1
|
Zung N, Aravindan N, Boshnakovska A, Valenti R, Preminger N, Jonas F, Yaakov G, Willoughby MM, Homberg B, Keller J, Kupervaser M, Dezorella N, Dadosh T, Wolf SG, Itkin M, Malitsky S, Brandis A, Barkai N, Fernández-Busnadiego R, Reddi AR, Rehling P, Rapaport D, Schuldiner M. The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593285. [PMID: 38766039 PMCID: PMC11100823 DOI: 10.1101/2024.05.09.593285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
- Biochemistry and Molecular Biology Department, University of Nebraska Medical Center, USA
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Tali Dadosh
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Sharon G Wolf
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, 37077, Germany
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| |
Collapse
|
2
|
Liao H, Li Q, Chen Y, Tang J, Mou B, Lu F, Feng P, Li W, Li J, Fu C, Long W, Xiao X, Han X, Xin W, Yang F, Ma M, Liu B, Yang Y, Wang H. Genome-wide identification of resistance genes and response mechanism analysis of key gene knockout strain to catechol in Saccharomyces cerevisiae. Front Microbiol 2024; 15:1364425. [PMID: 38450166 PMCID: PMC10915035 DOI: 10.3389/fmicb.2024.1364425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Engineering Saccharomyces cerevisiae for biodegradation and transformation of industrial toxic substances such as catechol (CA) has received widespread attention, but the low tolerance of S. cerevisiae to CA has limited its development. The exploration and modification of genes or pathways related to CA tolerance in S. cerevisiae is an effective way to further improve the utilization efficiency of CA. This study identified 36 genes associated with CA tolerance in S. cerevisiae through genome-wide identification and bioinformatics analysis and the ERG6 knockout strain (ERG6Δ) is the most sensitive to CA. Based on the omics analysis of ERG6Δ under CA stress, it was found that ERG6 knockout affects pathways such as intrinsic component of membrane and pentose phosphate pathway. In addition, the study revealed that 29 genes related to the cell wall-membrane system were up-regulated by more than twice, NADPH and NADP+ were increased by 2.48 and 4.41 times respectively, and spermidine and spermine were increased by 2.85 and 2.14 times, respectively, in ERG6Δ. Overall, the response of cell wall-membrane system, the accumulation of spermidine and NADPH, as well as the increased levels of metabolites in pentose phosphate pathway are important findings in improving the CA resistance. This study provides a theoretical basis for improving the tolerance of strains to CA and reducing the damage caused by CA to the ecological environment and human health.
Collapse
Affiliation(s)
- Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Qian Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yulei Chen
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaye Tang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Borui Mou
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Fujia Lu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Peng Feng
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Wei Li
- Aba Prefecture Ecological Protection and Development Research Institute, Wenchuan, Sichuan, China
| | - Jialian Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Chun Fu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Wencong Long
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Ximeng Xiao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenli Xin
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Fengxuan Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Department of Chemistry and Molecular Biology, University of Gothenburg Medicinaregatan, Gothenburg, Sweden
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Hanyu Wang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| |
Collapse
|
3
|
Jang E, Lee M, Yoon SY, Lee SS, Park J, Jin MS, Eom SH, Lee C, Jun Y. Yeast lunapark regulates the formation of trans-Sey1p complexes for homotypic ER membrane fusion. iScience 2023; 26:108386. [PMID: 38025788 PMCID: PMC10679814 DOI: 10.1016/j.isci.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The endoplasmic reticulum (ER) consists of the nuclear envelope and a connected peripheral network of tubules and interspersed sheets. The structure of ER tubules is generated and maintained by various proteins, including reticulons, DP1/Yop1p, atlastins, and lunapark. Reticulons and DP1/Yop1p stabilize the high membrane curvature of ER tubules, and atlastins mediate homotypic membrane fusion between ER tubules; however, the exact role of lunapark remains poorly characterized. Here, using isolated yeast ER microsomes and reconstituted proteoliposomes, we directly examined the function of the yeast lunapark Lnp1p for yeast atlastin Sey1p-mediated ER fusion and found that Lnp1p inhibits Sey1p-driven membrane fusion. Furthermore, by using a newly developed assay for monitoring trans-Sey1p complex assembly, a prerequisite for ER fusion, we found that assembly of trans-Sey1p complexes was increased by the deletion of LNP1 and decreased by the overexpression of Lnp1p, indicating that Lnp1p inhibits Sey1p-mediated fusion by interfering with assembly of trans-Sey1p complexes.
Collapse
Affiliation(s)
- Eunhong Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Miriam Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - So Young Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sang Soo Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Abstract
Atlastins are mechanochemical GTPases that catalyze homotypic fusion of ER tubules. Recent work has demonstrated that tethering and fusion by the three mammalian atlastin paralogs are differentially regulated by their variable N- and C-terminal extensions. These new findings have profound implications for atlastin-mediated homeostasis of the tubular ER network.
Collapse
Affiliation(s)
- Shivaani Krishna
- Bay Area Institute of Science, Altos Labs Inc., Redwood City, CA, USA
| | - Marijn G.J. Ford
- Bay Area Institute of Science, Altos Labs Inc., Redwood City, CA, USA
| |
Collapse
|
5
|
Jang E, Moon Y, Yoon SY, Diaz JAR, Lee M, Ko N, Park J, Eom SH, Lee C, Jun Y. Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition. J Cell Biol 2023; 222:e202109090. [PMID: 36757370 PMCID: PMC9949273 DOI: 10.1083/jcb.202109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
The dynamin-like GTPase atlastin is believed to be the minimal machinery required for homotypic endoplasmic reticulum (ER) membrane fusion, mainly because Drosophila atlastin is sufficient to drive liposome fusion. However, it remains unclear whether mammalian atlastins, including the three human atlastins, are sufficient to induce liposome fusion, raising doubts about their major roles in mammalian cells. Here, we show that all human atlastins are sufficient to induce fusion when reconstituted into liposomes with a lipid composition mimicking that of the ER. Although the fusogenic activity of ATL1, which is predominantly expressed in neuronal cells, was weaker than that of ATL2 or ATL3, the addition of M1-spastin, a neuron-specific factor, markedly increased ATL1-mediated liposome fusion. Although we observed efficient fusion between ER microsomes isolated from cultured, non-neuronal cells that predominantly express ATL2-1, an autoinhibited isoform of ATL2, ATL2-1 failed to support liposome fusion by itself as reported previously, indicating that cellular factors enable ATL2-1 to mediate ER fusion in vivo.
Collapse
Affiliation(s)
- Eunhong Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yeojin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - So Young Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Joyce Anne R. Diaz
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Miriam Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Naho Ko
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Sardar A, Dewangan N, Panda B, Bhowmick D, Tarafdar PK. Lipid and Lipidation in Membrane Fusion. J Membr Biol 2022; 255:691-703. [PMID: 36102950 PMCID: PMC9472184 DOI: 10.1007/s00232-022-00267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
Membrane fusion plays a lead role in the transport of vesicles, neurotransmission, mitochondrial dynamics, and viral infection. There are fusion proteins that catalyze and regulate the fusion. Interestingly, various types of fusion proteins are present in nature and they possess diverse mechanisms of action. We have highlighted the importance of the functional domains of intracellular heterotypic fusion, homotypic endoplasmic reticulum (ER), homotypic mitochondrial, and type-I viral fusion. During intracellular heterotypic fusion, the SNAREs and four-helix bundle formation are prevalent. Type-I viral fusion is controlled by the membrane destabilizing properties of fusion peptide and six-helix bundle formation. The ER/mitochondrial homotypic fusion is controlled by GTPase activity and the membrane destabilization properties of the amphipathic helix(s). Although the mechanism of action of these fusion proteins is diverse, they have some similarities. In all cases, the lipid composition of the membrane greatly affects membrane fusion. Next, examples of lipidation of the fusion proteins were discussed. We suggest that the fatty acyl hydrophobic tail not only acts as an anchor but may also modulate the energetics of membrane fusion intermediates. Lipidation is also important to design more effective peptide-based fusion inhibitors. Together, we have shown that membrane lipid composition and lipidation are important to modulate membrane fusion.
Collapse
Affiliation(s)
- Avijit Sardar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Nikesh Dewangan
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Bishvanwesha Panda
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Debosmita Bhowmick
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Pradip K. Tarafdar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| |
Collapse
|
7
|
Mou Y, Dong Y, Chen Z, Denton KR, Duff MO, Blackstone C, Zhang SC, Li XJ. Impaired lipid metabolism in astrocytes underlies degeneration of cortical projection neurons in hereditary spastic paraplegia. Acta Neuropathol Commun 2020; 8:214. [PMID: 33287888 PMCID: PMC7720406 DOI: 10.1186/s40478-020-01088-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia.
Collapse
|
8
|
|
9
|
Moon Y, Jun Y. The Effects of Regulatory Lipids on Intracellular Membrane Fusion Mediated by Dynamin-Like GTPases. Front Cell Dev Biol 2020; 8:518. [PMID: 32671068 PMCID: PMC7326814 DOI: 10.3389/fcell.2020.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 12/04/2022] Open
Abstract
Membrane fusion mediates a number of fundamental biological processes such as intracellular membrane trafficking, fertilization, and viral infection. Biological membranes are composed of lipids and proteins; while lipids generally play a structural role, proteins mediate specific functions in the membrane. Likewise, although proteins are key players in the fusion of biological membranes, there is emerging evidence supporting a functional role of lipids in various membrane fusion events. Intracellular membrane fusion is mediated by two protein families: SNAREs and membrane-bound GTPases. SNARE proteins are involved in membrane fusion between transport vesicles and their target compartments, as well as in homotypic fusion between organelles of the same type. Membrane-bound GTPases mediate mitochondrial fusion and homotypic endoplasmic reticulum fusion. Certain membrane lipids, known as regulatory lipids, regulate these membrane fusion events by directly affecting the function of membrane-bound GTPases, instead of simply changing the biophysical and biochemical properties of lipid bilayers. In this review, we provide a summary of the current understanding of how regulatory lipids affect GTPase-mediated intracellular membrane fusion by focusing on the functions of regulatory lipids that directly affect fusogenic GTPases.
Collapse
Affiliation(s)
- Yeojin Moon
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Youngsoo Jun
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
10
|
De Vecchis D, Brandner A, Baaden M, Cohen MM, Taly A. A Molecular Perspective on Mitochondrial Membrane Fusion: From the Key Players to Oligomerization and Tethering of Mitofusin. J Membr Biol 2019; 252:293-306. [PMID: 31485701 DOI: 10.1007/s00232-019-00089-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/14/2019] [Indexed: 12/29/2022]
Abstract
Mitochondria are dynamic organelles characterized by an ultrastructural organization which is essential in maintaining their quality control and ensuring functional efficiency. The complex mitochondrial network is the result of the two ongoing forces of fusion and fission of inner and outer membranes. Understanding the functional details of mitochondrial dynamics is physiologically relevant as perturbations of this delicate equilibrium have critical consequences and involved in several neurological disorders. Molecular actors involved in this process are large GTPases from the dynamin-related protein family. They catalyze nucleotide-dependent membrane remodeling and are widely conserved from bacteria to higher eukaryotes. Although structural characterization of different family members has contributed in understanding molecular mechanisms of mitochondrial dynamics in more detail, the complete structure of some members as well as the precise assembly of functional oligomers remains largely unknown. As increasing structural data become available, the domain modularity across the dynamin superfamily emerged as a foundation for transfering the knowledge towards less characterized members. In this review, we will first provide an overview of the main actors involved in mitochondrial dynamics. We then discuss recent example of computational methodologies for the study of mitofusin oligomers, and present how the usage of integrative modeling in conjunction with biochemical data can be an asset in progressing the still challenging field of membrane dynamics.
Collapse
Affiliation(s)
- Dario De Vecchis
- School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, LIGHT Building, Leeds, LS2 9JT, UK.
| | - Astrid Brandner
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Mickael M Cohen
- Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France.,Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Sorbonne Université, CNRS, UMR 8226, Paris, France
| | - Antoine Taly
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France. .,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|