1
|
Yamada M, Sasaki B, Yamada N, Hayashi C, Tsumoto K, de Vega S, Suzuki N. The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination. Biochem Biophys Res Commun 2025; 748:151271. [PMID: 39809135 DOI: 10.1016/j.bbrc.2024.151271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation. In the expression analysis of Fbln7 in the CNS, we found that it was expressed at early postnatal stage and localized in the processes of OL precursor cells (OPCs), in the inner region of myelin, and in axons. The functional analysis using recombinant Fbln7 protein (rFbln7) revealed that rFbln7 promoted OPC attachment activity via β1 integrin and heparan sulfate receptors. Further, rFbln7 induced the adhesion to neurites and the differentiation of OLs. Altogether, our results show that Fbln7 promotes the adhesion between OLs and axons and OL differentiation.
Collapse
Affiliation(s)
- Momona Yamada
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Binri Sasaki
- Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan
| | - Nanako Yamada
- Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan
| | - Chikako Hayashi
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Susana de Vega
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Nobuharu Suzuki
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan.
| |
Collapse
|
2
|
Mu H, Yang B, Wang Y, Wang S, Yu W, Jia M, Dong W, Wang X, Xu X, Dong Z, Yang B, Li X, Wang J. Inhibition of fibulin-3 ameliorates periodontal inflammation through reducing M1 macrophage polarization via EGFR/PI3K/AKT pathway. J Periodontol 2024. [PMID: 39692480 DOI: 10.1002/jper.24-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND This study aimed to evaluate the role of fibulin-3 (FBLN3) in macrophage polarization, its mechanism, and its effect on periodontitis. METHODS We conducted studies on periodontitis using both clinical samples and ligature-induced mouse periodontitis model. The inflammatory state was assessed using microcomputed tomography, hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining. In vitro, bone marrow-derived macrophages, and RAW 264.7 macrophages were treated with lipopolysaccharide (LPS) and interleukin (IL)-4 to induce polarization. The role of FBLN3 in macrophage polarization was investigated using overexpression plasmids or siRNAs. Furthermore, local injection of adeno-associated virus was employed to suppress FBLN3 expression in periodontal tissues. RESULTS FBLN3 levels were greater in periodontitis tissues. FBLN3 promoted M1 polarization and suppressed M2 polarization in macrophages. The overexpression of FBLN3 promoted M1 polarization via the EGFR/PI3K/AKT signaling pathway, an effect that the epidermal growth factor receptor (EGFR) inhibitor PD153035 reversed. Suppressing FBLN3 expression improved periodontal inflammation and reduced alveolar bone loss in periodontitis. CONCLUSIONS FBLN3 suppression can mitigate periodontitis by decreasing the M1 macrophage ratio. FBLN3 regulates M1 macrophage polarization through the EGFR/PI3K/AKT signaling pathway. PLAIN LANGUAGE SUMMARY Disruption in the collaboration between extracellular matrix (ECM) and immune system is a significant pathology in periodontitis. Macrophages are a crucial part of the immune system and have unique functions, such as polarization. Fibulin-3, an ECM protein, may play a vital role in this dynamic interplay. Fibulin-3 expression is elevated in periodontitis and is closely related to immune cell function. Inhibiting fibulin-3 can alleviate periodontitis by reducing infiltration of immune cells and M1 macrophage ratio. Furthermore, fibulin-3 promoted macrophage M1 polarization by activating the PI3K/AKT signaling pathway through EGFR binding. Our findings offer a clinically relevant rationale for immune response modulation through fibulin-3.
Collapse
Affiliation(s)
- Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Beining Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xiaoxiao Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xuemei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Kumar P, Sharma P, Singh D, Mishra N, Sarangi PP. Unraveling the molecular basis for effective regulation of integrin α5β1 for enhanced therapeutic interventions. Biochem Biophys Res Commun 2024; 734:150627. [PMID: 39236588 DOI: 10.1016/j.bbrc.2024.150627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Cell attachment to the extracellular matrix significantly impacts the integrity of tissues and human health. The integrin α5β1 is a heterodimer of α5 and β1 subunits and has been identified as a crucial modulator in several human carcinomas. Integrin α5β1 significantly regulates cell proliferation, angiogenesis, inflammation, tumor metastasis, and invasion. This regulatory role of integrin α5β1 in tumor metastasis makes it an appealing target for cancer therapy. The majority of the drugs targeting integrin α5β1 are limited only to clinical trials. In our study, we have performed 94287 compounds screening to determine potential drugs against α5β1 integrin. We have used ATN-161 as a reference and employed combined bioinformatic methodologies, including molecular modelling, virtual screening, MM-GBSA, cell-line cytotoxicity prediction, ADMET, Density Functional Theory (DFT), Non-covalent Interactions (NCI) and molecular simulation, to identify putative integrin α5β1 inhibitors. We found Taxifolin, PD133053, and Acebutolol that possess inhibitory activity against α5β1 integrin and could act as effective drug for the cancer treatment. Taxifolin, PD133053, and Acebutolol exhibited excellent binding to the druggable pocket of integrin α5β1, and also maintained a unique binding mechanism with extra hydrophobic contacts at molecular level. Overall, our study gives new pharmacological candidates that may act as a potential drug against integrin α5β1.
Collapse
Affiliation(s)
- Puneet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Prerna Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Yao G, Zheng X, Hu Y, Zhao Y, Kong B, Ti Y, Bu PL. FBLN7 mediates vascular smooth muscle cell phenotype switching and vascular remodeling in hypertension. Theranostics 2024; 14:7569-7588. [PMID: 39659565 PMCID: PMC11626941 DOI: 10.7150/thno.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Arterial remodeling serves as a pivotal mechanism underlying the development of diseases such as hypertension. Fibulin-7 (FBLN7), an adhesion protein, remains enigmatic regarding its role in these pathological processes. This study aims to explore whether FBLN7 influences vascular remodeling and its underlying mechanisms. Methods: We generated FBLN7 knockout mice and smooth muscle-specific FBLN7 overexpression mice. Vascular remodeling models were established by administering angiotensin II (Ang II) for 28 days. RNA sequencing, western blot, and immunofluorescence assays were employed to investigate the biological function of FBLN7 in vascular smooth muscle cells (VSMCs). The interaction mechanism between FBLN7 and cell membrane receptors was explored through mass spectrometry analysis, co-immunoprecipitation techniques and molecular dynamics simulations. Results: Bioinformatics analysis revealed an upregulation of FBLN7 expression in the vascular remodeling model, with FBLN7 predominantly localized in VSMCs. Subsequent in vivo validation demonstrated that FBLN7 knockout attenuated Ang II-induced vascular remodeling, reducing aortic wall thickness and collagen formation. Conversely, VSMC-specific overexpression of FBLN7 via AAV vectors exacerbating the remodeling phenotype. Functionally speaking, FBLN7 potentiates Ang II-mediated phenotypic transformation. Mechanistically, FBLN7 interacts with the extracellular and transmembrane domains of syndecan-4 (SDC4) via its C-terminal region, affecting SDC4 signaling and dimer formation. This interaction inhibits SDC4-mediated activation of the Rho-associated protein kinase pathway, subsequently reducing nuclear translocation of myocardin-related transcription factor A, leading to decreased transcription of genes associated with the contractile VSMCs phenotype. Conclusions: These findings reveal FBLN7 promotes the transition of VSMCs from a contractile to a synthetic phenotype, thereby aggravating vascular remodeling. This provides further insights into the pathogenesis of vascular remodeling and potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun Ti
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Pei li Bu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| |
Collapse
|
5
|
Zhou S, Hu J, Du S, Wang F, Fang Y, Zhang R, Wang Y, Zheng L, Gao M, Tang H. RNA-binding proteins potentially regulate alternative splicing of immune/inflammatory-associated genes during the progression of generalized pustular psoriasis. Arch Dermatol Res 2024; 316:538. [PMID: 39158708 DOI: 10.1007/s00403-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Generalized pustular psoriasis (GPP) is a rare but severe form of psoriasis. However, the pathogenesis of GPP has not been fully elucidated. Although RNA-binding proteins (RBPs) and the alternative splicing (AS) process are essential for regulating post-transcriptional gene expression, their roles in GPP are still unclear. We aimed to elucidate the regulatory mechanisms to identify potential new therapeutic targets. Here, We analyzed an RNA sequencing (RNA-seq) dataset (GSE200977) of peripheral blood mononuclear cells (PBMCs) of 24 patients with GPP, psoriasis vulgaris (PV), and healthy controls (HCs) from the Gene Expression Omnibus (GEO) database. We found that the abnormal alternative splicing (AS) events associated with GPP were mainly "alt3p/alt5p", and 15 AS genes were differentially expressed. Notably, the proportions of different immune cell types were correlated with the expression levels of regulatory alternatively spliced genes (RASGs): significant differences were observed in expression levels of DTD2, NDUFAF3, NBPF15, and FBLN7 in B cells and ARFIP1, IPO11, and RP11-326L24.9 in neutrophils in the GPP samples. Furthermore, We identified 32 differentially expressed RNA-binding proteins (RBPs) (18 up-regulated and 14 down-regulated). Co-expression networks between 14 pairs of differentially expressed RBPs and RASGs were subsequently constructed, demonstrating that these differentially expressed RBPs may affect the progression of GPP by regulating the AS of downstream immune/inflammatory-related genes such as LINC00989, ENC1 and MMP25-AS1. Our results were innovative in revealing the involvement of inflammation-related RBPs and RASGs in the development of GPP from the perspective of RBP-regulated AS.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junjie Hu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shuli Du
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ying Fang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ranran Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yixiao Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liyun Zheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Min Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China.
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Huayang Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China.
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Gupta S, Dalpati N, Rai SK, Sehrawat A, Pai V, Sarangi PP. A synthetic bioactive peptide of the C-terminal fragment of adhesion protein Fibulin7 attenuates the inflammatory functions of innate immune cells in LPS-induced systemic inflammation. Inflamm Res 2024; 73:1333-1348. [PMID: 38836870 DOI: 10.1007/s00011-024-01903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVE Systemic inflammation is associated with improper localization of hyperactive neutrophils and monocytes in visceral organs. Previously, a C-terminal fragment of adhesion protein Fibulin7 (Fbln7-C) was shown to regulate innate immune functionality during inflammation. Recently, a shorter bioactive peptide of Fbln7-C, FC-10, via integrin binding was shown to reduce ocular angiogenesis. However, the role of FC-10 in regulating the neutrophils and monocyte functionality during systemic inflammatory conditions is unknown. The study sought to explore the role of FC-10 peptide on the functionality of innate immune cells during inflammation and endotoxemic mice. METHODS Neutrophils and monocytes were isolated from healthy donors and septic patient clinical samples and Cell adhesion assay was performed using a UV spectrophotometer. Gene expression studies were performed using qPCR. Protein level expression was measured using ELISA and flow cytometry. ROS assay, and activation markers analysis in vitro, and in vivo were done using flow cytometry. TREATMENT Cells were stimulated with LPS (100 ng/mL) and studied in the presence of peptides (10 μg, and 20 μg/mL) in vitro. In an in vivo study, mice were administered with LPS (36.8 mg/kg bw) and peptide (20 μg). RESULTS This study demonstrates that human neutrophils and monocytes adhere to FC-10 via integrin β1, inhibit spreading, ROS, surface activation markers (CD44, CD69), phosphorylated Src kinase, pro-inflammatory genes, and protein expression, compared to scrambled peptide in cells isolated from healthy donors and clinical sample. In line with the in vitro data, FC-10 (20 μg) administration significantly decreases innate cell infiltration at inflammatory sites, improves survival in endotoxemia animals & reduces the inflammatory properties of neutrophils and monocytes isolated from septic patients. CONCLUSION FC-10 peptide can regulate neutrophils and monocyte functions and has potential to be used as an immunomodulatory therapeutic in inflammatory diseases.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Amit Sehrawat
- All India Institute of Medical Sciences Rishikesh, Rishikesh, Uttarakhand, India
| | - Venkatesh Pai
- All India Institute of Medical Sciences Rishikesh, Rishikesh, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
7
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Zhang DD, He XY, Yang L, Wu BS, Fu Y, Liu WS, Guo Y, Fei CJ, Kang JJ, Feng JF, Cheng W, Tan L, Yu JT. Exome sequencing identifies novel genetic variants associated with varicose veins. PLoS Genet 2024; 20:e1011339. [PMID: 38980841 PMCID: PMC11233024 DOI: 10.1371/journal.pgen.1011339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Varicose veins (VV) are one of the common human diseases, but the role of genetics in its development is not fully understood. METHODS We conducted an exome-wide association study of VV using whole-exome sequencing data from the UK Biobank, and focused on common and rare variants using single-variant association analysis and gene-level collapsing analysis. FINDINGS A total of 13,823,269 autosomal genetic variants were obtained after quality control. We identified 36 VV-related independent common variants mapping to 34 genes by single-variant analysis and three rare variant genes (PIEZO1, ECE1, FBLN7) by collapsing analysis, and most associations between genes and VV were replicated in FinnGen. PIEZO1 was the closest gene associated with VV (P = 5.05 × 10-31), and it was found to reach exome-wide significance in both single-variant and collapsing analyses. Two novel rare variant genes (ECE1 and METTL21A) associated with VV were identified, of which METTL21A was associated only with females. The pleiotropic effects of VV-related genes suggested that body size, inflammation, and pulmonary function are strongly associated with the development of VV. CONCLUSIONS Our findings highlight the importance of causal genes for VV and provide new directions for treatment.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen-Jie Fei
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zheng X, Liu L, Liu J, Zhang C, Zhang J, Qi Y, Xie L, Zhang C, Yao G, Bu P. Fibulin7 Mediated Pathological Cardiac Remodeling through EGFR Binding and EGFR-Dependent FAK/AKT Signaling Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207631. [PMID: 37344348 PMCID: PMC10460860 DOI: 10.1002/advs.202207631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Adverse remodeling after myocardial infarction (MI) result in heart failure and sudden cardiac death. Fibulin7 (FBLN7) is an adhesion protein excreted into the extracellular matrix that functions in multiple biological processes. However, whether and how FBLN7 affects post-MI cardiac remodeling remains unclear. Here, the authors identify FBLN7 as a critical profibrotic regulator of adverse cardiac remodeling. They observe significantly upregulated serum FBLN7 levels in MI patients with left ventricular remodeling compared to those without MI. Microarray dataset analysis reveal FBLN7 is upregulated in human heart samples from patients with dilated and hypertrophic cardiomyopathy compared with non-failing hearts. The authors demonstrate that FBLN7 deletion attenuated post-MI cardiac remodeling, leading to better cardiac function and reduced myocardial fibrosis, whereas overexpression of FBLN7 results in the opposite effects. Mechanistically, FBLN7 binds to the epidermal growth factor receptor (EGFR) through its EGF-like domain, together with the EGF-like calcium-binding domain, and induces EGFR autophosphorylation at tyrosine (Y) 1068 and Y1173, which activates downstream focal adhesion kinase/AKT signaling, thereby leading to fibroblast-to-myofibroblast transdifferentiation. In addition, FBLN7-EGFR mediates this signal transduction, and the fibrotic response is effectively suppressed by the inhibition of EGFR activity. Taken together, FBLN7 plays an important role in cardiac remodeling and fibrosis after MI.
Collapse
Affiliation(s)
- Xuehui Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Lingxin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jing Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
- Department of CardiologyHeze Municipal HospitalHeze274000China
| | - Chen Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yan Qi
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Lin Xie
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Chunmei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Guoqing Yao
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012China
| |
Collapse
|
10
|
Raja E, Changarathil G, Oinam L, Tsunezumi J, Ngo YX, Ishii R, Sasaki T, Imanaka‐Yoshida K, Yanagisawa H, Sada A. The extracellular matrix fibulin 7 maintains epidermal stem cell heterogeneity during skin aging. EMBO Rep 2022; 23:e55478. [PMID: 36278510 PMCID: PMC9724670 DOI: 10.15252/embr.202255478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
Tissue stem cells (SCs) divide infrequently as a protective mechanism against internal and external stresses associated with aging. Here, we demonstrate that slow- and fast-cycling SCs in the mouse skin epidermis undergo distinct aging processes. Two years of lineage tracing reveals that Dlx1+ slow-cycling clones expand into the fast-cycling SC territory, while the number of Slc1a3+ fast-cycling clones gradually declines. Transcriptome analysis further indicate that the molecular properties of each SC population are altered with age. Mice lacking fibulin 7, an extracellular matrix (ECM) protein, show early impairments resembling epidermal SC aging, such as the loss of fast-cycling clones, delayed wound healing, and increased expression of inflammation- and differentiation-related genes. Fibulin 7 interacts with structural ECM and matricellular proteins, and the overexpression of fibulin 7 in primary keratinocytes results in slower proliferation and suppresses differentiation. These results suggest that fibulin 7 plays a crucial role in maintaining tissue resilience and epidermal SC heterogeneity during skin aging.
Collapse
Affiliation(s)
- Erna Raja
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
| | - Gopakumar Changarathil
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Lalhaba Oinam
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- School of Integrative and Global MajorsUniversity of TsukubaTsukubaJapan
| | - Jun Tsunezumi
- Department of Pharmaceutical SciencesKyushu University of Health and WelfareMiyazakiJapan
| | - Yen Xuan Ngo
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- School of Integrative and Global MajorsUniversity of TsukubaTsukubaJapan
| | - Ryutaro Ishii
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takako Sasaki
- Department of Biochemistry IIOita UniversityOitaJapan
| | - Kyoko Imanaka‐Yoshida
- Department of Pathology and Matrix BiologyMie University Graduate School of MedicineMieJapan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Aiko Sada
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
| |
Collapse
|
11
|
Dash SP, Chakraborty P, Sarangi PP. Inflammatory Monocytes and Subsets of Macrophages with Distinct Surface Phenotype Correlate with Specific Integrin Expression Profile during Murine Sepsis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2841-2855. [PMID: 34732468 DOI: 10.4049/jimmunol.2000821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/27/2021] [Indexed: 01/15/2023]
Abstract
Monocytes and macrophages participate in both pro- and anti-inflammatory responses during sepsis. Integrins are the cell adhesion receptors that mediate leukocyte migration and functions. To date, it is not known whether integrin profiles correlate with their trafficking, differentiation, and polarization during sepsis. In this study, using endotoxemia and cecal ligation and puncture model of murine sepsis, we have analyzed the role of surface integrins in tissue-specific infiltration, distribution of monocytes and macrophages, and their association with inflammation-induced phenotypic and functional alterations postinduction (p.i.) of sepsis. Our data show that Ly-6Chi inflammatory monocytes infiltrated into the peritoneum from blood and bone marrow within a few hours p.i. of sepsis, with differential distribution of small (Ly-6CloCD11bloF4/80lo) and large peritoneal macrophages (Ly-6CloCD11bhiF4/80hi) in both models. The results from flow cytometry studies demonstrated a higher expression of integrin α4β1 on the Ly-6Chi monocytes in different tissues, whereas macrophages in the peritoneum and lungs expressed higher levels of integrin α5β1 and αvβ3 in both models. Additionally, F4/80+ cells with CD206hiMHCIIlo phenotype increased in the lungs of both models by six hours p.i. and expressed higher levels of integrin αvβ3 in both lungs and peritoneum. The presence of such cells correlated with higher levels of IL-10 and lower levels of IL-6 and IL-1β transcripts within six hours p.i. in the lungs compared with the mesentery. Furthermore, bioinformatic analysis with its experimental validation revealed an association of integrin α4 and α5 with inflammatory (e.g., p-SRC) and integrin αv with regulatory molecules (e.g., TGFBR1) in macrophages during sepsis.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Papiya Chakraborty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
12
|
Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021; 11:biom11050685. [PMID: 34063320 PMCID: PMC8147605 DOI: 10.3390/biom11050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the evolution of early metazoans, as it provides structural and biochemical support to the surrounding cells through the cell–cell and cell–matrix interactions. In multi-cellular organisms, ECM plays a pivotal role in the differentiation of tissues and in the development of organs. Fibulins are ECM glycoproteins, found in a variety of tissues associated with basement membranes, elastic fibers, proteoglycan aggregates, and fibronectin microfibrils. The expression profile of fibulins reveals their role in various developmental processes such as elastogenesis, development of organs during the embryonic stage, tissue remodeling, maintenance of the structural integrity of basement membrane, and elastic fibers, as well as other cellular processes. Apart from this, fibulins are also involved in the progression of human diseases such as cancer, cardiac diseases, congenital disorders, and chronic fibrotic disorders. Different isoforms of fibulins show a dual role of tumor-suppressive and tumor-promoting activities, depending on the cell type and cellular microenvironment in the body. Knockout animal models have provided deep insight into their role in development and diseases. The present review covers details of the structural and expression patterns, along with the role of fibulins in embryonic development and disease progression, with more emphasis on their involvement in the modulation of cancer diseases.
Collapse
|
13
|
Functional and Therapeutic Relevance of Rho GTPases in Innate Immune Cell Migration and Function during Inflammation: An In Silico Perspective. Mediators Inflamm 2021; 2021:6655412. [PMID: 33628114 PMCID: PMC7896857 DOI: 10.1155/2021/6655412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Systematic regulation of leukocyte migration to the site of infection is a vital step during immunological responses. Improper migration and localization of immune cells could be associated with disease pathology as seen in systemic inflammation. Rho GTPases act as molecular switches during inflammatory cell migration by cycling between Rho-GDP (inactive) to Rho-GTP (active) forms and play an essential role in the precise regulation of actin cytoskeletal dynamics as well as other immunological functions of leukocytes. Available reports suggest that the dysregulation of Rho GTPase signaling is associated with various inflammatory diseases ranging from mild to life-threatening conditions. Therefore, it is crucial to understand the step-by-step activation and inactivation of GTPases and the functioning of different Guanine Nucleotide Exchange Factors (GEFs) and GTPase-Activating Proteins (GAPs) that regulate the conversion of GDP to GTP and GTP to GDP exchange reactions, respectively. Here, we describe the molecular organization and activation of various domains of crucial elements associated with the activation of Rho GTPases using solved PDB structures. We will also present the latest evidence available on the relevance of Rho GTPases in the migration and function of innate immune cells during inflammation. This knowledge will help scientists design promising drug candidates against the Rho-GTPase-centric regulatory molecules regulating inflammatory cell migration.
Collapse
|
14
|
Chakraborty P, Dash SP, Dalpati N, Kumar P, Jain D, Sarangi PP. A C-terminal fragment of adhesion protein fibulin-7 inhibits growth of murine breast tumor by regulating macrophage reprogramming. FEBS J 2021; 288:803-817. [PMID: 32297473 DOI: 10.1111/febs.15333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
Recent reports have shown that a C-terminal fragment of adhesion protein Fibulin7 (Fbln7-C) could demonstrate both antiangiogenic and anti-inflammatory activities. The current study investigated the potential of Fbln7-C as a modulator of tumor-associated macrophages (TAMs) and its potential as an anticancer therapeutic. Our in vitro data show that Fbln7-C could inhibit the tumor cell line (MDA-MB-231) supernatant-induced reprogramming of human monocytes into immunosuppressive TAMs as indicated by higher expression of pERK1/2 and pSTAT1 molecules, and reduced expression of CD206 protein and arg1, ido, and vegf transcripts in monocytes cultured in the presence of Fbln7-C compared to controls. Interestingly, Fbln7-C-treated macrophages retained their altered phenotype even after the removal of Fbln7-C, and their secretome demonstrated anticancer activities. Finally, in a 4T1-induced murine breast tumor model, intravenous administration of Fbln7-C, following the appearance of measurable tumors, significantly reduced the growth and weight of the tumors. Detailed phenotypic analysis of the infiltrated monocyte/macrophage populations (F480+ Ly6G- CD11b+ ) at day 23 postinduction showed a higher percentage of inflammatory monocytes (F480+ Ly6Chi CD11b+ ) and a delayed differentiation into anti-inflammatory TAMs as evident by their reduced levels of CD206 expression. In conclusion, the above data suggest that Fbln7-C could regulate the tumor environment-induced macrophage reprogramming and has the potential for cancer therapeutics.
Collapse
Affiliation(s)
- Papiya Chakraborty
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Shiba Prasad Dash
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Nibedita Dalpati
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Puneet Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Pranita P Sarangi
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| |
Collapse
|
15
|
Dandia H, Tayalia P. Immunomodulation via macrophages to fight solid tumor malignancies. FEBS J 2020; 288:799-802. [PMID: 32578301 DOI: 10.1111/febs.15437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
The paper 'A C-Terminal Fragment of Adhesion Protein Fibulin-7 Inhibits Growth of Murine Breast Tumor by Regulating Macrophage Reprogramming' by Chakraborty et al. highlights that Fbln7-C could be explored as a potential immunomodulatory agent against various solid cancers and have shown its abilities to regulate tumor microenvironment reprogramming of TAMs in a breast cancer model. Fbln7, which is a secreted glycoprotein, has been shown to be anti-angiogenic and has an immunomodulatory role regulating various functional properties of monocytes, macrophages, and neutrophils, thereby influencing inflammation. In this study, the authors have shown that in a murine breast tumor model, intravenous administration of Fbln7-C significantly reduces the size of tumors via macrophage reprogramming. Comment on: https://doi.org/10.1111/febs.15333.
Collapse
Affiliation(s)
- Hiren Dandia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| |
Collapse
|
16
|
Chakraborty P, Dash SP, Sarangi PP. The role of adhesion protein Fibulin7 in development and diseases. Mol Med 2020; 26:47. [PMID: 32429873 PMCID: PMC7238533 DOI: 10.1186/s10020-020-00169-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Fibulins are a family of secreted glycoproteins, which play an important role in regulating multiple cellular functions such as adhesion, growth, motility, and survival. Fibulin7 (Fbln7) is expressed in developing odontoblasts, in the giant trophoblast layer of the placenta, in the choroid of the eyes as well as in the cartilage. Since its discovery, reports from various research groups have improved our understanding about the roles and effects of Fbln7 and Fbln7 derived fragments and peptides under physiological and pathological conditions such as tooth development, angiogenesis, immunoregulation, cancer pathogenesis and very recently as a possible biomarker for glaucoma. This review will highlight the latest developments in our understanding of the functions, the proposed mechanism of actions, and Fbln7's possible implications in future research and as therapeutics for different diseases.
Collapse
Affiliation(s)
- Papiya Chakraborty
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shiba Prasad Dash
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pranita P Sarangi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
17
|
Chakraborty P, Dalpati N, Bhan C, Dash SP, Kumar P, Sarangi PP. A C-terminal fragment of adhesion protein Fibulin7 regulates neutrophil migration and functions and improves survival in LPS induced systemic inflammation. Cytokine 2020; 131:155113. [PMID: 32388247 DOI: 10.1016/j.cyto.2020.155113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/15/2023]
Abstract
Accumulation of hyperactive neutrophils in the visceral organs was shown to be associated with sepsis-induced multi-organ failure. Recently, a C-terminal fragment of secreted glycoprotein Fibulin7 (Fbln7-C) was shown to inhibit angiogenesis and regulate monocyte functions in inflammatory conditions. However, its effects on neutrophil functions and systemic inflammation induced lethality remain unknown. In this study, we show that human peripheral blood neutrophils adhered to Fbln7-C in a dose-dependent manner via integrin β1. Moreover, the presence of Fbln7-C inhibited spreading, and fMLP mediated random migration of neutrophils on fibronectin. Significant reduction in ROS and inflammatory cytokine production (i.e., IL-6, IL-1β) was observed, including a reduction in ERK1⁄2 phosphorylation in neutrophils stimulated with LPS and fMLP in the presence of Fbln7-C compared to untreated controls. In an in vivo model of endotoxemia, the administration of Fbln7-C (10 μg/dose) significantly improved survival and reduced the infiltration of neutrophils to the site of inflammation. Additionally, neutrophils infiltrating into the inflamed peritoneum of Fbln7-C administered animals expressed lower levels CD11b marker, IL-6, and produced lower levels of ROS upon stimulation with PMA compared to untreated controls. In conclusion, our results show that Fbln7-C could bind to the integrin β1 on the neutrophil surface and regulate their inflammatory functions.
Collapse
Affiliation(s)
- Papiya Chakraborty
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Nibedita Dalpati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Chandra Bhan
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shiba Prasad Dash
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Puneet Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pranita P Sarangi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
18
|
Mao Q, Wang Y, Li Y, Juengpanich S, Li W, Chen M, Yin J, Fu J, Cai X. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110625. [DOI: 10.1016/j.msec.2020.110625] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
|
19
|
Chakraborty P, Dipankar P, Dash SP, Priya, Srivastava S, Dhyani R, Navani NK, Sharma D, Sarangi PP. Electrostatic Surface Potential of Macrophages Correlates with Their Functional Phenotype. Inflammation 2019; 43:641-650. [PMID: 31838662 DOI: 10.1007/s10753-019-01146-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Macrophages exist in various functional phenotypes, which could be identified by specific surface molecules. Previous studies have shown that modulation of surface charges could alter the phagocytic function of macrophages. In this study, we show that activation of both human peripheral blood monocyte and THP-1-derived macrophages with lipopolysaccharide (LPS) or IL-1β resulted in a significant decrease in the zeta potential compared to freshly isolated monocytes and unstimulated macrophages. Interestingly, interaction with bacteria significantly increased the zeta potential of such cells irrespective of activation conditions. Similarly, IFNγ-treated pro-inflammatory macrophages showed lesser negative zeta potential compared to untreated control. A moderate reduction was also seen in IL-4-treated anti-inflammatory subtype. Additionally, in an LPS-induced systemic inflammation model, bone marrow cells isolated after 2 h of LPS injection showed significant reduction in zeta potential compared to naïve cells. Furthermore, electrostatic potential measurement of surface proteins associated with pro-inflammatory and anti-inflammatory macrophages, using in silico modeling under physiological and protonation conditions, showed that the average electrostatic potential of pro-inflammatory type surface proteins was less negative than anti-inflammatory subtype. These data suggest that the expression of different protein molecules on macrophages under different environments may contribute to the zeta potential and that this quick and low-cost technique could be used in monitoring macrophage functional phenotypes.
Collapse
Affiliation(s)
- Papiya Chakraborty
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pankaj Dipankar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shiba Prasad Dash
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Priya
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shreya Srivastava
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Rajat Dhyani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Deepak Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
20
|
de Vega S, Kondo A, Suzuki M, Arai H, Jiapaer S, Sabit H, Nakada M, Ikeuchi T, Ishijima M, Arikawa-Hirasawa E, Yamada Y, Okada Y. Fibulin-7 is overexpressed in glioblastomas and modulates glioblastoma neovascularization through interaction with angiopoietin-1. Int J Cancer 2019; 145:2157-2169. [PMID: 30924128 DOI: 10.1002/ijc.32306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/20/2019] [Indexed: 01/01/2023]
Abstract
Glioblastoma (GBM) is pathologically characterized by highly malignant neoplastic cells, focal necrosis and aberrant blood vessels composed of disorganized endothelial cells and pericytes. The recent cancer microarray database revealed upregulation of fibulin-7 (Fbln7), a member of the fibulin family, but provided no information on the tissue localization or biological function. In the present study, we demonstrated that Fbln7 is markedly overexpressed by the GBM tissue among astrocytic tumors, and immunolocalized mainly to endothelial cells and pericytes of the glomeruloid and hypertrophied microvessels. The production of Fbln7 by endothelial cells and pericytes was confirmed in cultured human umbilical vein endothelial cells (HUVEC) and human brain vascular pericytes (HBVP) and vascular endothelial growth factor (VEGF) stimulated the Fbln7 expression in HUVEC. Fbln7 bound to angiopoietin-1, but not angiopoietin-2 or Tie2 receptor, through interaction between the N-terminal portions of Fbln7 and angiopoietin-1, and it blocked phosphorylation of Tie2 receptor in HUVEC. In a coculture assay using HUVEC and HBVP, multilayered and irregular-shaped tube-like structures of HUVEC were induced by treatment with a high concentration of VEGF. This was accompanied by Fbln7 overproduction by HUVEC and angiopoietin-1 expression by HBVP. The production of aberrant VEGF-induced tube-like structures was attenuated by treatment with antibody or synthetic peptides specific to the Fbln7 N-terminal domain or knockdown of Fbln7. These data demonstrate that Fbln7 is overexpressed by endothelial cells and pericytes of the abnormal microvessels in GBM, and suggest that Fbln7 may contribute to the aberrant vessel formation by modulation of the angiopoietin-1/angiopoietin-2-Tie2 axis.
Collapse
Affiliation(s)
- Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shabierjiang Jiapaer
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomoko Ikeuchi
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, USA
| | - Muneaki Ishijima
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for the Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, USA
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Ikeuchi T, de Vega S, Forcinito P, Doyle AD, Amaral J, Rodriguez IR, Arikawa-Hirasawa E, Yamada Y. Extracellular Protein Fibulin-7 and Its C-Terminal Fragment Have In Vivo Antiangiogenic Activity. Sci Rep 2018; 8:17654. [PMID: 30518776 PMCID: PMC6281620 DOI: 10.1038/s41598-018-36182-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is crucial for tissue development and homeostasis; however, excessive angiogenesis can lead to diseases, including arthritis and cancer metastasis. Some antiangiogenic drugs are available, but side effects remain problematic. Thus, alternative angiogenesis inhibition strategies are needed. Fibulin-7 (Fbln7) is a newly discovered member of the fibulin protein family, a group of cell-secreted glycoproteins, that functions as a cell adhesion molecule and interacts with other extracellular matrix (ECM) proteins as well as cell receptors. We previously showed that a recombinant C-terminal Fbln7 fragment (Fbln7-C) inhibits tube formation by human umbilical vein endothelial cells (HUVECs) in vitro. In the present study, we examined the in vivo antiangiogenic activity of recombinant full-length Fbln7 (Fbln7-FL) and Fbln7-C proteins using a rat corneal angiogenesis model. We found that both Fbln7-FL and Fbln7-C inhibited neovascularization. Fbln7-C bound to vascular endothelial growth factor receptor 2 (VEGFR2), inhibiting VEGFR2 and ERK phosphorylation and resulting in reduced HUVEC motility. HUVEC attachment to Fbln7-C occurred through an interaction with integrin α5β1 and regulated changes in cellular morphology. These results suggest that Fbln7-C action may target neovascularization by altering cell/ECM associations. Therefore, Fbln7-C could have potential as a therapeutic agent for diseases associated with angiogenesis.
Collapse
Affiliation(s)
- Tomoko Ikeuchi
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Susana de Vega
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Research Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Patricia Forcinito
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Office of Portfolio Analysis, Office of the Director, Bethesda, Maryland, 20892, USA
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Juan Amaral
- Mechanism of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Division of Intermural Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ignacio R Rodriguez
- Mechanism of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Sterculia Farms, 11601 SW Fox Brown Rd, Indiantown, Florida, 33496, USA
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
22
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|