1
|
Trofimov YA, Krylov NA, Minakov AS, Nadezhdin KD, Neuberger A, Sobolevsky AI, Efremov RG. Dynamic molecular portraits of ion-conducting pores characterize functional states of TRPV channels. Commun Chem 2024; 7:119. [PMID: 38824263 PMCID: PMC11144267 DOI: 10.1038/s42004-024-01198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
Structural biology is solving an ever-increasing number of snapshots of ion channel conformational ensembles. Deciphering ion channel mechanisms, however, requires understanding the ensemble dynamics beyond the static structures. Here, we present a molecular modeling-based approach characterizing the ion channel structural intermediates, or their "dynamic molecular portraits", by assessing water and ion conductivity along with the detailed evaluation of pore hydrophobicity and residue packing. We illustrate the power of this approach by analyzing structures of few vanilloid-subfamily transient receptor potential (TRPV) channels. Based on the pore architecture, there are three major states that are common for TRPVs, which we call α-closed, π-closed, and π-open. We show that the pore hydrophobicity and residue packing for the open state is most favorable for the pore conductance. On the contrary, the α-closed state is the most hydrophobic and always non-conducting. Our approach can also be used for structural and functional classification of ion channels.
Collapse
Affiliation(s)
- Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
De Jesús-Pérez JJ, Gabrielle M, Raheem S, Fluck EC, Rohacs T, Moiseenkova-Bell VY. Structural mechanism of TRPV5 inhibition by econazole. Structure 2024; 32:148-156.e5. [PMID: 38141613 PMCID: PMC10872542 DOI: 10.1016/j.str.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
The calcium-selective TRPV5 channel activated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in calcium homeostasis. Recently, cryoelectron microscopy (cryo-EM) provided molecular details of TRPV5 modulation by exogenous and endogenous molecules. However, the details of TRPV5 inhibition by the antifungal agent econazole (ECN) remain elusive due to the low resolution of the currently available structure. In this study, we employ cryo-EM to comprehensively examine how the ECN inhibits TRPV5. By combining our structural findings with site-directed mutagenesis, calcium measurements, electrophysiology, and molecular dynamics simulations, we determined that residues F472 and L475 on the S4 helix, along with residue W495 on the S5 helix, collectively constitute the ECN-binding site. Additionally, the structure of TRPV5 in the presence of ECN and PI(4,5)P2, which does not show the bound activator, reveals a potential inhibition mechanism in which ECN competes with PI(4,5)P2, preventing the latter from binding, and ultimately pore closure.
Collapse
Affiliation(s)
- José J De Jesús-Pérez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Gabrielle
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Sumiyya Raheem
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Huang J, Chen J. Hydrophobic gating in bundle-crossing ion channels: a case study of TRPV4. Commun Biol 2023; 6:1094. [PMID: 37891195 PMCID: PMC10611814 DOI: 10.1038/s42003-023-05471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Transmembrane ion channels frequently regulate ion permeation by forming bundle crossing of the pore-lining helices when deactivated. The resulting physical constriction is believed to serve as the de facto gate that imposes the major free energy barrier to ion permeation. Intriguingly, many ion channels also contain highly hydrophobic inner pores enclosed by bundle crossing, which can undergo spontaneous dewetting and give rise to a "vapor barrier" to block ion flow even in the absence of physical constriction. Using atomistic simulations, we show that hydrophobic gating and bundle-crossing mechanisms co-exist and complement one and another in the human TRPV4 channel. In particular, a single hydrophilic mutation in the lower pore can increase pore hydration and reduce the ion permeation free energy barrier by about half without affecting the bundle crossing. We believe that hydrophobic gating may play a key role in other bundle-crossing ion channels with hydrophobic inner pores.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jianhan Chen
- Department of Chemistry University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
Nordquist EB, Jia Z, Chen J. Inner pore hydration free energy controls the activation of big potassium channels. Biophys J 2023; 122:1158-1167. [PMID: 36774534 PMCID: PMC10111268 DOI: 10.1016/j.bpj.2023.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Hydrophobic gating is an emerging mechanism in regulation of protein ion channels where the pore remains physically open but becomes dewetted to block ion permeation. Atomistic molecular dynamics simulations have played a crucial role in understanding hydrophobic gating by providing the molecular details to complement mutagenesis and structural studies. However, existing studies rely on direct simulations and do not quantitatively describe how the sequence and structural changes may control the delicate liquid-vapor equilibrium of confined water in the pore of the channel protein. To address this limitation, we explore two enhanced sampling methods, namely metadynamics and umbrella sampling, to derive free-energy profiles of pore hydration in both the closed and open states of big potassium (BK) channels, which are important in cardiovascular and neural systems. It was found that metadynamics required substantially longer sampling times and struggled to generate stably converged free-energy profiles due to the slow dynamics of cooperative pore water diffusion even in the barrierless limit. Using umbrella sampling, well-converged free-energy profiles can be readily generated for the wild-type BK channels as well as three mutants with pore-lining mutations experimentally known to dramatically perturb the channel gating voltage. The results show that the free energy of pore hydration faithfully reports the gating voltage of the channel, providing further support for hydrophobic gating in BK channels. Free-energy analysis of pore hydration should provide a powerful approach for quantitative studies of how protein sequence, structure, solution conditions, and/or drug binding may modulate hydrophobic gating in ion channels.
Collapse
Affiliation(s)
- Erik B Nordquist
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
5
|
Abstract
The flux of ions through a channel is most commonly regulated by changes that result in steric occlusion of its pore. However, ion permeation can also be prevented by formation of a desolvation barrier created by hydrophobic residues that line the pore. As a result of relatively minor structural changes, confined hydrophobic regions in channels may undergo transitions between wet and dry states to gate the pore closed without physical constriction of the permeation pathway. This concept is referred to as hydrophobic gating, and many examples of this process have been demonstrated. However, the term is also now being used in a much broader context that often deviates from its original meaning. In this Viewpoint, we explore the formal definition of a hydrophobic gate, discuss examples of this process compared with other gating mechanisms that simply exploit hydrophobic residues and/or lipids in steric closure of the pore, and describe the best practice for identification of a hydrophobic gate.
Collapse
Affiliation(s)
- David Seiferth
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Structural model for ligand binding and channel opening of an insect gustatory receptor. J Biol Chem 2022; 298:102573. [PMID: 36209821 PMCID: PMC9643425 DOI: 10.1016/j.jbc.2022.102573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Insect gustatory receptors play roles in sensing tastants, such as sugars and bitter substances. We previously demonstrated that the BmGr9 silkworm gustatory receptor is a d-fructose–gated ion channel receptor. However, the molecular mechanism of how d-fructose could initiate channel opening were unclear. Herein, we present a structural model for a channel pore and a d-fructose–binding site in BmGr9. Since the membrane topology and oligomeric state of BmGr9 appeared to be similar to those of an insect odorant receptor coreceptor, Orco, we constructed a structural model of BmGr9 based on the cryo-EM Orco structure. Our site-directed mutagenesis data suggested that the transmembrane region 7 forms channel pore and controls channel gating. This model also suggested that a pocket formed by transmembrane helices 2 to 4 and 6 binds d-fructose. Using mutagenesis experiments in combination with docking simulations, we were able to determine the potent binding mode of d-fructose. Finally, based on these data, we propose a conformational change that leads to channel opening upon d-fructose binding. Taken together, these findings detail the molecular mechanism by which an insect gustatory receptor can be activated by its ligand molecule.
Collapse
|
7
|
Nordquist EB, Schultz SA, Chen J. Using Metadynamics To Explore the Free Energy of Dewetting in Biologically Relevant Nanopores. J Phys Chem B 2022; 126:6428-6437. [PMID: 35998613 PMCID: PMC9932947 DOI: 10.1021/acs.jpcb.2c04157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Water confined within hydrophobic spaces can undergo cooperative dewetting transitions due to slight changes in water density and pressure that push water toward the vapor phase. Many transmembrane protein ion channels contain nanoscale hydrophobic pores that could undergo dewetting transitions, sometimes blocking the flow of ions without physical blockages. Standard molecular dynamics simulations have been extensively applied to study the behavior of water in nanoscale pores, but the large free energy barriers of dewetting often prevent direct sampling of both wet and dry states and quantitative studies of the hydration thermodynamics of biologically relevant pores. Here, we describe a metadynamics protocol that uses the number of waters within the pore as the collective variable to drive many reversible transitions between relevant hydration states and calculate well-converged free energy profiles of pore hydration. By creating model nanopore systems and changing their radius and morphology and including various cosolvents, we quantify how these pore properties and cosolvents affect the dewetting transition. The results reveal that the dewetting free energy of nanoscale pores is determined by two key thermodynamic parameters, namely, the effective surface tension coefficients of water-air and water-pore interfaces. Importantly, while the effect of salt can be fully captured in the water activity dependence, amphipathic cosolvents such as alcohols modify both dry and wet states of the pore and dramatically shift the wet-dry equilibrium. The metadynamics approach could be applied to studies of dewetting transitions within nanoscale pores of proteins and provide new insights into why different pore properties evolved in biological systems.
Collapse
Affiliation(s)
- Erik B. Nordquist
- Department of Chemistry, University of Massachusetts, Amherst Massachusetts, USA 01003
| | - Samantha A. Schultz
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA 01003
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst Massachusetts, USA 01003
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA 01003
| |
Collapse
|
8
|
Liu S, Guo P, Wang K, Zhang S, Li Y, Shen J, Mei L, Ye Y, Zhang Q, Yang H. General Pharmacological Activation Mechanism of K + Channels Bypassing Channel Gates. J Med Chem 2022; 65:10285-10299. [PMID: 35878013 DOI: 10.1021/acs.jmedchem.1c02115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Under the known pharmacological activation mechanisms, activators allosterically or directly open potassium channel gates. However, herein, molecular dynamics simulations on TREK-1, a member of the channel class gated at the filter, suggested that negatively charged activators act with a gate-independent mechanism where compounds increase currents by promoting ions passing through the central cavity. Then, based on studies of KCNQ2, we uncovered that this noncanonical activation mechanism is shared by the other channel class gated at the helix-bundle crossing. Rational drug design found a novel KCNQ2 agonist, CLE030, which stably binds to the central cavity. Functional analysis, molecular dynamics simulations, and calculations of the potential of mean force revealed that the carbonyl oxygen of CLE030 influences permeant ions in the central cavity to contribute to its activation effects. Together, this study discovered a ligand-to-ion activation mechanism for channels that bypasses their gates and thus is conserved across subfamilies with different gates.
Collapse
Affiliation(s)
- Shijie Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kun Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shaoying Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ya Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Yangliang Ye
- Suzhou AlphaMa Biotechnology Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Heneghan JF, Majmundar AJ, Rivera A, Wohlgemuth JG, Dlott JS, Snyder LM, Hildebrandt F, Alper SL. Activation of 2-oxoglutarate receptor 1 (OXGR1) by α-ketoglutarate (αKG) does not detectably stimulate Pendrin-mediated anion exchange in Xenopus oocytes. Physiol Rep 2022; 10:e15362. [PMID: 35851763 PMCID: PMC9294391 DOI: 10.14814/phy2.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023] Open
Abstract
SLC26A4/Pendrin is the major electroneutral Cl- /HCO3- exchanger of the apical membrane of the Type B intercalated cell (IC) of the connecting segment (CNT) and cortical collecting duct (CCD). Pendrin mediates both base secretion in response to systemic base load and Cl- reabsorption in response to systemic volume depletion, manifested as decreased nephron salt and water delivery to the distal nephron. Pendrin-mediated Cl- /HCO3- exchange in the apical membrane is upregulated through stimulation of the β-IC apical membrane G protein-coupled receptor, 2-oxoglutarate receptor 1 (OXGR1/GPR99), by its ligand α-ketoglutarate (αKG). αKG is both filtered by the glomerulus and lumenally secreted by proximal tubule apical membrane organic anion transporters (OATs). OXGR1-mediated regulation of Pendrin by αKG has been documented in transgenic mice and in isolated perfused CCD. However, aspects of the OXGR1 signaling pathway have remained little investigated since its original discovery in lymphocytes. Moreover, no ex vivo cellular system has been reported in which to study the OXGR1 signaling pathway of Type B-IC, a cell type refractory to survival in culture in its differentiated state. As Xenopus oocytes express robust heterologous Pendrin activity, we investigated OXGR1 regulation of Pendrin in oocytes. Despite functional expression of OXGR1 in oocytes, co-expression of Pendrin and OXGR1 failed to exhibit αKG-sensitive stimulation of Pendrin-mediated Cl- /anion exchange under a wide range of conditions. We conclude that Xenopus oocytes lack one or more essential molecular components or physical conditions required for OXGR1 to regulate Pendrin activity.
Collapse
Affiliation(s)
- John F. Heneghan
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Amar J. Majmundar
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Alicia Rivera
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | | | - Friedhelm Hildebrandt
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Seth L. Alper
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
10
|
Cabezas-Bratesco D, Mcgee FA, Colenso CK, Zavala K, Granata D, Carnevale V, Opazo JC, Brauchi SE. Sequence and structural conservation reveal fingerprint residues in TRP channels. eLife 2022; 11:73645. [PMID: 35686986 PMCID: PMC9242649 DOI: 10.7554/elife.73645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential (TRP) proteins are a large family of cation-selective channels, surpassed in variety only by voltage-gated potassium channels. Detailed molecular mechanisms governing how membrane voltage, ligand binding, or temperature can induce conformational changes promoting the open state in TRP channels are still a matter of debate. Aiming to unveil distinctive structural features common to the transmembrane domains within the TRP family, we performed phylogenetic reconstruction, sequence statistics, and structural analysis over a large set of TRP channel genes. Here, we report an exceptionally conserved set of residues. This fingerprint is composed of twelve residues localized at equivalent three-dimensional positions in TRP channels from the different subtypes. Moreover, these amino acids are arranged in three groups, connected by a set of aromatics located at the core of the transmembrane structure. We hypothesize that differences in the connectivity between these different groups of residues harbor the apparent differences in coupling strategies used by TRP subgroups.
Collapse
Affiliation(s)
| | - Francisco A Mcgee
- Department of Biology, Temple University, Philadelphia, United States
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniele Granata
- Department of Biology, Temple University, Philadelphia, United States
| | | | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | | |
Collapse
|
11
|
Cai R, Tang J, Chen XZ. Ion permeation controlled by hydrophobic residues and proton binding in the proton-activated chloride channel. iScience 2021; 24:103395. [PMID: 34825147 PMCID: PMC8605177 DOI: 10.1016/j.isci.2021.103395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/13/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023] Open
Abstract
Recently identified proton-activated chloride channel (PAC) contains two transmembrane helices (S1–S2) and is involved in lysosome function, hypoxia adaption, stroke, and carcinogenesis. Although a PAC structure was recently resolved, its gating and activation mechanisms remained largely unknown. By the two-electrode voltage clamp electrophysiology in Xenopus oocytes, we found that the hydrophobicity of site 304 at fenestrations, but not that of neighbor sites, is important for maintaining PAC at a closed state at pH 7.5. When activated at acidic pH, PAC activity significantly increased with the hydrophilicity of site 307 within S2, but not with that of neighbor sites, suggesting that 307 acts as an activation gate. We identified six conserved protonatable residues critical for proton-induced activation, consistent with structural studies. Our study depicted a scheme in which proton binding induces conformational changes from the W304-controlled closed state at fenestrations to an activated state controlled by activation gate I307 in helix S2. The hydrophobicity of site 304 is critical for maintaining PAC at a closed state The function of activated PAC is modulated by the hydrophilicity of site 307 Six protonatable amino acids are involved in proton-induced PAC activation H+ binding seem to change PAC from W304-controlled closed to I307-gated open state
Collapse
Affiliation(s)
- Ruiqi Cai
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430086, China
- Corresponding author
| | - Xing-Zhen Chen
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Corresponding author
| |
Collapse
|
12
|
Auto-inhibitory intramolecular S5/S6 interaction in the TRPV6 channel regulates breast cancer cell migration and invasion. Commun Biol 2021; 4:990. [PMID: 34413465 PMCID: PMC8376870 DOI: 10.1038/s42003-021-02521-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
TRPV6, a Ca-selective channel, is abundantly expressed in the placenta, intestine, kidney and bone marrow. TRPV6 is vital to Ca homeostasis and its defective expression or function is linked to transient neonatal hyperparathyroidism, Lowe syndrome/Dent disease, renal stone, osteoporosis and cancers. The fact that the molecular mechanism underlying the function and regulation of TRPV6 is still not well understood hampers, in particular, the understanding of how TRPV6 contributes to breast cancer development. By electrophysiology and Ca imaging in Xenopus oocytes and cancer cells, molecular biology and numerical simulation, here we reveal an intramolecular S5/S6 helix interaction in TRPV6 that is functionally autoinhibitory and is mediated by the R532:D620 bonding. Predicted pathogenic mutation R532Q within S5 disrupts the S5/S6 interaction leading to gain-of-function of the channel, which promotes breast cancer cell progression through strengthening of the TRPV6/PI3K interaction, activation of a PI3K/Akt/GSK-3β cascade, and up-regulation of epithelial-mesenchymal transition and anti-apoptosis.
Collapse
|
13
|
Yamini G, Kanchi S, Kalu N, Momben Abolfath S, Leppla SH, Ayappa KG, Maiti PK, Nestorovich EM. Hydrophobic Gating and 1/ f Noise of the Anthrax Toxin Channel. J Phys Chem B 2021; 125:5466-5478. [PMID: 34015215 DOI: 10.1021/acs.jpcb.0c10490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
"Pink" or 1/f noise is a natural phenomenon omnipresent in physics, economics, astrophysics, biology, and even music and languages. In electrophysiology, the stochastic activity of a number of biological ion channels and artificial nanopores could be characterized by current noise with a 1/f power spectral density. In the anthrax toxin channel (PA63), it appears as fast voltage-independent current interruptions between conducting and nonconducting states. This behavior hampers potential development of PA63 as an ion-channel biosensor. On the bright side, the PA63 flickering represents a mesmerizing phenomenon to investigate. Notably, similar 1/f fluctuations are observed in the channel-forming components of clostridial binary C2 and iota toxins, which share functional and structural similarities with the anthrax toxin channel. Similar to PA63, they are evolved to translocate the enzymatic components of the toxins into the cytosol. Here, using high-resolution single-channel lipid bilayer experiments and all-atom molecular dynamic simulations, we suggest that the 1/f noise in PA63 occurs as a result of "hydrophobic gating" at the ϕ-clamp region, the phenomenon earlier observed in several water-filled channels "fastened" inside by the hydrophobic belts. The ϕ-clamp is a narrow "hydrophobic ring" in the PA63 lumen formed by seven or eight phenylalanine residues at position 427, conserved in the C2 and iota toxin channels, which catalyzes protein translocation. Notably, the 1/f noise remains undetected in the F427A PA63 mutant. This finding can elucidate the functional purpose of 1/f noise and its possible role in the transport of the enzymatic components of binary toxins.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Subbarao Kanchi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India.,Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| |
Collapse
|
14
|
Yazdani M, Jia Z, Chen J. Hydrophobic dewetting in gating and regulation of transmembrane protein ion channels. J Chem Phys 2021; 153:110901. [PMID: 32962356 DOI: 10.1063/5.0017537] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water is at the heart of almost all biological phenomena, without which no life that we know of would have been possible. It is a misleadingly complex liquid that exists in near coexistence with the vapor phase under ambient conditions. Confinement within a hydrophobic cavity can tip this balance enough to drive a cooperative dewetting transition. For a nanometer-scale pore, the dewetting transition leads to a stable dry state that is physically open but impermeable to ions. This phenomenon is often referred to as hydrophobic gating. Numerous transmembrane protein ion channels have now been observed to utilize hydrophobic gating in their activation and regulation. Here, we review recent theoretical, simulation, and experimental studies that together have started to establish the principles of hydrophobic gating and discuss how channels of various sizes, topologies, and biological functions can utilize these principles to control the thermodynamic properties of water within their interior pores for gating and regulation. Exciting opportunities remain in multiple areas, particularly on direct experimental detection of hydrophobic dewetting in biological channels and on understanding how the cell may control the hydrophobic gating in regulation of ion channels.
Collapse
Affiliation(s)
- Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
15
|
Huang Y, Li S, Jia Z, Zhao W, Zhou C, Zhang R, Ali DW, Michalak M, Chen XZ, Tang J. Transient Receptor Potential Melastatin 8 (TRPM8) Channel Regulates Proliferation and Migration of Breast Cancer Cells by Activating the AMPK-ULK1 Pathway to Enhance Basal Autophagy. Front Oncol 2020; 10:573127. [PMID: 33344232 PMCID: PMC7746826 DOI: 10.3389/fonc.2020.573127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The calcium-permeable cation channel TRPM8 (transient receptor potential melastatin 8) is a member of the TRP superfamily of cation channels that is upregulated in various types of cancer with high levels of autophagy, including prostate, pancreatic, breast, lung, and colon cancers. Autophagy is closely regulated by AMP-activated protein kinase (AMPK) and plays an important role in tumor growth by generating nutrients through degradation of intracellular structures. Additionally, AMPK activity is regulated by intracellular Ca2+ concentration. Considering that TRPM8 is a non-selective Ca2+-permeable cation channel and plays a key role in calcium homoeostasis, we hypothesized that TRPM8 may control AMPK activity thus modulating cellular autophagy to regulate the proliferation and migration of breast cancer cells. In this study, overexpression of TRPM8 enhanced the level of basal autophagy, whereas TRPM8 knockdown reduced the level of basal autophagy in several types of mammalian cancer cells. Moreover, the activity of the TRPM8 channel modulated the level of basal autophagy. The mechanism of regulation of autophagy by TRPM8 involves autophagy-associated signaling pathways for activation of AMPK and ULK1 and phagophore formation. Impaired AMPK abolished TRPM8-dependent regulation of autophagy. TRPM8 interacts with AMPK in a protein complex, and cytoplasmic C-terminus of TRPM8 mediates the TRPM8–AMPK interaction. Finally, basal autophagy mediates the regulatory effects of TRPM8 on the proliferation and migration of breast cancer cells. Thus, this study identifies TRPM8 as a novel regulator of basal autophagy in cancer cells acting by interacting with AMPK, which in turn activates AMPK to activate ULK1 in a coordinated cascade of TRPM8-mediated breast cancer progression.
Collapse
Affiliation(s)
- Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shi Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhenhua Jia
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Weiwei Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
16
|
Huang Y, Li S, Jia Z, Li S, He W, Zhou C, Zhang R, Xu R, Sun B, Ali DW, Michalak M, Chen XZ, Tang J. TRIM4 interacts with TRPM8 and regulates its channel function through K423-mediated ubiquitination. J Cell Physiol 2020; 236:2934-2949. [PMID: 33037615 DOI: 10.1002/jcp.30065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Transient receptor potential melastatin member 8 (TRPM8), a Ca2+ -permeable nonselective cation channel activated by cold and cooling agents, mediates allodynia. Dysfunction or abnormal expression of TRPM8 has been found in several human cancers. The role of ubiquitination in the regulation of TRPM8 function remains poorly understood. Here, we identified the ubiquitin (Ub)-ligase E3, tripartite motif-containing 4 (TRIM4), as a novel interaction partner of TRPM8 and confirmed that the TRIM4-TRPM8 interaction was mediated through the SPRY domain of TRIM4. Patch-clamp assays showed that TRIM4 negatively regulates TRPM8-mediated currents in HEK293 cells. Moreover, TRIM4 reduced the expression of TRPM8 on the cell surface by promoting the K63-linked ubiquitination of TRPM8. Further analyses revealed that the TRPM8 N-terminal lysine residue at 423 was the major ubiquitination site that mediates its functional regulation by TRIM4. A Ub-activating enzyme E1, Ub-like modifier-activating enzyme 1 (UBA1), was also found to interact with TRPM8, thereby regulating its channel function and ubiquitination. In addition, knockdown of UBA1 impaired the regulation of TRPM8 ubiquitination and function by TRIM4. Thus, this study demonstrates that TRIM4 downregulates TRPM8 via K423-mediated TRPM8 ubiquitination and requires UBA1 to regulate TRPM8.
Collapse
Affiliation(s)
- Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shunyao Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhenhua Jia
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shi Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Wenzao He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Rui Xu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Bo Sun
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry of Alberta, Edmonton, Alberta, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
17
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
18
|
Klesse G, Tucker SJ, Sansom MSP. Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT 3 Receptor Channel. ACS NANO 2020; 14:10480-10491. [PMID: 32673478 PMCID: PMC7450702 DOI: 10.1021/acsnano.0c04387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/16/2020] [Indexed: 05/14/2023]
Abstract
In this study we examined the influence of a transmembrane voltage on the hydrophobic gating of nanopores using molecular dynamics simulations. We observed electric field induced wetting of a hydrophobic gate in a biologically inspired model nanopore based on the 5-HT3 receptor in its closed state, with a field of at least ∼100 mV nm-1 (corresponding to a supra-physiological potential difference of ∼0.85 V across the membrane) required to hydrate the pore. We also found an unequal distribution of charged residues can generate an electric field intrinsic to the nanopore which, depending on its orientation, can alter the effect of the external field, thus making the wetting response asymmetric. This wetting response could be described by a simple model based on water surface tension, the volumetric energy contribution of the electric field, and the influence of charged amino acids lining the pore. Finally, the electric field response was used to determine time constants characterizing the phase transitions of water confined within the nanopore, revealing liquid-vapor oscillations on a time scale of ∼5 ns. This time scale was largely independent of the water model employed and was similar for different sized pores representative of the open and closed states of the pore. Furthermore, our finding that the threshold voltage required for hydrating a hydrophobic gate depends on the orientation of the electric field provides an attractive perspective for the design of rectifying artificial nanopores.
Collapse
Affiliation(s)
- Gianni Klesse
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
| | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
- OXION
Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
19
|
Jara-Oseguera A, Huffer KE, Swartz KJ. The ion selectivity filter is not an activation gate in TRPV1-3 channels. eLife 2019; 8:51212. [PMID: 31724952 PMCID: PMC6887487 DOI: 10.7554/elife.51212] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Activation of TRPV1 channels in sensory neurons results in opening of a cation permeation pathway that triggers the sensation of pain. Opening of TRPV1 has been proposed to involve two gates that appear to prevent ion permeation in the absence of activators: the ion selectivity filter on the external side of the pore and the S6 helices that line the cytosolic half of the pore. Here we measured the access of thiol-reactive ions across the selectivity filters in rodent TRPV1-3 channels. Although our results are consistent with structural evidence that the selectivity filters in these channels are dynamic, they demonstrate that cations can permeate the ion selectivity filters even when channels are closed. Our results suggest that the selectivity filters in TRPV1-3 channels do not function as activation gates but might contribute to coupling structural rearrangements in the external pore to those in the cytosolic S6 gate.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Katherine E Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
20
|
A heuristic derived from analysis of the ion channel structural proteome permits the rapid identification of hydrophobic gates. Proc Natl Acad Sci U S A 2019; 116:13989-13995. [PMID: 31235590 PMCID: PMC6628796 DOI: 10.1073/pnas.1902702116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ion channels are nanoscale protein pores in cell membranes. An exponentially increasing number of structures for channels means that computational methods for predicting their functional state are needed. Hydrophobic gates in ion channels result in local dewetting of pores, which functionally closes them to water and ion permeation. We use simulations of water behavior within nearly 200 different ion channel structures to explore how the radius and hydrophobicity of pores determine their hydration vs. dewetting behavior. Machine learning-assisted analysis of these simulations allowed us to propose a simple model for this relationship and present an easy method for rapidly predicting the functional state of new channel structures as they emerge. Ion channel proteins control ionic flux across biological membranes through conformational changes in their transmembrane pores. An exponentially increasing number of channel structures captured in different conformational states are now being determined; however, these newly resolved structures are commonly classified as either open or closed based solely on the physical dimensions of their pore, and it is now known that more accurate annotation of their conductive state requires additional assessment of the effect of pore hydrophobicity. A narrow hydrophobic gate region may disfavor liquid-phase water, leading to local dewetting, which will form an energetic barrier to water and ion permeation without steric occlusion of the pore. Here we quantify the combined influence of radius and hydrophobicity on pore dewetting by applying molecular dynamics simulations and machine learning to nearly 200 ion channel structures. This allows us to propose a simple simulation-free heuristic model that rapidly and accurately predicts the presence of hydrophobic gates. This not only enables the functional annotation of new channel structures as soon as they are determined, but also may facilitate the design of novel nanopores controlled by hydrophobic gates.
Collapse
|
21
|
Klesse G, Rao S, Sansom MSP, Tucker SJ. CHAP: A Versatile Tool for the Structural and Functional Annotation of Ion Channel Pores. J Mol Biol 2019; 431:3353-3365. [PMID: 31220459 PMCID: PMC6699600 DOI: 10.1016/j.jmb.2019.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/27/2022]
Abstract
The control of ion channel permeation requires the modulation of energetic barriers or “gates” within their pores. However, such barriers are often simply identified from the physical dimensions of the pore. Such approaches have worked well in the past, but there is now evidence that the unusual behavior of water within narrow hydrophobic pores can produce an energetic barrier to permeation without requiring steric occlusion of the pathway. Many different ion channels have now been shown to exploit “hydrophobic gating” to regulate ion flow, and it is clear that new tools are required for more accurate functional annotation of the increasing number of ion channel structures becoming available. We have previously shown how molecular dynamics simulations of water can be used as a proxy to predict hydrophobic gates, and we now present a new and highly versatile computational tool, the Channel Annotation Package (CHAP) that implements this methodology. Some ion channels exhibit hydrophobic gating via dewetting of the central pore. This cannot be predicted from their pore radius alone. The hydrophobicity of a pore contributes to this dewetting effect. We have developed a new tool (CHAP) that combines these measurements. CHAP now enables the rapid functional annotation of ion channel structures.
Collapse
Affiliation(s)
- Gianni Klesse
- Clarendon Laboratory, Department of Physics, University of Oxford, UK; Department of Biochemistry, University of Oxford, UK
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, UK
| | | | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, UK.
| |
Collapse
|
22
|
Zheng W, Cai R, Hofmann L, Nesin V, Hu Q, Long W, Fatehi M, Liu X, Hussein S, Kong T, Li J, Light PE, Tang J, Flockerzi V, Tsiokas L, Chen XZ. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2. Cell Rep 2019; 22:1560-1573. [PMID: 29425510 PMCID: PMC6483072 DOI: 10.1016/j.celrep.2018.01.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022] Open
Abstract
Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels. Zheng et al. show that an aromatic Trp residue in pre-S1 and a cationic Lys residue in the TRP-like domain of TRP polycystin channels mediate N-C binding, which underlies TRPPs gating and PIP2 regulation. The conservation of these residues suggests that this may be a shared mechanism of TRP channel gating.
Collapse
Affiliation(s)
- Wang Zheng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China; Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ruiqi Cai
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg 66421, Germany
| | - Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qiaolin Hu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wentong Long
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mohammad Fatehi
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shaimaa Hussein
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tim Kong
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingru Li
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Peter E Light
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg 66421, Germany
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xing-Zhen Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China; Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
23
|
Zhang F, Swartz KJ, Jara-Oseguera A. Conserved allosteric pathways for activation of TRPV3 revealed through engineering vanilloid-sensitivity. eLife 2019; 8:42756. [PMID: 30644819 PMCID: PMC6333442 DOI: 10.7554/elife.42756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV) channel is activated by an array of stimuli, including heat and vanilloid compounds. The TRPV1 homologues TRPV2 and TRPV3 are also activated by heat, but sensitivity to vanilloids and many other agonists is not conserved among TRPV subfamily members. It was recently discovered that four mutations in TRPV2 are sufficient to render the channel sensitive to the TRPV1-specific vanilloid agonist resiniferatoxin (RTx). Here, we show that mutation of six residues in TRPV3 corresponding to the vanilloid site in TRPV1 is sufficient to engineer RTx binding. However, robust activation of TRPV3 by RTx requires facilitation of channel opening by introducing mutations in the pore, temperatures > 30°C, or sensitization with another agonist. Our results demonstrate that the energetics of channel activation can determine the apparent sensitivity to a stimulus and suggest that allosteric pathways for activation are conserved in the TRPV family.
Collapse
Affiliation(s)
- Feng Zhang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Andres Jara-Oseguera
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
24
|
Zheng W, Gracheva EO, Bagriantsev SN. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. eLife 2019; 8:44003. [PMID: 30628892 PMCID: PMC6349400 DOI: 10.7554/elife.44003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022] Open
Abstract
Piezo1 and Piezo2 belong to a family of mechanically-activated ion channels implicated in a wide range of physiological processes. Mechanical stimulation triggers Piezo channels to open, but their characteristic fast inactivation process results in rapid closure. Several disease-causing mutations in Piezo1 alter the rate of inactivation, highlighting the importance of inactivation to the normal function of this channel. However, despite the structural identification of two physical constrictions within the closed pore, the mechanism of inactivation remains unknown. Here we identify a functionally conserved inactivation gate in the pore-lining inner helix of mouse Piezo1 and Piezo2 that is distinct from the two constrictions. We show that this gate controls the majority of Piezo1 inactivation via a hydrophobic mechanism and that one of the physical constrictions acts as a secondary gate. Our results suggest that, unlike other rapidly inactivating ion channels, a hydrophobic barrier gives rise to fast inactivation in Piezo channels.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
25
|
Abstract
The gating mechanism of transmembrane ion channels is crucial for understanding how these proteins control ion flow across membranes in various physiological processes. Big potassium (BK) channels are particularly interesting with large single-channel conductance and dual regulation by membrane voltage and intracellular Ca2+. Recent atomistic structures of BK channels failed to identify structural features that could physically block the ion flow in the closed state. Here, we show that gating of BK channels does not seem to require a physical gate. Instead, changes in the pore shape and surface hydrophobicity in the Ca2+-free state allow the channel to readily undergo hydrophobic dewetting transitions, giving rise to a large free energy barrier for K+ permeation. Importantly, the dry pore remains physically open and is readily accessible to quaternary ammonium channel blockers. The hydrophobic gating mechanism is also consistent with scanning mutagenesis studies showing that modulation of pore hydrophobicity is correlated with activation properties. BK channels are regulated by membrane voltage and intracellular Ca2+ but the structural features that block the ion flow in the closed state remain unknown. Here authors use molecular dynamics simulation and show that a physical gate is not required; instead ion flow is regulated by hydrophobic dewetting due to changes in pore shape and surface hydrophobicity.
Collapse
|
26
|
Zheng W, Yang X, Hu R, Cai R, Hofmann L, Wang Z, Hu Q, Liu X, Bulkley D, Yu Y, Tang J, Flockerzi V, Cao Y, Cao E, Chen XZ. Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels. Nat Commun 2018; 9:2302. [PMID: 29899465 PMCID: PMC5998024 DOI: 10.1038/s41467-018-04586-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/01/2018] [Indexed: 01/20/2023] Open
Abstract
PKD2 and PKD1 genes are mutated in human autosomal dominant polycystic kidney disease. PKD2 can form either a homomeric cation channel or a heteromeric complex with the PKD1 receptor, presumed to respond to ligand(s) and/or mechanical stimuli. Here, we identify a two-residue hydrophobic gate in PKD2L1, and a single-residue hydrophobic gate in PKD2. We find that a PKD2 gain-of-function gate mutant effectively rescues PKD2 knockdown-induced phenotypes in embryonic zebrafish. The structure of a PKD2 activating mutant F604P by cryo-electron microscopy reveals a π- to α-helix transition within the pore-lining helix S6 that leads to repositioning of the gate residue and channel activation. Overall the results identify hydrophobic gates and a gating mechanism of PKD2 and PKD2L1. Mutations in the cation channel PKD2 cause human autosomal dominant polycystic kidney disease but its channel function and gating mechanism are poorly understood. Here authors study PKD2 using electrophysiology and cryo-EM, which identifies hydrophobic gates and proposes a gating mechanism for PKD2.
Collapse
Affiliation(s)
- Wang Zheng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.,Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Xiaoyong Yang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Ruikun Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ruiqi Cai
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiaolin Hu
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Xiong Liu
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - David Bulkley
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Xing-Zhen Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China. .,Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|