1
|
Activation of the Type III Secretion System of Enteropathogenic Escherichia coli Leads to Remodeling of Its Membrane Composition and Function. mSystems 2022; 7:e0020222. [PMID: 35477304 PMCID: PMC9238428 DOI: 10.1128/msystems.00202-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a complex structure, essential for bacterial survival and for resistance to many antibiotics. Channels that cross the bacterial envelope and the host cell membrane form secretion systems that are activated upon attachment to host, enabling bacteria to inject effector molecules into the host cell, required for bacterium-host interaction. The type III secretion system (T3SS) is critical for the virulence of several pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC). EPEC T3SS activation is associated with repression of carbon storage regulator (CsrA), resulting in gene expression remodeling, which is known to affect EPEC central carbon metabolism and contributes to the adaptation to a cell-adherent lifestyle in a poorly understood manner. We reasoned that the changes in the bacterial envelope upon attachment to the host and the activation of a secretion system may involve a modification of the lipid composition of bacterial envelope. Accordingly, we performed a lipidomics analysis on mutant strains that simulate T3SS activation. We saw a shift in glycerophospholipid metabolism toward the formation of lysophospholipids, attributed to corresponding upregulation of the phospholipase gene pldA and the acyltransferase gene ygiH upon T3SS activation in EPEC. We also detected a shift from menaquinones and ubiquinones to undecaprenyl lipids, concomitant with abnormal synthesis of O antigen. The remodeling of lipid metabolism is mediated by CsrA and associated with increased bacterial cell size and zeta potential and a corresponding alteration in EPEC permeability to vancomycin, increasing the sensitivity of T3SS-activated strains and of adherent wild-type EPEC to the antibiotic. IMPORTANCE The characterization of EPEC membrane lipid metabolism upon attachment to the host is an important step toward a better understanding the shift of EPEC, a notable human pathogen, from a planktonic to adherent lifestyle. It may also apply to other pathogenic bacteria that use this secretion system. We predict that upon attachment to host cells, the lipid remodeling upon T3SS activation contributes to bacterial fitness and promotes host colonization, and we show that it is associated with increased cell permeability and higher sensitivity to vancomycin. To the best of our knowledge, this is the first demonstration of a bacterial lipid remodeling due to activation of a secretion system.
Collapse
|
2
|
Fu S, Zhao W, Xiong C, Guo L, Guo J, Qiu Y, Hu CAA, Ye C, Liu Y, Wu Z, Hou Y. Baicalin modulates apoptosis via RAGE, MAPK, and AP-1 in vascular endothelial cells during Haemophilus parasuis invasion. Innate Immun 2019; 25:420-432. [PMID: 31271085 PMCID: PMC6900640 DOI: 10.1177/1753425919856078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glässer’s disease, caused by Haemophilus parasuis, is a chronic
disease related to an inflammatory immune response. Baicalin exerts important
biological functions. In this study, we explored the protective efficacy of
treatment with baicalin and the potential mechanism of activation of the MAPK
signaling pathway in porcine aortic vascular endothelial cells (PAVECs) induced
by H. parasuis. H. parasuis stimulated
expression of receptor for advanced glycation end products, induced a
significant increase in the level of protein kinase-α and protein kinase-δ
phosphorylation, and significantly up-regulated ERK, c-Jun N-terminal kinase,
and p38 phosphorylation in PAVECs. H. parasuis also
up-regulated the levels of apoptotic genes (Bax,
C-myc, and Fasl) and the expression levels
of c-Jun and c-Fos, and induced S-phase arrest in PAVECs. However, treatment
with baicalin inhibited expression of RAGE, suppressed H.
parasuis-induced protein kinase-α and protein kinase-δ
phosphorylation, reduced ERK, c-Jun N-terminal kinase, and p38 phosphorylation,
down-regulated apoptotic genes (Bax, C-myc,
and Fasl), attenuated phospho-c-Jun production from the
extracellular to the nuclei, and reversed S-phase arrest in PAVECs. In
conclusion, baicalin treatment inhibited the MAPK signaling pathway, thereby
achieving its anti-inflammatory responses, which provides a new strategy to
control H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Wenhua Zhao
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China
| | - Chunhong Xiong
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China
| | - Ling Guo
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Jing Guo
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yinsheng Qiu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Chien-An Andy Hu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,3 Biochemistry and Molecular Biology, University of New Mexico School of Medicine, USA
| | - Chun Ye
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yu Liu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Zhongyuan Wu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yongqing Hou
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| |
Collapse
|