1
|
Liu Z, Guo Y, Zheng C. Type 2 diabetes mellitus related sarcopenia: a type of muscle loss distinct from sarcopenia and disuse muscle atrophy. Front Endocrinol (Lausanne) 2024; 15:1375610. [PMID: 38854688 PMCID: PMC11157032 DOI: 10.3389/fendo.2024.1375610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024] Open
Abstract
Muscle loss is a significant health concern, particularly with the increasing trend of population aging, and sarcopenia has emerged as a common pathological process of muscle loss in the elderly. Currently, there has been significant progress in the research on sarcopenia, including in-depth analysis of the mechanisms underlying sarcopenia caused by aging and the development of corresponding diagnostic criteria, forming a relatively complete system. However, as research on sarcopenia progresses, the concept of secondary sarcopenia has also been proposed. Due to the incomplete understanding of muscle loss caused by chronic diseases, there are various limitations in epidemiological, basic, and clinical research. As a result, a comprehensive concept and diagnostic system have not yet been established, which greatly hinders the prevention and treatment of the disease. This review focuses on Type 2 Diabetes Mellitus (T2DM)-related sarcopenia, comparing its similarities and differences with sarcopenia and disuse muscle atrophy. The review show significant differences between the three muscle-related issues in terms of pathological changes, epidemiology and clinical manifestations, etiology, and preventive and therapeutic strategies. Unlike sarcopenia, T2DM-related sarcopenia is characterized by a reduction in type I fibers, and it differs from disuse muscle atrophy as well. The mechanism involving insulin resistance, inflammatory status, and oxidative stress remains unclear. Therefore, future research should further explore the etiology, disease progression, and prognosis of T2DM-related sarcopenia, and develop targeted diagnostic criteria and effective preventive and therapeutic strategies to better address the muscle-related issues faced by T2DM patients and improve their quality of life and overall health.
Collapse
Affiliation(s)
- Zhenchao Liu
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunliang Guo
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chongwen Zheng
- Department of Neurology, The 2 Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Rosa-Caldwell ME, Lim S, Haynie WS, Brown JL, Lee DE, Dunlap KR, Jansen LT, Washington TA, Wiggs MP, Greene NP. Mitochondrial aberrations during the progression of disuse atrophy differentially affect male and female mice. J Cachexia Sarcopenia Muscle 2021; 12:2056-2068. [PMID: 34585846 PMCID: PMC8718086 DOI: 10.1002/jcsm.12809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Disuse decreases muscle size and is predictive of mortality across multiple pathologies. Detriments to mitochondrial function are hypothesized to underlie disuse-induced muscle atrophy. Little data exist on early mechanisms contributing to onset of these pathologies, nor is it known how they differ between sexes. The purpose of this study was to examine differential and conserved responses to mitochondrial quality control in male and female mice during the development and progression of disuse-induced atrophy. METHODS One hundred C57BL/6J mice (50 male and 50 female) were hindlimb unloaded to induce disuse atrophy for 0 (con), 24, 48, 72, or 168 h. At designated time-points, extensor digitorum longus, gastrocnemius, and soleus muscles were collected for analysis of mitochondrial quality control markers. RESULTS One hundred sixty-eight hours of disuse resulted in ~25% lower oxidative muscle fibre CSA in both male (P = 0.003) and female (P = 0.02) mice without any differences due to disuse in glycolytic fibres. In male mice, 48 h of unloading was sufficient to result in ~67% greater mitochondrial oxidative stress as assessed by the reporter gene pMitoTimer compared with 0 h (P = 0.002), this mitochondrial stress preceded detectable muscle loss. However in female mice, mitochondrial oxidative stress did not occur until 168 h of disuse (~40% greater mitochondrial oxidative stress in 168 h compared with 0 h of disuse, P < 0.0001). Blunted oxidative stress in female mice appeared to coincide with greater inductions of autophagy and mitophagy in female mice (~3-fold greater BNIP3 and ~6-fold greater LC3II/I ratio P < 0.0001 and P = 0.038 respectively). Male mice overall had greater reactive oxygen species (ROS) production compared with female mice. Female mice had a greater induction of ROS within 24 h of disuse (~4-fold greater compared with 0 h, P < 0.0001); whereas male mice did not have greater ROS production until 168 h of disuse (~2-fold greater, P < 0.0001). Although all muscle types exhibited some alterations to mitochondrial quality control, such as increased markers of mitophagy and fission, the soleus muscle in both male and female mice exhibited consistent alterations to various markers of mitochondrial quality. Markers of mitochondrial translation were approximately 30-50% lower within 24 h of unloading in both male and female soleus muscle (P value ranges: <0.0001-0.03). CONCLUSIONS Disuse negatively affects mitochondria differentially between sexes during development of muscle wasting. Acutely, female mice may forgo muscle mass to maintain mitochondrial quality compared with male mice. These differences may contribute to divergent clinical manifestations of atrophy.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Jacob L Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Michael P Wiggs
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Okada R, Fujita SI, Suzuki R, Hayashi T, Tsubouchi H, Kato C, Sadaki S, Kanai M, Fuseya S, Inoue Y, Jeon H, Hamada M, Kuno A, Ishii A, Tamaoka A, Tanihata J, Ito N, Shiba D, Shirakawa M, Muratani M, Kudo T, Takahashi S. Transcriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environment. Sci Rep 2021; 11:9168. [PMID: 33911096 PMCID: PMC8080648 DOI: 10.1038/s41598-021-88392-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Spaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.
Collapse
Affiliation(s)
- Risa Okada
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Shin-Ichiro Fujita
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takuto Hayashi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hirona Tsubouchi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Chihiro Kato
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Maho Kanai
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Sayaka Fuseya
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuri Inoue
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hyojung Jeon
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Jun Tanihata
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, 650-0047, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Masaki Shirakawa
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Kudo
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Satoru Takahashi
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
4
|
Abstract
Exercise stimulates the biogenesis of mitochondria in muscle. Some literature supports the use of pharmaceuticals to enhance mitochondria as a substitute for exercise. We provide evidence that exercise rejuvenates mitochondrial function, thereby augmenting muscle health with age, in disease, and in the absence of cellular regulators. This illustrates the power of exercise to act as mitochondrial medicine in muscle.
Collapse
Affiliation(s)
- Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
5
|
Quezada ER, Díaz-Vegas A, Jaimovich E, Casas M. Changes in Gene Expression of the MCU Complex Are Induced by Electrical Stimulation in Adult Skeletal Muscle. Front Physiol 2021; 11:601313. [PMID: 33574764 PMCID: PMC7870689 DOI: 10.3389/fphys.2020.601313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022] Open
Abstract
The slow calcium transient triggered by low-frequency electrical stimulation (ES) in adult muscle fibers and regulated by the extracellular ATP/IP3/IP3R pathway has been related to muscle plasticity. A regulation of muscular tropism associated with the MCU has also been described. However, the role of transient cytosolic calcium signals and signaling pathways related to muscle plasticity over the regulation of gene expression of the MCU complex (MCU, MICU1, MICU2, and EMRE) in adult skeletal muscle is completely unknown. In the present work, we show that 270 0.3-ms-long pulses at 20-Hz ES (and not at 90 Hz) transiently decreased the mRNA levels of the MCU complex in mice flexor digitorum brevis isolated muscle fibers. Importantly, when ATP released after 20-Hz ES is hydrolyzed by the enzyme apyrase, the repressor effect of 20 Hz on mRNA levels of the MCU complex is lost. Accordingly, the exposure of muscle fibers to 30 μM exogenous ATP produces the same effect as 20-Hz ES. Moreover, the use of apyrase in resting conditions (without ES) increased mRNA levels of MCU, pointing out the importance of extracellular ATP concentration over MCU mRNA levels. The use of xestospongin B (inhibitor of IP3 receptors) also prevented the decrease of mRNA levels of MCU, MICU1, MICU2, and EMRE mediated by a low-frequency ES. Our results show that the MCU complex can be regulated by electrical stimuli in a frequency-dependent manner. The changes observed in mRNA levels may be related to changes in the mitochondria, associated with the phenotypic transition from a fast- to a slow-type muscle, according to the described effect of this stimulation frequency on muscle phenotype. The decrease in mRNA levels of the MCU complex by exogenous ATP and the increase in MCU levels when basal ATP is reduced with the enzyme apyrase indicate that extracellular ATP may be a regulator of the MCU complex. Moreover, our results suggest that this regulation is part of the axes linking low-frequency stimulation with ATP/IP3/IP3R.
Collapse
Affiliation(s)
- Esteban R Quezada
- Center for Exercise, Metabolism, and Cancer, Physiology and Biophysics Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alexis Díaz-Vegas
- Center for Exercise, Metabolism, and Cancer, Physiology and Biophysics Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Enrique Jaimovich
- Center for Exercise, Metabolism, and Cancer, Physiology and Biophysics Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mariana Casas
- Center for Exercise, Metabolism, and Cancer, Physiology and Biophysics Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Mirzoev TM. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int J Mol Sci 2020; 21:ijms21217940. [PMID: 33114683 PMCID: PMC7663166 DOI: 10.3390/ijms21217940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle fibers have a unique capacity to adjust their metabolism and phenotype in response to alternations in mechanical loading. Indeed, chronic mechanical loading leads to an increase in skeletal muscle mass, while prolonged mechanical unloading results in a significant decrease in muscle mass (muscle atrophy). The maintenance of skeletal muscle mass is dependent on the balance between rates of muscle protein synthesis and breakdown. While molecular mechanisms regulating protein synthesis during mechanical unloading have been relatively well studied, signaling events implicated in protein turnover during skeletal muscle recovery from unloading are poorly defined. A better understanding of the molecular events that underpin muscle mass recovery following disuse-induced atrophy is of significant importance for both clinical and space medicine. This review focuses on the molecular mechanisms that may be involved in the activation of protein synthesis and subsequent restoration of muscle mass after a period of mechanical unloading. In addition, the efficiency of strategies proposed to improve muscle protein gain during recovery is also discussed.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
7
|
Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Exp Gerontol 2020; 137:110964. [PMID: 32407865 DOI: 10.1016/j.exger.2020.110964] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Muscle loss is an important feature that occurs in multiple pathologies including osteoarthritis (OA), chronic obstructive pulmonary disease (COPD) and type II diabetes (T2D). Despite differences in pathogenesis and disease-related complications, there are reasons to believe that some fundamental underlying mechanisms are inherent to the muscle wasting process, irrespective of the pathology. Recent evidence shows that inflammation, either local or systemic, contributes to the modulation of muscle mass and/or muscle strength, via an altered molecular profile in muscle tissue. However, it remains ambiguous to which extent and via which mechanisms inflammatory signaling affects muscle mass in disease. Therefore, the objective of the present review is to discuss the role of inflammation on skeletal muscle anabolism, catabolism and functionality in three pathologies that are characterized by an eventual loss in muscle mass (and muscle strength), i.e. OA, COPD and T2D. In OA and COPD, most rodent models confirmed that systemic (COPD) or muscle (OA) inflammation directly induces muscle loss or muscle dysfunctionality. However, in a patient population, the association between inflammation and muscular maladaptations are more ambiguous. For example, in T2D patients, systemic inflammation is associated with muscle loss whereas in OA patients this link has not consistently been established. T2D rodent models revealed that increased levels of advanced glycation end-products (AGEs) and a decreased mTORC1 activation play a key role in muscle atrophy, but it remains to be elucidated whether AGEs and mTORC1 are interconnected and contribute to muscle loss in T2D patients. Generally, if any, associations between inflammation and muscle are mainly based on observational and cross-sectional data. There is definitely a need for longitudinal evidence through well-powered randomized control trials that take into account confounders such as age, disease-phenotypes, comorbidities, physical (in) activity etc. This will allow to improve our understanding of the complex interaction between inflammatory signaling and muscle mass loss and hence contribute to the development of therapeutic strategies to combat muscle wasting in these diseases.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
8
|
Recovery of muscle mass and muscle oxidative phenotype following disuse does not require GSK-3 inactivation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165740. [PMID: 32087280 DOI: 10.1016/j.bbadis.2020.165740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Physical inactivity contributes to muscle wasting and reductions in mitochondrial oxidative phenotype (OXPHEN), reducing physical performance and quality of life during aging and in chronic disease. Previously, it was shown that inactivation of glycogen synthase kinase (GSK)-3β stimulates muscle protein accretion, myogenesis, and mitochondrial biogenesis. Additionally, GSK-3β is inactivated during recovery of disuse-induced muscle atrophy. AIM Therefore, we hypothesize that GSK-3 inhibition is required for reloading-induced recovery of skeletal muscle mass and OXPHEN. METHODS Wild-type (WT) and whole-body constitutively active (C.A.) Ser21/9 GSK-3α/β knock-in mice were subjected to a 14-day hind-limb suspension/14-day reloading protocol. Soleus muscle mass, fiber cross-sectional area (CSA), OXPHEN (abundance of sub-units of oxidative phosphorylation (OXPHOS) complexes and fiber-type composition), as well as expression levels of their main regulators (respectively protein synthesis/degradation, myogenesis and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling) were monitored. RESULTS Subtle but consistent differences suggesting suppression of protein turnover signaling and decreased expression of several OXPHOS sub-units and PGC-1α signaling constituents were observed at baseline in C.A. GSK-3 versus WT mice. Although soleus mass recovery during reloading occurred more rapidly in C.A. GSK-3 mice, this was not accompanied by a parallel increased CSA. The OXPHEN response to reloading was not distinct between C.A. GSK-3 and WT mice. No consistent or significant differences in reloading-induced changes in the regulatory steps of protein turnover, myogenesis or muscle OXPHEN were observed in C.A. GSK-3 compared to WT muscle. CONCLUSION This study indicates that GSK-3 inactivation is dispensable for reloading-induced recovery of muscle mass and OXPHEN.
Collapse
|
9
|
Mechanical and microstructural changes of skeletal muscle following immobilization and/or stroke. Biomech Model Mechanobiol 2019; 19:61-80. [DOI: 10.1007/s10237-019-01196-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
|