molecular regulatory mechanism remain elusive. Here, we identified an essential nucleolar protein, DCAF13, in T cells and revealed its significant regulation of rapid T cell proliferation. Its depletion drastically impairs T cell proliferation due to severe 18S rRNA maturation failure, consequent abnormal ribosome assembly in nucleoli, and insufficient production of nascent proteins. Mechanistically, we propose that DCAF13 promotes NPM1 phase separation to accelerate pre-RNA enrichment and its endonuclease UTP23 for 18S rRNA maturation during T cell proliferation. Our findings reveal the modulatory effect of nucleolar NPM1/DCAF13 phase separation on ribosomal maturation to ensure rapid T cell proliferation and further pathogen clearance for the first time.
Collapse
Affiliation(s)
- Lina Zhou
- Bone Marrow Transplantation Center and Institute of Immunology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Shuai Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Hu
- Zhejiang University School of Medicine, Hangzhou, China
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqian Liu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Bolu Tong
- Zhejiang University School of Medicine, Hangzhou, China
| | - Tongtong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhonghui Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yixin Guo
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Haining, China
| | - Jing Zhao
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hengyu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wenbin Qian
- Department of Hematology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Chen
- Department of General Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Lie Wang
- Bone Marrow Transplantation Center and Institute of Immunology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Xie W, Li S, Guo H, Zhang J, Tu M, Wang R, Lin B, Wu Y, Wang X. Androgen receptor knockdown enhances prostate cancer chemosensitivity by down-regulating FEN1 through the ERK/ELK1 signalling pathway. Cancer Med 2023; 12:15317-15336. [PMID: 37326412 PMCID: PMC10417077 DOI: 10.1002/cam4.6188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Flap endonuclease 1 (FEN1) is highly upregulated in prostate cancer and promotes the growth of prostate cancer cells. Androgen receptor (AR) is the most critical determinant of the occurrence, progression, metastasis, and treatment of prostate cancer. However, the effect of FEN1 on docetaxel (DTX) sensitivity and the regulatory mechanisms of AR on FEN1 expression in prostate cancer need to be further studied. METHODS Bioinformatics analyses were performed using data from the Cancer Genome Atlas and the Gene Expression Omnibus. Prostate cancer cell lines 22Rv1 and LNCaP were used. FEN1 siRNA, FEN1 overexpression plasmid, and AR siRNA were transfected into cells. Biomarker expression was evaluated by immunohistochemistry and Western blotting. Apoptosis and the cell cycle were explored using flow cytometry analysis. Luciferase reporter assay was performed to verify the target relationship. Xenograft assays were conducted using 22Rv1 cells to evaluate the in vivo conclusions. RESULTS Overexpression of FEN1 inhibited cell apoptosis and cell cycle arrest in the S phase induced by DTX. AR knockdown enhanced DTX-induced cell apoptosis and cell cycle arrest at the S phase in prostate cancer cells, which was attenuated by FEN1 overexpression. In vivo experiments showed that overexpression of FEN1 significantly increased tumour growth and weakened the inhibitory effect of DTX on prostate tumour growth, while AR knockdown enhance the sensitivity of DTX to prostate tumour. AR knockdown resulted in FEN1, pho-ERK1/2, and pho-ELK1 downregulation, and the luciferase reporter assay confirmed that ELK1 can regulate the transcription of FEN1. CONCLUSION Collectively, our studies demonstrate that AR knockdown improves the DTX sensitivity of prostate cancer cells by downregulating FEN1 through the ERK/ELK1 signalling pathway.
Collapse
Affiliation(s)
- Weijie Xie
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Shulin Li
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
- Department of UrologyAffiliated Hospital of Guangdong Medical UniversityGuangdong ProvinceZhanjiangPeople's Republic of China
| | - Huan Guo
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Jiawei Zhang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Menjiang Tu
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Rui Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Bingling Lin
- Department of RadiologyPeking University Shenzhen HospitalShenzhenPeople's Republic of China
| | - Yuqi Wu
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Xiangwei Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
- Department of UrologyAffiliated Hospital of Guangdong Medical UniversityGuangdong ProvinceZhanjiangPeople's Republic of China
| |
Collapse
|
3
|
Ma Y, Yang Y, Xin J, He L, Hu Z, Gao T, Pan F, Guo Z. RNA G-Quadruplex within the 5'-UTR of FEN1 Regulates mRNA Stability under Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020276. [PMID: 36829835 PMCID: PMC9952066 DOI: 10.3390/antiox12020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) are a group of highly oxidative molecules that induce DNA damage, affecting DNA damage response (DDR) and gene expression. It is now recognized that DNA base excision repair (BER) is one of the important pathways responsible for sensing oxidative stress to eliminate DNA damage, in which FEN1 plays an important role in this process. However, the regulation of FEN1 under oxidative stress is still unclear. Here, we identified a novel RNA G-quadruplex (rG4) sequence in the 5'untranslated region (5'UTR) of FEN1 mRNA. Under oxidative stress, the G bases in the G4-forming sequence can be oxidized by ROS, resulting in structural disruption of the G-quadruplex. ROS or TMPyP4, a G4-structural ligand, disrupted the formation of G4 structure and affected the expression of FEN1. Furthermore, pull-down experiments identified a novel FEN1 rG4-binding protein, heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), and cellular studies have shown that hnRNPA1 plays an important role in regulating FEN1 expression. This work demonstrates that rG4 acts as a ROS sensor in the 5'UTR of FEN1 mRNA. Taken together, these results suggest a novel role for rG4 in translational control under oxidative stress.
Collapse
Affiliation(s)
- Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Xin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (F.P.); (Z.G.)
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (F.P.); (Z.G.)
| |
Collapse
|
4
|
San1 deficiency leads to cardiomyopathy due to excessive R-loop-associated DNA damage and cardiomyocyte hypoplasia. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166237. [PMID: 34339838 DOI: 10.1016/j.bbadis.2021.166237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
R-loops are naturally occurring transcriptional intermediates containing RNA/DNA hybrids. Excessive R-loops cause genomic instability, DNA damage, and replication stress. Senataxin-associated exonuclease (San1) is a protein that interacts with Senataxin (SETX), a helicase resolving R-loops. It remains unknown if R-loops-induced DNA damage plays a role in the heart, especially in the proliferative neonatal cardiomyocytes (CMs). San1-/- mice were generated using the CRISPR/Cas9 technique. The newborn San1-/- mice show no overt phenotype, but their hearts were smaller with larger, yet fewer CMs. CM proliferation was impaired with reduced cell cycle-related transcripts and proteins. S9.6 staining revealed that excessive R-loops accumulated in the nucleus of neonatal San1-/- CMs. Increased γH2AX staining on newborn and adult heart sections exhibited increased DNA damage. Similarly, San1-/- AC16-cardiomyocytes showed cumulative R-loops and DNA damage, leading to the activation of cell cycle checkpoint kinase ATR and PARP1 hyperactivity, arresting G2/M cell-cycle and CM proliferation. Together, the present study uncovers an essential role of San1 in resolving excessive R-loops that lead to DNA damage and repressing CM proliferation, providing new insights into a novel biological function of San1 in the neonatal heart. San1 may serve as a novel therapeutic target for the treatment of hypoplastic cardiac disorders.
Collapse
|
5
|
Shi R, Wang Y, Gao Y, Xu X, Mao S, Xiao Y, Song S, Wang L, Tian B, Zhao Y, Hua Y, Xu H. Succinylation at a key residue of FEN1 is involved in the DNA damage response to maintain genome stability. Am J Physiol Cell Physiol 2020; 319:C657-C666. [PMID: 32783654 DOI: 10.1152/ajpcell.00137.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human flap endonuclease 1 (FEN1) is a structure-specific, multifunctional endonuclease essential for DNA replication and repair. Our previous study showed that in response to DNA damage, FEN1 interacts with the PCNA-like Rad9-Rad1-Hus1 complex instead of PCNA to engage in DNA repair activities, such as stalled DNA replication fork repair, and undergoes SUMOylation by SUMO-1. Here, we report that succinylation of FEN1 was stimulated in response to DNA replication fork-stalling agents, such as ultraviolet (UV) irradiation, hydroxyurea, camptothecin, and mitomycin C. K200 is a key succinylation site of FEN1 that is essential for gap endonuclease activity and could be suppressed by methylation and stimulated by phosphorylation to promote SUMO-1 modification. Succinylation at K200 of FEN1 promoted the interaction of FEN1 with the Rad9-Rad1-Hus1 complex to rescue stalled replication forks. Impairment of FEN1 succinylation led to the accumulation of DNA damage and heightened sensitivity to fork-stalling agents. Altogether, our findings suggest an important role of FEN1 succinylation in regulating its roles in DNA replication and repair, thus maintaining genome stability.
Collapse
Affiliation(s)
- Rongyi Shi
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yiyi Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ya Gao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xiaoli Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Shuyu Mao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yue Xiao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
He L, Hu Z, Sun Y, Zhang M, Zhu H, Jiang L, Zhang Q, Mu D, Zhang J, Gu L, Yang Y, Pan FY, Jia S, Guo Z. PRMT1 is critical to FEN1 expression and drug resistance in lung cancer cells. DNA Repair (Amst) 2020; 95:102953. [PMID: 32861926 DOI: 10.1016/j.dnarep.2020.102953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
The up-regulation of PRMT1 is critical to the cell growth and cancer progression of lung cancer cells. In our research, we found that PRMT1 is important to the DNA repair ability and drug resistance of lung cancer cells. To demonstrate the functions of PRMT1, we identified Flap endonuclease 1 (FEN1) as a post-translationally modified downstream target protein of PRMT1. As a major component of Base Excision Repair pathway, FEN1 plays an important role in DNA replication and DNA damage repair. However, the detailed mechanism of FEN1 up-regulation in lung cancer cells remains unclear. In our study, we identified PRMT1 as a key factor that maintains the high expression levels of FEN1, which is critical to the DNA repair ability and the chemotherapeutic drug resistance of lung cancer cells.
Collapse
Affiliation(s)
- Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yuling Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Miaomiao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongqiao Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Longwei Jiang
- Jinlin Hospital of Nanjing University, Nanjing, 210002, China
| | - Qi Zhang
- Department of Infectious Diseases, Nanjing Liuhe District People's Hospital Affiliated to Yangzhou University, Nanjing, 210012, China
| | - Dan Mu
- Affiliated Drum Tower Hospital, Nanjing University School of Medicine, 210008, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lili Gu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Fei-Yan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| | - Shaochang Jia
- Jinlin Hospital of Nanjing University, Nanjing, 210002, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
7
|
Xin X, Wen T, Gong LB, Deng MM, Hou KZ, Xu L, Shi S, Qu XJ, Liu YP, Che XF, Teng YE. Inhibition of FEN1 Increases Arsenic Trioxide-Induced ROS Accumulation and Cell Death: Novel Therapeutic Potential for Triple Negative Breast Cancer. Front Oncol 2020; 10:425. [PMID: 32318339 PMCID: PMC7147381 DOI: 10.3389/fonc.2020.00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, which is very difficult to treat and commonly develops resistance to chemotherapy. The following study investigated whether the inhibition of Flap Endonuclease 1 (FEN1) expression, the key enzyme in the base excision repair (BER) pathway, could improve the anti-tumor effect of arsenic trioxide (ATO), which is a reactive oxygen species (ROS) inducer. Our data showed that ATO could increase the expression of FEN1, and the knockdown of FEN1 could significantly enhance the sensitivity of TNBC cells to ATO both in vitro and in vivo. Further mechanism studies revealed that silencing FEN1 in combination with low doses of ATO might increase intracellular ROS and reduce glutathione (GSH) levels, by reducing the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2); elevating ROS leaded to apoptosis and p38 and JNK pathway activating. In conclusion, our study suggested the combination of FEN1 knockdown and ATO could induce TNBC cell death by promoting ROS production. FEN1 knockdown can effectively decrease the application concentrations of ATO, thus providing a possibility for the treatment of TNBC with ATO.
Collapse
Affiliation(s)
- Xing Xin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Li-Bao Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ming-Ming Deng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yue-E Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Xu X, Shi R, Zheng L, Guo Z, Wang L, Zhou M, Zhao Y, Tian B, Truong K, Chen Y, Shen B, Hua Y, Xu H. SUMO-1 modification of FEN1 facilitates its interaction with Rad9-Rad1-Hus1 to counteract DNA replication stress. J Mol Cell Biol 2019; 10:460-474. [PMID: 30184152 PMCID: PMC6231531 DOI: 10.1093/jmcb/mjy047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023] Open
Abstract
Human flap endonuclease 1 (FEN1) is a structure-specific, multi-functional endonuclease essential for DNA replication and repair. We and others have shown that during DNA replication, FEN1 processes Okazaki fragments via its interaction with the proliferating cell nuclear antigen (PCNA). Alternatively, in response to DNA damage, FEN1 interacts with the PCNA-like Rad9–Rad1–Hus1 complex instead of PCNA to engage in DNA repair activities, such as homology-directed repair of stalled DNA replication forks. However, it is unclear how FEN1 is able to switch between these interactions and its roles in DNA replication and DNA repair. Here, we report that FEN1 undergoes SUMOylation by SUMO-1 in response to DNA replication fork-stalling agents, such as UV irradiation, hydroxyurea, and mitomycin C. This DNA damage-induced SUMO-1 modification promotes the interaction of FEN1 with the Rad9–Rad1–Hus1 complex. Furthermore, we found that FEN1 mutations that prevent its SUMO-1 modification also impair its ability to interact with HUS1 and to rescue stalled replication forks. These impairments lead to the accumulation of DNA damage and heightened sensitivity to fork-stalling agents. Altogether, our findings suggest an important role of the SUMO-1 modification of FEN1 in regulating its roles in DNA replication and repair.
Collapse
Affiliation(s)
- Xiaoli Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Rongyi Shi
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Liangyan Wang
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ye Zhao
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Khue Truong
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Yuan Chen
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Yuejin Hua
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|