1
|
Corkish C, Aguiar CF, Finlay DK. Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level. Nat Commun 2024; 15:10424. [PMID: 39613733 PMCID: PMC11607443 DOI: 10.1038/s41467-024-54516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Tissue-resident innate immune cells have important functions in both homeostasis and pathological states. Despite advances in the field, analyzing the metabolism of tissue-resident innate lymphocytes is still challenging. The small number of tissue-resident innate lymphocytes such as ILC, NK, iNKT and γδ T cells poses additional obstacles in their metabolic studies. In this review, we summarize the current understanding of innate lymphocyte metabolism and discuss potential pitfalls associated with the current methodology relying predominantly on in vitro cultured cells or bulk-level comparison. Meanwhile, we also summarize and advocate for the development and adoption of single-cell metabolic assays to accurately profile the metabolism of tissue-resident immune cells directly ex vivo.
Collapse
Affiliation(s)
- Carrie Corkish
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cristhiane Favero Aguiar
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Dai Z, Wan K, Miyashita M, Ho RST, Zheng C, Poon ETC, Wong SHS. The Effect of Time-Restricted Eating Combined with Exercise on Body Composition and Metabolic Health: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100262. [PMID: 38897385 PMCID: PMC11301358 DOI: 10.1016/j.advnut.2024.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Time-restricted eating (TRE) is increasingly popular, but its benefits in combination with exercise still need to be determined. OBJECTIVES This systematic review and meta-analysis aimed to evaluate the efficacy of TRE combined with exercise compared with control diet with exercise in improving the body composition and metabolic health of adults. METHODS Five electronic databases were searched for relevant studies. Randomized controlled trials (RCTs) examining the effect of TRE combined with exercise on body composition and metabolic health in adults were included. All results in the meta-analysis are reported as mean difference (MD) with 95% confidence interval (CI). Study quality was assessed using the revised Cochrane Risk of Bias Tool and Grading of Recommendations Assessment, Development, and Evaluation assessment. RESULTS In total, 19 RCTs comprising 568 participants were included in this systematic review and meta-analysis. TRE combined with exercise likely reduced the participants' body mass (MD: -1.86 kg; 95% CI: -2.75, -0.97 kg) and fat mass (MD: -1.52 kg; 95% CI: -2.07, -0.97 kg) when compared with the control diet with exercise. In terms of metabolic health, the TRE combined with exercise group likely reduced triglycerides (MD: -13.38 mg/dL, 95% CI: -21.22, -5.54 mg/dL) and may result in a reduction in low-density lipoprotein (MD: -8.52 mg/dL; 95% CI: -11.72, -5.33 mg/dL) and a large reduction in leptin (MD: -0.67 ng/mL; 95% CI: -1.02, -0.33 ng/mL). However, TRE plus exercise exhibited no additional benefit on the glucose profile, including fasting glucose and insulin, and other lipid profiles, including total cholesterol and high-density lipoprotein concentrations, compared with the control group. CONCLUSIONS Combining TRE with exercise may be more effective in reducing body weight and fat mass and improving lipid profile than control diet with exercise. Implementing this approach may benefit individuals aiming to achieve weight loss and enhance their metabolic well-being. This study was registered in PROSPERO as CRD42022353834.
Collapse
Affiliation(s)
- Zihan Dai
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Kewen Wan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China; Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong, China
| | - Masashi Miyashita
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China; Faculty of Sport Sciences, Waseda University, Saitama, Japan; School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Robin Sze-Tak Ho
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Chen Zheng
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China
| | - Eric Tsz-Chun Poon
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Rejeki PS, Pranoto A, Widiatmaja DM, Utami DM, Izzatunnisa N, Sugiharto, Lesmana R, Halim S. Combined Aerobic Exercise with Intermittent Fasting Is Effective for Reducing mTOR and Bcl-2 Levels in Obese Females. Sports (Basel) 2024; 12:116. [PMID: 38786985 PMCID: PMC11126026 DOI: 10.3390/sports12050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
The integration of combined aerobic exercise and intermittent fasting (IF) has emerged as a strategy for the prevention and management of obesity, including its associated health issues such as age-related metabolic diseases. This study aimed to examine the potential of combined aerobic exercise and IF as a preventative strategy against cellular senescence by targeting mTOR and Bcl-2 levels in obese females. A total of 30 obese women, aged 23.56 ± 1.83 years, body fat percentage (FAT) 45.21 ± 3.73% (very high category), BMI 30.09 ± 3.74 kg/m2 were recruited and participated in three different types of interventions: intermittent fasting (IF), exercise (EXG), and a combination of intermittent fasting and exercise (IFEXG). The intervention program was carried out 5x/week for 2 weeks. We examined mTOR and Bcl-2 levels using ELISA kits. Statistical analysis used the one-way ANOVA test and continued with Tukey's HSD post hoc test, with a significance level of 5%. The study results showed that a combination of aerobic exercise and IF significantly decreased mTOR levels (-1.26 ± 0.79 ng/mL) compared to the control group (-0.08 ± 1.33 ng/mL; p ≤ 0.05). However, combined aerobic exercise and IF did not affect Bcl-2 levels significantly (-0.07 ± 0.09 ng/mL) compared to the control group (0.01 ± 0.17 ng/mL, p ≥ 0.05). The IF-only group, exercise-only group, and combined group all showed a significant decrease in body weight and fat mass compared to the control group (p ≤ 0.05). However, the combined aerobic exercise and IF program had a significant effect in reducing the total percentage of body fat and fat mass compared to the IF-only group (p ≤ 0.05). Therefore, it was concluded that the combined intermittent fasting and exercise group (IFEXG) undertook the most effective intervention of the three in terms of preventing cellular senescence, as demonstrated by decreases in the mTOR level, body weight, and fat mass. However, the IFEXG did not present reduced Bcl-2 levels.
Collapse
Affiliation(s)
- Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia;
| | - Deandra Maharani Widiatmaja
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Dita Mega Utami
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Nabilah Izzatunnisa
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Sugiharto
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang 65145, East Java, Indonesia;
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjajaran, Bandung 45363, West Java, Indonesia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Pulau Pinang, Malaysia;
| |
Collapse
|
4
|
Storoschuk KL, Lesiuk D, Nuttall J, LeBouedec M, Khansari A, Islam H, Gurd BJ. Impact of fasting on the AMPK and PGC-1α axis in rodent and human skeletal muscle: A systematic review. Metabolism 2024; 152:155768. [PMID: 38154612 DOI: 10.1016/j.metabol.2023.155768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Based primarily on evidence from rodent models fasting is currently believed to improve metabolic health via activation of the AMPK-PGC-1α axis in skeletal muscle. However, it is unclear whether the skeletal muscle AMPK-PGC-1α axis is activated by fasting in humans. The current systematic review examined the fasting response in skeletal muscle from 34 selected studies (7 human, 21 mouse, and 6 rat). From these studies, we gathered 38 unique data points related to AMPK and 47 related to PGC-1α. In human studies, fasting mediated activation of the AMPK-PGC-1α axis is largely absent. Although evidence does support fasting-induced activation of the AMPK-PGC-1α axis in rodent skeletal muscle, the evidence is less robust than anticipated. Our findings question the ability of fasting to activate the AMPK-PGC-1α axis in human skeletal muscle and suggest that the metabolic benefits of fasting in humans are associated with caloric restriction rather than the induction of mitochondrial biogenesis. Registration: https://doi.org/10.17605/OSF.IO/KWNQY.
Collapse
Affiliation(s)
- K L Storoschuk
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - D Lesiuk
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - J Nuttall
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - M LeBouedec
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - A Khansari
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - H Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - B J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
5
|
de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A, Moreno M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int J Mol Sci 2023; 24:11676. [PMID: 37511435 PMCID: PMC10380998 DOI: 10.3390/ijms241411676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
6
|
Zotti T, Giacco A, Cuomo A, Cerulo L, Petito G, Iervolino S, Senese R, Cioffi F, Vito P, Cardinale G, Silvestri E, Lombardi A, Moreno M, Lanni A, de Lange P. Exercise Equals the Mobilization of Visceral versus Subcutaneous Adipose Fatty Acid Molecules in Fasted Rats Associated with the Modulation of the AMPK/ATGL/HSL Axis. Nutrients 2023; 15:3095. [PMID: 37513513 PMCID: PMC10386727 DOI: 10.3390/nu15143095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Combining exercise with fasting is known to boost fat mass-loss, but detailed analysis on the consequential mobilization of visceral and subcutaneous WAT-derived fatty acids has not been performed. In this study, a subset of fasted male rats (66 h) was submitted to daily bouts of mild exercise. Subsequently, by using gas chromatography-flame ionization detection, the content of 22 fatty acids (FA) in visceral (v) versus subcutaneous (sc) white adipose tissue (WAT) depots was compared to those found in response to the separate events. Findings were related to those obtained in serum and liver samples, the latter taking up FA to increase gluconeogenesis and ketogenesis. Each separate intervention reduced scWAT FA content, associated with increased levels of adipose triglyceride lipase (ATGL) protein despite unaltered AMP-activated protein kinase (AMPK) Thr172 phosphorylation, known to induce ATGL expression. The mobility of FAs from vWAT during fasting was absent with the exception of the MUFA 16:1 n-7 and only induced by combining fasting with exercise which was accompanied with reduced hormone sensitive lipase (HSL) Ser563 and increased Ser565 phosphorylation, whereas ATGL protein levels were elevated during fasting in association with the persistently increased phosphorylation of AMPK at Thr172 both during fasting and in response to the combined intervention. As expected, liver FA content increased during fasting, and was not further affected by exercise, despite additional FA release from vWAT in this condition, underlining increased hepatic FA metabolism. Both fasting and its combination with exercise showed preferential hepatic metabolism of the prominent saturated FAs C:16 and C:18 compared to the unsaturated FAs 18:1 n-9 and 18:2 n-6:1. In conclusion, depot-specific differences in WAT fatty acid molecule release during fasting, irrelevant to their degree of saturation or chain length, are mitigated when combined with exercise, to provide fuel to surrounding organs such as the liver which is correlated with increased ATGL/ HSL ratios, involving AMPK only in vWAT.
Collapse
Affiliation(s)
- Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy; (T.Z.); (A.G.); (L.C.); (S.I.); (F.C.); (P.V.); (E.S.); (M.M.)
- Genus Biotech Srls., Università degli Studi del Sannio, Apollosa, 82030 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy; (T.Z.); (A.G.); (L.C.); (S.I.); (F.C.); (P.V.); (E.S.); (M.M.)
| | - Arianna Cuomo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81130 Caserta, Italy; (A.C.); (G.P.); (R.S.); (A.L.)
| | - Luigi Cerulo
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy; (T.Z.); (A.G.); (L.C.); (S.I.); (F.C.); (P.V.); (E.S.); (M.M.)
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81130 Caserta, Italy; (A.C.); (G.P.); (R.S.); (A.L.)
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy; (T.Z.); (A.G.); (L.C.); (S.I.); (F.C.); (P.V.); (E.S.); (M.M.)
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81130 Caserta, Italy; (A.C.); (G.P.); (R.S.); (A.L.)
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy; (T.Z.); (A.G.); (L.C.); (S.I.); (F.C.); (P.V.); (E.S.); (M.M.)
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy; (T.Z.); (A.G.); (L.C.); (S.I.); (F.C.); (P.V.); (E.S.); (M.M.)
- Genus Biotech Srls., Università degli Studi del Sannio, Apollosa, 82030 Benevento, Italy
| | - Gaetano Cardinale
- Sannio Tech Consortium, s.s. Appia, Apollosa, 82030 Benevento, Italy;
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy; (T.Z.); (A.G.); (L.C.); (S.I.); (F.C.); (P.V.); (E.S.); (M.M.)
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy;
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy; (T.Z.); (A.G.); (L.C.); (S.I.); (F.C.); (P.V.); (E.S.); (M.M.)
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81130 Caserta, Italy; (A.C.); (G.P.); (R.S.); (A.L.)
| | - Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81130 Caserta, Italy; (A.C.); (G.P.); (R.S.); (A.L.)
| |
Collapse
|
7
|
Diet, Exercise, and the Metabolic Syndrome: Enrollment of the Mitochondrial Machinery. Nutrients 2022; 14:nu14214519. [DOI: 10.3390/nu14214519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MS), a cluster of metabolic risk factors, ranging from abdominal obesity, dyslipidaemia, hypertension, type 2 diabetes and non-alcoholic fatty liver disease [...]
Collapse
|
8
|
Rai M, Demontis F. Muscle-to-Brain Signaling Via Myokines and Myometabolites. Brain Plast 2022; 8:43-63. [PMID: 36448045 PMCID: PMC9661353 DOI: 10.3233/bpl-210133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle health and function are important determinants of systemic metabolic homeostasis and organism-wide responses, including disease outcome. While it is well known that exercise protects the central nervous system (CNS) from aging and disease, only recently this has been found to depend on the endocrine capacity of skeletal muscle. Here, we review muscle-secreted growth factors and cytokines (myokines), metabolites (myometabolites), and other unconventional signals (e.g. bioactive lipid species, enzymes, and exosomes) that mediate muscle-brain and muscle-retina communication and neuroprotection in response to exercise and associated processes, such as the muscle unfolded protein response and metabolic stress. In addition to impacting proteostasis, neurogenesis, and cognitive functions, muscle-brain signaling influences complex brain-dependent behaviors, such as depression, sleeping patterns, and biosynthesis of neurotransmitters. Moreover, myokine signaling adapts feeding behavior to meet the energy demands of skeletal muscle. Contrary to protective myokines induced by exercise and associated signaling pathways, inactivity and muscle wasting may derange myokine expression and secretion and in turn compromise CNS function. We propose that tailoring muscle-to-CNS signaling by modulating myokines and myometabolites may combat age-related neurodegeneration and brain diseases that are influenced by systemic signals.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
9
|
Haganes KL, Silva CP, Eyjólfsdóttir SK, Steen S, Grindberg M, Lydersen S, Hawley JA, Moholdt T. Time-restricted eating and exercise training improve HbA1c and body composition in women with overweight/obesity: A randomized controlled trial. Cell Metab 2022; 34:1457-1471.e4. [PMID: 36198292 DOI: 10.1016/j.cmet.2022.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 12/25/2022]
Abstract
Diet modification and exercise training are primary lifestyle strategies for obesity management, but poor adherence rates limit their effectiveness. Time-restricted eating (TRE) and high-intensity interval training (HIIT) improve cardiometabolic health in at-risk individuals, but whether these two interventions combined induce superior improvements in glycemic control than each individual intervention is not known. In this four-armed randomized controlled trial (ClinicalTrials.gov NCT04019860), we determined the isolated and combined effects of 7 weeks of TRE (≤10-h daily eating window, with ad libitum energy intake) and HIIT (three exercise sessions per week), compared with a non-intervention control group, on glycemic control and secondary cardiometabolic outcomes in 131 women (36.2 ± 6.2 years) with overweight/obesity. There were no statistically significant effects after isolated TRE, HIIT, or a combination (TREHIIT) on glucose area under the curve during an oral glucose tolerance test (the primary outcome) compared with the control group (TRE, -26.3 mmol/L; 95% confidence interval [CI], -82.3 to 29.7, p = 0.36; HIIT, -53.8 mmol/L; 95% CI, -109.2 to 1.6, p = 0.057; TREHIIT, -41.3 mmol/L; 95% CI, -96.4 to 13.8, p = 0.14). However, TREHIIT improved HbA1c and induced superior reductions in total and visceral fat mass compared with TRE and HIIT alone. High participant adherence rates suggest that TRE, HIIT, and a combination thereof may be realistic diet-exercise strategies for improving markers of metabolic health in women at risk of cardiometabolic disease.
Collapse
Affiliation(s)
- Kamilla L Haganes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway; Women's Clinic, St. Olav's Hospital, Trondheim 7006, Norway.
| | - Catalina P Silva
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Svala K Eyjólfsdóttir
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Sandra Steen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Martine Grindberg
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Stian Lydersen
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - John A Hawley
- Exercise & Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway; Women's Clinic, St. Olav's Hospital, Trondheim 7006, Norway.
| |
Collapse
|
10
|
Mild Endurance Exercise during Fasting Increases Gastrocnemius Muscle and Prefrontal Cortex Thyroid Hormone Levels through Differential BHB and BCAA-Mediated BDNF-mTOR Signaling in Rats. Nutrients 2022; 14:nu14061166. [PMID: 35334826 PMCID: PMC8952016 DOI: 10.3390/nu14061166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0° inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction.
Collapse
|
11
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
12
|
Fasting and Exercise in Oncology: Potential Synergism of Combined Interventions. Nutrients 2021; 13:nu13103421. [PMID: 34684421 PMCID: PMC8537603 DOI: 10.3390/nu13103421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Nutrition and exercise interventions are strongly recommended for most cancer patients; however, much debate exists about the best prescription. Combining fasting with exercise is relatively untouched within the oncology setting. Separately, fasting has demonstrated reductions in chemotherapy-related side effects and improved treatment tolerability and effectiveness. Emerging evidence suggests fasting may have a protective effect on healthy cells allowing chemotherapy to exclusively target cancer cells. Exercise is commonly recommended and attenuates treatment- and cancer-related adverse changes to body composition, quality of life, and physical function. Given their independent benefits, in combination, fasting and exercise may induce synergistic effects and further improve cancer-related outcomes. In this narrative review, we provide a critical appraisal of the current evidence of fasting and exercise as independent interventions in the cancer population and discuss the potential benefits and mechanisms of combined fasting and exercise on cardiometabolic, body composition, patient-reported outcomes, and cancer-related outcomes. Our findings suggest that within the non-cancer population combined fasting and exercise is a viable strategy to improve health-related outcomes, however, its safety and efficacy in the oncology setting remain unknown. Therefore, we also provide a discussion on potential safety issues and considerations for future research in the growing cancer population.
Collapse
|
13
|
Schuppelius B, Peters B, Ottawa A, Pivovarova-Ramich O. Time Restricted Eating: A Dietary Strategy to Prevent and Treat Metabolic Disturbances. Front Endocrinol (Lausanne) 2021; 12:683140. [PMID: 34456861 PMCID: PMC8387818 DOI: 10.3389/fendo.2021.683140] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Time-restricted eating (TRE), a dietary approach limiting the daily eating window, has attracted increasing attention in media and research. The eating behavior in our modern society is often characterized by prolonged and erratic daily eating patterns, which might be associated with increased risk of obesity, diabetes, and cardiovascular diseases. In contrast, recent evidence suggests that TRE might support weight loss, improve cardiometabolic health, and overall wellbeing, but the data are controversial. The present work reviews how TRE affects glucose and lipid metabolism based on clinical trials published until June 2021. A range of trials demonstrated that TRE intervention lowered fasting and postprandial glucose levels in response to a standard meal or oral glucose tolerance test, as well as mean 24-h glucose and glycemic excursions assessed using continuous glucose monitoring. In addition, fasting insulin decreases and improvement of insulin sensitivity were demonstrated. These changes were often accompanied by the decrease of blood triglyceride and cholesterol levels. However, a number of studies found that TRE had either adverse or no effects on glycemic and lipid traits, which might be explained by the different study designs (i.e., fasting/eating duration, daytime of eating, changes of calorie intake, duration of intervention) and study subject cohorts (metabolic status, age, gender, chronotype, etc.). To summarize, TRE represents an attractive and easy-to-adapt dietary strategy for the prevention and therapy of glucose and lipid metabolic disturbances. However, carefully controlled future TRE studies are needed to confirm these effects to understand the underlying mechanisms and assess the applicability of personalized interventions.
Collapse
Affiliation(s)
- Bettina Schuppelius
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Beeke Peters
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Human Nutrition and Food Science, Faculty of Agriculture and Food Sciences, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Agnieszka Ottawa
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- *Correspondence: Olga Pivovarova-Ramich,
| |
Collapse
|
14
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
15
|
Shirai T, Obara T, Takemasa T. Effect of endurance exercise duration on muscle hypertrophy induced by functional overload. FEBS Open Bio 2020; 11:85-94. [PMID: 33155405 PMCID: PMC7780094 DOI: 10.1002/2211-5463.13028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022] Open
Abstract
For many ball games, both resistance and endurance training are necessary to improve muscle strength and endurance capacity. Endurance training has been reported to inhibit muscle strength and hypertrophy, but some studies have reported that endurance exercise (EE) does not inhibit the effects of resistance exercise. Here, we examined the effect of short‐ or long‐duration EE on mouse skeletal muscle hypertrophy induced by functional overload (OL) at the molecular level. Plantaris muscle hypertrophy was induced by OL with synergist ablation in mice. Body mass was reduced with endurance training, but EE duration (30 or 90 min) had no effect. The ratio of plantaris muscle weight to body weight was higher in the OL and EE for 30 min (OL+EE30) and OL and EE for 90 min (OL+EE90) groups compared with the OL group. Expression of mechanistic target of rapamycin signaling proteins, which is related to protein synthesis and hypertrophy, was increased in the OL+EE30 group. Expression of Forkhead box‐containing protein O1, which is related to protein breakdown and atrophy, remained unchanged. However, microtubule‐associated protein 1 light chain 3, a known marker of autophagy, and MAFbx, which is related to protein breakdown, were significantly increased in the OL+EE90 group. Furthermore, markers of oxidative stress, ubiquitin and 4‐hydroxynonenal were also significantly increased in the OL+EE90 group compared with other groups. In conclusion, EE duration did not affect body mass and plantaris mass and did not interfere with mechanistic target of rapamycin signaling, but it did increase ubiquitinated proteins and oxidative stress. It is therefore necessary to consider training durations for EE when combining endurance and resistance training.
Collapse
Affiliation(s)
- Takanaga Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tsubasa Obara
- School of Physical Education, Health and Sport Sciences, Tsukuba, Japan.,Yokohama B-Corsairs Co., Ltd., Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Japan
| |
Collapse
|
16
|
Delli Paoli G, van de Laarschot D, Friesema ECH, Verkaik R, Giacco A, Senese R, Arp PP, Jhamai PM, Pagnotta SM, Broer L, Uitterlinden AG, Lanni A, Zillikens MC, de Lange P. Short-Term, Combined Fasting and Exercise Improves Body Composition in Healthy Males. Int J Sport Nutr Exerc Metab 2020; 30:386-395. [PMID: 32998111 DOI: 10.1123/ijsnem.2020-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023]
Abstract
Fasting enhances the beneficial metabolic outcomes of exercise; however, it is unknown whether body composition is favorably modified on the short term. A baseline-follow-up study was carried out to assess the effect of an established protocol involving short-term combined exercise with fasting on body composition. One hundred seven recreationally exercising males underwent a 10-day intervention across 15 fitness centers in the Netherlands involving a 3-day gradual decrease of food intake, a 3-day period with extremely low caloric intake, and a gradual 4-day increase to initial caloric intake, with daily 30-min submaximal cycling. Using dual-energy X-ray absorptiometry analysis, all subjects substantially lost total body mass (-3.9 ± 1.9 kg; p < .001) and fat mass (-3.3 ± 1.3 kg; p < .001). Average lean mass was lost (-0.6 ± 1.5 kg; p < .001), but lean mass as a percentage of total body mass was not reduced. The authors observed a loss of -3.9 ± 1.9% android fat over total fat mass (p < .001), a loss of -2.2 ± 1.9% gynoid over total fat mass (p < .001), and reduced android/gynoid ratios (-0.05 ± 0.1; p < .001). Analyzing 15 preselected single-nucleotide polymorphisms in 13 metabolism-related genes revealed trending associations for thyroid state-related single-nucleotide polymorphisms rs225014 (deiodinase 2) and rs35767 (insulin-like growth factor1), and rs1053049 (PPARD). In conclusion, a short period of combined fasting and exercise leads to a substantial loss of body and fat mass without a loss of lean mass as a percentage of total mass.
Collapse
Affiliation(s)
- Giuseppe Delli Paoli
- Università degli Studi della Campania "Luigi Vanvitelli"
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
| | - Denise van de Laarschot
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
- Erasmus University Medical Center
| | - Edith C H Friesema
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
- Erasmus University Medical Center
| | - Remco Verkaik
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
- European Nutraceutical Services
| | - Antonia Giacco
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
- Università degli Studi del Sannio
| | - Rosalba Senese
- Università degli Studi della Campania "Luigi Vanvitelli"
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
| | | | | | | | | | - André G Uitterlinden
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
- Erasmus University Medical Center
| | - Antonia Lanni
- Università degli Studi della Campania "Luigi Vanvitelli"
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
| | - M Carola Zillikens
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
- Erasmus University Medical Center
| | - Pieter de Lange
- Università degli Studi della Campania "Luigi Vanvitelli"
- European Consortium for Lifestyle, Exercise, Adaptation, and Nutrition (EULEAN)
| |
Collapse
|
17
|
Wilhelmi de Toledo F, Grundler F, Sirtori CR, Ruscica M. Unravelling the health effects of fasting: a long road from obesity treatment to healthy life span increase and improved cognition. Ann Med 2020; 52:147-161. [PMID: 32519900 PMCID: PMC7877980 DOI: 10.1080/07853890.2020.1770849] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years a revival of interest has emerged in the health benefits of intermittent fasting and long-term fasting, as well as of other related nutritional strategies. In addition to meal size and composition a new focus on time and frequency of meals has gained attention. The present review will investigate the effects of the main forms of fasting, activating the metabolic switch from glucose to fat and ketones (G-to-K), starting 12-16 h after cessation or strong reduction of food intake. During fasting the deactivation of mTOR regulated nutrient signalling pathways and activation of the AMP protein kinase trigger cell repair and inhibit anabolic processes. Clinical and animal studies have clearly indicated that modulating diet and meal frequency, as well as application of fasting patterns, e.g. intermittent fasting, periodic fasting, or long-term fasting are part of a new lifestyle approach leading to increased life and health span, enhanced intrinsic defences against oxidative and metabolic stresses, improved cognition, as well as a decrease in cardiovascular risk in both obese and non-obese subjects. Finally, in order to better understand the mechanisms beyond fasting-related changes, human studies as well as non-human models closer to human physiology may offer useful clues.KEY-MESSAGESBiochemical changes during fasting are characterised by a glucose to ketone switch, leading to a rise of ketones, advantageously used for brain energy, with consequent improved cognition.Ketones reduce appetite and help maintain effective fasting.Application of fasting patterns increases healthy life span and defences against oxidative and metabolic stresses.Today's strategies for the use of therapeutic fasting are based on different protocols, generally relying on intermittent fasting, of different duration and calorie intake.Long-term fasting, with durations between 5 and 21 days can be successfully repeated in the course of a year.
Collapse
Affiliation(s)
| | - Franziska Grundler
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, Überlingen, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cesare R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Culturally based pre-Ramadan education increased benefits and reduced hazards of Ramadan fasting for type 2 diabetic patients. J Diabetes Metab Disord 2020; 19:179-186. [PMID: 32550167 DOI: 10.1007/s40200-020-00489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
Abstract
Objectives In the current study, we aimed at evaluating the effect of a culturally-based pre-Ramadan education program (PREP) on glycemic control, weight, adherence to post-sunset physical activity, perception of hypoglycemia, and anti-diabetic medication dose adjustment during Ramadan fasting in type 2 diabetics. Study design A total of 1008 type 2 Diabetes patients were offered a culturally-based PREP in addition to the standard of care, two months before Ramadan. A retrospective interview one month after Ramadan compared the fasting experience of PREP attendees (470 patients) with those who merely received standard of care (538 patients) (Non-PREP). Results Ramadan fasting improved glycemic control with a correlation between HbA1c percent reduction and the number of fasting days (r = -0.290, p = 0.007). More HbA1c and weight percent reduction were observed in PREP attendees compared to the Non-PREP group (-14.8% ± 9.3 vs. -5.4% ± 5.4; p < 0.001; and - 1.96% ± 5.4 vs. -0.39% ± 2.8; p < 0.001, respectively). More commitment to night prayers in the PREP attendees compared to the Non-PREP group, (85.5% prayed >20 nights vs 28.4%; p < 0.001) with more HbA1c and weight percent reduction in the those who performed the prayers more than 20 nights compared to those who performed no prayers (-11.69% ± 8.8 vs -6.28% ± 6.4, p < 0.001; and - 2.76% ±5.1 vs 1.35% ±1.8, p < 0.001, respectively). More perception of true hypoglycemia was associated with PREP attendance (p0.046), insulin treatment (p0.000), and reduction of antidiabetic medication dosage (p0.004). Repeated lowering of antidiabetic medications doses with sequential downsizing of meals' portions, and appetite was reported. Conclusion Ramadan fasting was beneficial for people with type 2 diabetes with reduction of HbA1c in correlation with the number of fasting days. Contrasting PREP with Non-PREP participants discovered better HbA1c and weight reduction in the former group even with equal number of fasting days. PREP participants performed more Taraweeh night prayers. The more the prayer nights the more decline of HbA1c and weight was observed. PREP improved perception and response to hypoglycemia with low-dosing of antidiabetic medications, especially insulin.
Collapse
|
19
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
20
|
Pickel L, Sung HK. Feeding Rhythms and the Circadian Regulation of Metabolism. Front Nutr 2020; 7:39. [PMID: 32363197 PMCID: PMC7182033 DOI: 10.3389/fnut.2020.00039] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
The molecular circadian clock regulates metabolic processes within the cell, and the alignment of these clocks between tissues is essential for the maintenance of metabolic homeostasis. The possibility of misalignment arises from the differential responsiveness of tissues to the environmental cues that synchronize the clock (zeitgebers). Although light is the dominant environmental cue for the master clock of the suprachiasmatic nucleus, many other tissues are sensitive to feeding and fasting. When rhythms of feeding behavior are altered, for example by shift work or the constant availability of highly palatable foods, strong feedback is sent to the peripheral molecular clocks. Varying degrees of phase shift can cause the systemic misalignment of metabolic processes. Moreover, when there is a misalignment between the endogenous rhythms in physiology and environmental inputs, such as feeding during the inactive phase, the body's ability to maintain homeostasis is impaired. The loss of phase coordination between the organism and environment, as well as internal misalignment between tissues, can produce cardiometabolic disease as a consequence. The aim of this review is to synthesize the work on the mechanisms and metabolic effects of circadian misalignment. The timing of food intake is highlighted as a powerful environmental cue with the potential to destroy or restore the synchrony of circadian rhythms in metabolism.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Shirai T, Aoki Y, Takeda K, Takemasa T. The order of concurrent training affects mTOR signaling but not mitochondrial biogenesis in mouse skeletal muscle. Physiol Rep 2020; 8:e14411. [PMID: 32281743 PMCID: PMC7153037 DOI: 10.14814/phy2.14411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Concurrent training involves a combination of two different modes of training. In this study, we conducted an experiment by combining resistance and endurance training. The purpose of this study was to investigate the influence of the order of concurrent training on signal molecules in skeletal muscle. The phosphorylation levels of p70 S6 kinase, S6 ribosomal protein, and 4E-binding protein 1, which are related to hypertrophy signaling, increased significantly in the resistance-endurance order group as compared with in control group not the endurance-resistance order group. The gene expressions related to metabolism were not changed by the order of concurrent training. The mitochondrial respiratory chain complex was evaluated by western blot. Although both groups of concurrent training showed a significant increase in MTCO1, UQCRC2, and ATP5A protein levels, we could not detect a difference based on the order of concurrent training. In conclusion, a concurrent training approach involving resistance training before endurance training on the same day is an effective way to activate both mTOR signaling and mitochondria biogenesis.
Collapse
Affiliation(s)
- Takanaga Shirai
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yuki Aoki
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Kohei Takeda
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Tohru Takemasa
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
22
|
Giacco A, delli Paoli G, Simiele R, Caterino M, Ruoppolo M, Bloch W, Kraaij R, Uitterlinden AG, Santillo A, Senese R, Cioffi F, Silvestri E, Iervolino S, Lombardi A, Moreno M, Goglia F, Lanni A, de Lange P. Exercise with food withdrawal at thermoneutrality impacts fuel use, the microbiome, AMPK phosphorylation, muscle fibers, and thyroid hormone levels in rats. Physiol Rep 2020; 8:e14354. [PMID: 32034884 PMCID: PMC7007447 DOI: 10.14814/phy2.14354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
Exercise under fasting conditions induces a switch to lipid metabolism, eliciting beneficial metabolic effects. Knowledge of signaling responses underlying metabolic adjustments in such conditions may help to identify therapeutic strategies. Therefore, we studied the effect of mild exercise on rats submitted to food withdrawal at thermoneutrality (28°C) for 3 days. Animals were housed at thermoneutrality rather than the standard housing temperature (22°C) to avoid beta-adrenergic signaling responses that themselves affect metabolism and well-being. Quantitative analysis of multi-organ mRNA levels, myofibers, and serum metabolites shows that this protocol (a) boosts fat oxidation in muscle and liver, (b) reduces lipogenesis and increases gluconeogenesis in liver, (c) increases serum acylcarnitines (especially C4 OH) and ketone bodies and the use of the latter as fuel in muscle, (d) increases Type I myofibers, and (e) is associated with an increased thyroid hormone uptake and metabolism in muscle. In addition, stool microbiome DNA analysis revealed that food withdrawal dramatically alters the presence of bacterial genera associated with ketone metabolism. Taken together, this protocol induces a drastic switch toward increased lipid and ketone metabolism compared to exercise or food withdrawal alone, which may prove beneficial and may involve local thyroid hormones, which may be regarded as exercise mimetics.
Collapse
Affiliation(s)
- Antonia Giacco
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Giuseppe delli Paoli
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Roberta Simiele
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico IINaplesItaly
- Ceinge–Biotecnologie AvanzateNaplesItaly
- Divulgazione Scientifica Multidisciplinare per la Sostenibilità Ricerca, FormazioneCultura (DiSciMuS RCF)NaplesItaly
| | - Margherita Ruoppolo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico IINaplesItaly
- Ceinge–Biotecnologie AvanzateNaplesItaly
- Divulgazione Scientifica Multidisciplinare per la Sostenibilità Ricerca, FormazioneCultura (DiSciMuS RCF)NaplesItaly
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport MedicineInstitute of Cardiovascular Research and Sport MedicineGerman Sport University CologneCologneGermany
| | - Robert Kraaij
- Genetic LaboratoryDepartment of Internal MedicineErasmus Medical CenterRotterdamThe Netherlands
| | - André G. Uitterlinden
- Genetic LaboratoryDepartment of Internal MedicineErasmus Medical CenterRotterdamThe Netherlands
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Federica Cioffi
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Elena Silvestri
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Stefania Iervolino
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Assunta Lombardi
- Dipartimento di BiologiaUniversità degli Studi di Napoli "Federico II"NaplesItaly
| | - Maria Moreno
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Fernando Goglia
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| |
Collapse
|
23
|
Zhou J, Parker DC, White JP, Lim A, Huffman KM, Ho JP, Yen PM, Kraus WE. Thyroid Hormone Status Regulates Skeletal Muscle Response to Chronic Motor Nerve Stimulation. Front Physiol 2019; 10:1363. [PMID: 31736784 PMCID: PMC6834779 DOI: 10.3389/fphys.2019.01363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Although both exercise and thyroid hormone (TH) status can cause cellular and metabolic changes in skeletal muscle, the impact of TH status on exercise-associated changes is not well understood. Here, we examined the effects of TH status on muscle fiber type, cell signaling, and metabolism in a rabbit model of exercise training – chronic motor nerve stimulation (CMNS). Five rabbits were rendered hypothyroid for 7–8 weeks and three rabbits were made hyperthyroid for 2 weeks prior to CMNS of the left peroneal nerve for 10 days. We then measured markers of muscle fiber type, autophagy, and nutrient- or energy-sensing proteins, and metabolic intermediates. CMNS increased MHC-I expression in hypothyroid rabbits, whereas it was unchanged in hyperthyroid rabbits. CMNS also increased p-AMPK, p-ATGL, CPT-1α, p-Akt, GLUT4, and p-70S6K in hypothyroid rabbits. In contrast, p-AMPK and p-AKT were increased at baseline in hyperthyroid rabbits, but CMNS did not further increase them or any of the other markers. CMNS also increased TCA cycle and acylcarnitine metabolites in hypothyroid rabbits; whereas, acylcarnitines were already elevated in hyperthyroid rabbits, and were only slightly increased further by CMNS. In summary, CMNS effects on cell signaling and metabolism of skeletal muscle were more pronounced in the hypothyroid than the hyperthyroid state. Interestingly, in the hypothyroid state, CMNS caused concomitant activation of two signaling pathways that are usually reciprocally regulated – AMPK and mTOR signaling – which manifested as increased β-oxidation, MHC-I expression, and protein synthesis. Thus, our findings provide insight into the role of TH status on exercise response in muscle. Our observations suggest that TH status of patients may be an important determinant and predictor of their response to exercise training in skeletal muscle.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Daniel C Parker
- Division of Geriatrics, Duke University School of Medicine, Durham, NC, United States.,Claude D. Pepper Older Americans Independence Center/Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States
| | - James P White
- Claude D. Pepper Older Americans Independence Center/Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States.,Division of Hematology, Duke University School of Medicine, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Andrea Lim
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Kim M Huffman
- Claude D. Pepper Older Americans Independence Center/Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Rheumatology, Duke University School of Medicine, Durham, NC, United States
| | - Jia Pei Ho
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M Yen
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - William E Kraus
- Claude D. Pepper Older Americans Independence Center/Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
24
|
Jia WH, Wang NQ, Yin L, Chen X, Hou BY, Qiang GF, Chan CB, Yang XY, Du GH. Effect of skeletal muscle phenotype and gender on fasting-induced myokine expression in mice. Biochem Biophys Res Commun 2019; 514:407-414. [PMID: 31056256 DOI: 10.1016/j.bbrc.2019.04.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Skeletal muscle secretes myokines, which are involved in metabolism and muscle function regulation. The role of fasting on myokine expression in skeletal muscle is largely unknown. In this study, we used gastrocnemius skeletal muscle RNA sequencing data from fasting male mice in the Gene Expression Omnibus (GEO) database. Adopted male and female C57BL/6J mice that fasted for 24 h were included to examine the effect of fasting on myokine expression in slow-twitch soleus and fast-twitch tiabialis anterior (TA) skeletal muscle. We found that fasting significantly affected many myokines in muscle. Fasting reduced Fndc5 and Igf1 gene expression in soleus and TA muscles in both male and female mice without muscle phenotype or gender differences, but Il6, Mstn and Erfe expression was influenced by fasting with fibre type- and gender-dependent effects. Fasting also induced muscle atrophy marker genes Murf1 and Fbxo32 and reduced myogenesis factor Mef2 expression without muscle fibre or gender differences. We further found that the expression of transcription factors Pgc1α, Pparα, Pparγ and Pparδ had muscle fibre type-dependent effects, and the expression of Pgc1α and Pparα had gender-dependent effects. The sophisticated expression pattern of myokines would partially explain the complicated cross-talk between skeletal muscle and other organs in different genders and muscles phenotypes, and it is worth further investigation.
Collapse
Affiliation(s)
- Wei-Hua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Nuo-Qi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Xi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
25
|
Quines CB, Jardim NS, Araujo PCO, Cechella JL, Prado VC, Nogueira CW. Resistance training restores metabolic alterations induced by monosodium glutamate in a sex-dependent manner in male and female rats. J Cell Biochem 2019; 120:13426-13440. [PMID: 30916837 DOI: 10.1002/jcb.28617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Despite resistance exercises being associated with health outcomes, numerous issues are still unresolved and further research is required before the exercise can faithfully be prescribed as medicine. The goal of this study was to investigate whether there are sex differences in resistance training effects on metabolic alterations induced by monosodium glutamate (MSG), a model of obesity, in male and female rats. Male and female Wistar rats received MSG (4 g/kg body weight/day, s.c.) from postnatal day 1 to 10. After 10 days from MSG administration, the rats were separated into two groups: MSG-sedentary and MSG-exercised. At postnatal day 60, the animals started a resistance training protocol in an 80 degrees inclined vertical ladder apparatus and performed it for 7 weeks. Control rats received saline solution and were divided in saline-sedentary and saline-exercised. Resistance training restored all plasma biochemical parameters (glucose, cholesterol, triglycerides, aspartate aminotransferase, and alanine aminotransferase) increased in male and female rats treated with MSG. The MSG administration induced hyperglycemia associated with a decrease in the skeletal muscle glucose transporter 4 (GLUT4) levels and accompanied by deregulation in proteins, G-6Pase, and tyrosine aminotransferase, involved in hepatic glucose metabolism of male and female rats. MSG induced dyslipidemia and lipotoxicity in the liver and skeletal muscle of male rats. Regarding female rats, lipotoxicity was found only in the skeletal muscle. The resistance training had beneficial effects against metabolic alterations induced by MSG in male and female rats, through regulation of proteins (GLUT2, protein kinase B, and GLUT4) involved in glucose and lipid pathways in the liver and skeletal muscle.
Collapse
Affiliation(s)
- Caroline B Quines
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália S Jardim
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Paulo Cesar O Araujo
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - José Luiz Cechella
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vinicius C Prado
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Real-Hohn A, Navegantes C, Ramos K, Ramos-Filho D, Cahuê F, Galina A, Salerno VP. The synergism of high-intensity intermittent exercise and every-other-day intermittent fasting regimen on energy metabolism adaptations includes hexokinase activity and mitochondrial efficiency. PLoS One 2018; 13:e0202784. [PMID: 30576325 PMCID: PMC6303071 DOI: 10.1371/journal.pone.0202784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Visceral lipid accumulation, organ hypertrophy and a reduction in skeletal muscle strength are all signs associated with the severity of obesity-related disease. Intermittent fasting (IF) and high-intensity intermittent exercise (HIIE) are natural strategies that, individually, can prevent and help treat obesity along with metabolic syndrome and its associated diseases. However, the combinatorial effect of IF and HIIE on energetic metabolism is currently not well understood. We hypothesized that their combination could have a potential for more than strictly additive benefits. Here, we show that two months of every-other-day intermittent fasting regimen combined with a high-intensity intermittent exercise protocol (IF/HIIE) produced a synergistic effect, enhancing physical endurance (vs. control, HIIE and IF) and optimizing metabolic pathways of energy production in male Wistar rats. The IF/HIIE group presented enhanced glucose tolerance (vs. control, HIIE and IF), lower levels of plasma insulin (vs. control and HIIE), and a global activation of low Km hexokinases in liver (vs. control, HIIE and IF), heart (vs. control and HIIE) and skeletal muscle (vs. control, HIIE and IF). The IF/HIIE synergism, rather than a simply additive effect, is evidenced by increase in muscle mass and cross-section area, activation of the FoF1 ATP synthase, and the gain of characteristics suggestive of augmented mitochondrial mass and efficiency observed in this group. Finally, important reductions in plasma oxidative stress markers were present preferentially in IF/HIIE group. These findings provide new insights for the implementation of non-pharmaceutical strategies to prevent/treat metabolic syndrome and associated diseases.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
- * E-mail: (VPS); (ARH)
| | - Clarice Navegantes
- Laboratory of Exercise Biochemistry and Molecular Motors, Bioscience Department, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Ramos
- Laboratory of Exercise Biochemistry and Molecular Motors, Bioscience Department, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dionisio Ramos-Filho
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Cahuê
- Laboratory of Exercise Biochemistry and Molecular Motors, Bioscience Department, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica P. Salerno
- Laboratory of Exercise Biochemistry and Molecular Motors, Bioscience Department, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (VPS); (ARH)
| |
Collapse
|
27
|
Yu J, Zhu H, Taheri S, Perry S, Kindy MS. The Effect of Diet on Improved Endurance in Male C57BL/6 Mice. Nutrients 2018; 10:nu10081101. [PMID: 30115854 PMCID: PMC6115890 DOI: 10.3390/nu10081101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
The consumption of fruits and vegetables appears to help with maintaining an adequate level of exercise and improves endurance. However, the mechanisms that are involved in this process are not well understood. In the current study, the impact of diets enriched in fruits and vegetables (GrandFusion®) on exercise endurance was examined in a mouse model. GrandFusion (GF) diets increased mitochondrial DNA and enzyme activity, while they also stimulated mitochondrial mRNA synthesis in vivo. GF diets increased both the mRNA expression of factors involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (Tfam), estrogen-related receptor alpha (ERRα), nuclear respiratory factor 1 (NRF-1), cytochrome c oxidase IV (COXIV) and ATP synthase (ATPsyn). Mice treated with GF diets showed an increase in running endurance, rotarod perseverance and grip strength when compared to controls who were on a regular diet. In addition, GF diets increased the protein expression of phosphorylated AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC-1α and peroxisome proliferator-activated receptor delta (PPAR-δ), which was greater than exercise-related changes. Finally, GF reduced the expression of phosphorylated ribosomal protein S6 kinase 1 (p-S6K1) and decreased autophagy. These results demonstrate that GF diets enhance exercise endurance, which is mediated via mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | | | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
- NutriFusion®, LLC, Naples, FL 34109, USA.
- James A. Haley VA Medical Center, Tampa, FL 33612, USA.
- Shriners Hospital for Children, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Steneberg P, Lindahl E, Dahl U, Lidh E, Straseviciene J, Backlund F, Kjellkvist E, Berggren E, Lundberg I, Bergqvist I, Ericsson M, Eriksson B, Linde K, Westman J, Edlund T, Edlund H. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 2018; 3:99114. [PMID: 29925691 DOI: 10.1172/jci.insight.99114] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
AMPK activated protein kinase (AMPK), a master regulator of energy homeostasis, is activated in response to an energy shortage imposed by physical activity and caloric restriction. We here report on the identification of PAN-AMPK activator O304, which - in diet-induced obese mice - increased glucose uptake in skeletal muscle, reduced β cell stress, and promoted β cell rest. Accordingly, O304 reduced fasting plasma glucose levels and homeostasis model assessment of insulin resistance (HOMA-IR) in a proof-of-concept phase IIa clinical trial in type 2 diabetes (T2D) patients on Metformin. T2D is associated with devastating micro- and macrovascular complications, and O304 improved peripheral microvascular perfusion and reduced blood pressure both in animals and T2D patients. Moreover, like exercise, O304 activated AMPK in the heart, increased cardiac glucose uptake, reduced cardiac glycogen levels, and improved left ventricular stroke volume in mice, but it did not increase heart weight in mice or rats. Thus, O304 exhibits a great potential as a novel drug to treat T2D and associated cardiovascular complications.
Collapse
Affiliation(s)
- Pär Steneberg
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Emma Lindahl
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Ulf Dahl
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Emmelie Lidh
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Fredrik Backlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Eva Berggren
- Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | | | | | - Madelene Ericsson
- Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Kajsa Linde
- Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | - Jacob Westman
- Medchemcon AB, Jonsund Blomsberg 109, SE-744 97 Järlåsa, Sweden
| | - Thomas Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden.,Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
29
|
Senese R, de Lange P, Petito G, Moreno M, Goglia F, Lanni A. 3,5-Diiodothyronine: A Novel Thyroid Hormone Metabolite and Potent Modulator of Energy Metabolism. Front Endocrinol (Lausanne) 2018; 9:427. [PMID: 30090086 PMCID: PMC6068267 DOI: 10.3389/fendo.2018.00427] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Over 30 years of research has demonstrated that 3,5-diiodo-L-thyronine (3,5-T2), an endogenous metabolite of thyroid hormones, exhibits interesting metabolic activities. In rodent models, exogenously administered 3,5-T2 rapidly increases resting metabolic rate and elicits short-term beneficial hypolipidemic effects; however, very few studies have evaluated the effects of endogenous and exogenous T2 in humans. Further analyses on larger cohorts are needed to determine whether 3,5-T2 is a potent additional modulator of energy metabolism. In addition, while several lines of evidence suggest that 3,5-T2 mainly acts through Thyroid hormone receptors (THRs)- independent ways, with mitochondria as a likely cellular target, THRs-mediated actions have also been described. The detailed cellular and molecular mechanisms through which 3,5-T2 elicits a multiplicity of actions remains unknown. Here, we provide an overview of the most recent literature on 3,5-T2 bioactivity with a particular focus on short-term and long-term effects, describing data obtained through in vivo and in vitro approaches in both mammalian and non-mammalian species.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli” , Caserta, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli” , Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli” , Caserta, Italy
| | - Maria Moreno
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli” , Caserta, Italy
- *Correspondence: Antonia Lanni
| |
Collapse
|
30
|
Moreno M, Giacco A, Di Munno C, Goglia F. Direct and rapid effects of 3,5-diiodo-L-thyronine (T2). Mol Cell Endocrinol 2017; 458:121-126. [PMID: 28192176 DOI: 10.1016/j.mce.2017.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 01/16/2023]
Abstract
A growing number of researchers are focusing their attention on the possibility that thyroid hormone metabolites, particularly 3,5-diiodothyronine (T2), may actively regulate energy metabolism at the cellular, rather than the nuclear, level. Due to their biochemical features, mitochondria have been the focus of research on the thermogenic effects of thyroid hormones. Indeed, mitochondrial activities have been shown to be regulated both directly and indirectly by T2-specific pathways. Herein, we describe the effects of T2 on energy metabolism.
Collapse
Affiliation(s)
- Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Giacco
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Celia Di Munno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy.
| |
Collapse
|
31
|
Desseille C, Deforges S, Biondi O, Houdebine L, D'amico D, Lamazière A, Caradeuc C, Bertho G, Bruneteau G, Weill L, Bastin J, Djouadi F, Salachas F, Lopes P, Chanoine C, Massaad C, Charbonnier F. Specific Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-Lateral- Sclerosis Mice. Front Mol Neurosci 2017; 10:332. [PMID: 29104532 PMCID: PMC5655117 DOI: 10.3389/fnmol.2017.00332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS)-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR), we unexpectedly found that SOD1(G93A) ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease.
Collapse
Affiliation(s)
- Céline Desseille
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Séverine Deforges
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Olivier Biondi
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Léo Houdebine
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Domenico D'amico
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Antonin Lamazière
- Laboratoire de lipidomique, Faculté de Médecine Pierre et Marie Curie - Hôpital Saint-Antoine, Université Paris 6, Paris, France
| | - Cédric Caradeuc
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,UMR 8601 CNRS, Université Paris Descartes, Paris, France
| | - Gildas Bertho
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,UMR 8601 CNRS, Université Paris Descartes, Paris, France
| | - Gaëlle Bruneteau
- Laboratoire de lipidomique, Faculté de Médecine Pierre et Marie Curie - Hôpital Saint-Antoine, Université Paris 6, Paris, France.,UMR 8601 CNRS, Université Paris Descartes, Paris, France
| | - Laure Weill
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Jean Bastin
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Fatima Djouadi
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - François Salachas
- Laboratoire de lipidomique, Faculté de Médecine Pierre et Marie Curie - Hôpital Saint-Antoine, Université Paris 6, Paris, France.,Hôpital de la Salpêtrière, Département des Maladies du Système Nerveux, Equipe Neurogénétique et Physiologie, Institut du Cerveau et de la Moelle, Paris, France
| | - Philippe Lopes
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France.,UFR Sciences Fondamentales Appliquées, Département STAPS, Université d'Evry-Val-d'Essonne, Evry, France
| | - Christophe Chanoine
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Charbel Massaad
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| | - Frédéric Charbonnier
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,INSERM, UMR-S 1124, Paris, France
| |
Collapse
|