1
|
Vlachogiannis NI, Legaki AI, Kassi E, Mikelis CM, Tentolouris N, Sfikakis PP, Protogerou AD, Chatzigeorgiou A. Association of Circulating Robo4 with Obesity, Hypertension and Atherosclerotic Plaque Burden. Thromb Haemost 2024. [PMID: 39401520 DOI: 10.1055/a-2437-6308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Affiliation(s)
- Nikolaos I Vlachogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos M Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanase D Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Li H, Xiao H, Mai X, Huang S, Chen J, Xiao X. A great diversity of ROBO4 expression and regulations identified by data mining and transgene mice. Gene Expr Patterns 2024; 53:119375. [PMID: 39181524 DOI: 10.1016/j.gep.2024.119375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
ROBO4 involves in the stabilization of blood vessel and mediates the migration of hematopoietic stem cell and newborn neuron. However, the patterns of expression and regulation are not quite clear. To resolve this, we analyzed the single cell sequence data, and confirmed that Robo4 mainly expresses in various endothelial cells, but also in epithelial cells, pericytes, and stem or progenitor cells of bone marrow, fibroblast cells/mesenchymal stem cell of adipose tissues, muscle cells and neuron. Robo4 expressions in endothelial cells derived from capillary vessel, tip/stalk/activated endothelial cells were higher than that in artery and large vein (matured endothelial cells). On the other hand, via mining the gene expression data deposited in the NCBI Gene Expression Omnibus database as well as National Genomics Data Center (NGDC), we uncovered that the expression of Robo4 were regulated by different stimulus and variable in diseases' condition.Moreover, we constructed enhanced GFP (eGFP) transgene mouse controlled by Robo4 promoter using CRISPR/CAS9 system. We found GFP signals in many cell types from the embryonic section, confirming a widely expression of Robo4. Together, Robo4 widely and dynamically express in multiple cell types, and can be regulated by diverse factors.
Collapse
Affiliation(s)
- Huiping Li
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Huiyan Xiao
- Shantou Jinshan Middle School, Shantou, China
| | - Xiaoting Mai
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Shaofeng Huang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqiang Xiao
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
3
|
Liang YC, Li L, Liang JL, Liu DL, Chu SF, Li HL. Integrating Mendelian randomization and single-cell RNA sequencing to identify therapeutic targets of baicalin for type 2 diabetes mellitus. Front Pharmacol 2024; 15:1403943. [PMID: 39130628 PMCID: PMC11310057 DOI: 10.3389/fphar.2024.1403943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Background Alternative and complementary therapies play an imperative role in the clinical management of Type 2 diabetes mellitus (T2DM), and exploring and utilizing natural products from a genetic perspective may yield novel insights into the mechanisms and interventions of the disorder. Methods To identify the therapeutic target of baicalin for T2DM, we conducted a Mendelian randomization study. Druggable targets of baicalin were obtained by integrating multiple databases, and target-associated cis-expression quantitative trait loci (cis-eQTL) originated from the eQTLGen consortium. Summary statistics for T2DM were derived from two independent genome-wide association studies available through the DIAGRAM Consortium (74,124 cases vs. 824,006 controls) and the FinnGen R9 repository (9,978 cases vs. 12,348 controls). Network construction and enrichment analysis were applied to the therapeutic targets of baicalin. Colocalization analysis was utilized to assess the potential for the therapeutic targets and T2DM to share causative genetic variations. Molecular docking was performed to validate the potency of baicalin. Single-cell RNA sequencing was employed to seek evidence of therapeutic targets' involvement in islet function. Results Eight baicalin-related targets proved to be significant in the discovery and validation cohorts. Genetic evidence indicated the expression of ANPEP, BECN1, HNF1A, and ST6GAL1 increased the risk of T2DM, and the expression of PGF, RXRA, SREBF1, and USP7 decreased the risk of T2DM. In particular, SREBF1 has significant interaction properties with other therapeutic targets and is supported by strong colocalization. Baicalin had favorable combination activity with eight therapeutic targets. The expression patterns of the therapeutic targets were characterized in cellular clusters of pancreatic tissues that exhibited a pseudo-temporal dependence on islet cell formation and development. Conclusion This study identified eight potential targets of baicalin for treating T2DM from a genetic perspective, contributing an innovative analytical framework for the development of natural products. We have offered fresh insights into the connections between therapeutic targets and islet cells. Further, fundamental experiments and clinical research are warranted to delve deeper into the molecular mechanisms of T2DM.
Collapse
Affiliation(s)
- Ying-Chao Liang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ling Li
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jia-Lin Liang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - De-Liang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Shu-Fang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Hui-Lin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
4
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
5
|
Wang Y, Chen J, Sang T, Chen C, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. NAG-1/GDF15 protects against streptozotocin-induced type 1 diabetes by inhibiting apoptosis, preserving beta-cell function, and suppressing inflammation in pancreatic islets. Mol Cell Endocrinol 2022; 549:111643. [PMID: 35398052 DOI: 10.1016/j.mce.2022.111643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/01/2023]
Abstract
The loss of functional insulin-producing β-cells is a hallmark of type 1 diabetes mellitus (T1DM). Previously, we reported that the non-steroidal anti-inflammatory drug activated gene-1, or growth differentiation factor-15 (NAG-1/GDF15) inhibits obesity and improves insulin sensitivity in both genetic and dietary-induced obese mice. However, the regulatory role of NAG-1/GDF15 in the structure and function of β-cells and the prevention of T1DM is largely unknown. In the current study, we reported that NAG-1/GDF15 transgenic (Tg) mice are resistant to diabetogenesis induced by multiple low-dose streptozotocin (MLD-STZ) treatment. NAG-1/GDF15 overexpression significantly reduced diabetes incidence, alleviated symptoms of T1DM, and improved MLD-STZ-induced glucose intolerance and insulin resistance. Both the mass and function of pancreatic β cells were preserved in the NAG-1/GDF15 Tg mice as evidenced by significantly increased islet area and insulin production. The mechanistic study revealed that NAG-1/GDF15 significantly inhibited STZ-induced apoptosis and preserved the reduction of proliferation in the islets of the Tg mice as compared to the wild-type (WT) mice upon MLD-STZ treatment. Additionally, NAG-1/GDF15 significantly reduced both the serum and islet levels of the inflammatory cytokines (IL-1β, IL-6, and TNFα), and reduced the expression of NF-κB expression and immune cells infiltration in the islets. Collectively, these results indicate that NAG-1/GDF15 is effective in improving STZ-induced glucose intolerance, probably was mediated via suppressing inflammation, inhibiting apoptosis, and preserving β-cell mass and function.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Tingting Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Chaojie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Thomas Eling
- Scientist Emeritus, National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| |
Collapse
|
6
|
Wang Y, Zhao S, Peng W, Chen Y, Chi J, Che K, Wang Y. The Role of Slit-2 in Gestational Diabetes Mellitus and Its Effect on Pregnancy Outcome. Front Endocrinol (Lausanne) 2022; 13:889505. [PMID: 35813663 PMCID: PMC9261261 DOI: 10.3389/fendo.2022.889505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Slit guidance ligand 2 (Slit-2), as a member of the Slit family, can regulate the inflammatory response and glucose metabolism. The purpose of this study was to explore the expression of Slit-2 in maternal peripheral blood and neonatal cord blood of gestational diabetes mellitus (GDM) patients and its potential importance in disease progression. METHODS This study included 57 healthy pregnant women and 61 GDM patients. The levels of Slit-2, C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), C-peptide (C-P), galectin-3(Gal-3), HbA1c, fasting blood glucose (FBG) and fasting insulin (FINS) in maternal peripheral blood and neonatal cord blood were detected by ELISA. Spearman's rank correlation test was used to assess the association between peripheral Slit-2 and inflammatory indicators, insulin resistance, and pregnancy outcomes. Logistic regression analysis was used to analyze the risk factors of GDM. RESULTS Slit-2 levels in maternal peripheral blood and neonatal cord blood of the GDM patients were higher than those of the HC. Slit-2 levels in maternal peripheral blood and neonatal cord blood of the GDM patients were positively correlated with inflammatory factors CRP and MCP-1 levels. The level of Slit-2 in the maternal peripheral blood of the GDM patients was positively correlated with the level of homeostasis model assessment insulin resistance (HOMA-IR) and HbA1c in maternal peripheral blood, but was negatively correlated with the level of homeostasis model assessment -β (HOMA-β). We also found that the Slit-2 level in the maternal peripheral blood of the GDM patients was negatively correlated with neonatal blood glucose, positively correlated with neonatal weight and independent of neonatal total bilirubin. CONCLUSION Our study suggests that the abnormal increase in Slit-2 in GDM may be related to its pathogenesis, and it was correlated with neonatal blood glucose and weight in patients with GDM, suggesting that Slit-2 may be a potential biomarker of GDM.
Collapse
Affiliation(s)
- Yan Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shihua Zhao
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Peng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Chen
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Qingdao Key Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Che
- Qingdao Key Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yangang Wang,
| |
Collapse
|
7
|
Alchujyan N, Hovhannisyan M, Movsesyan N, Melkonyan A, Shaboyan V, Aghajanova Y, Minasyan G, Kevorkian G. Sexual Dimorphism in Alternative Metabolic Pathways of L-Arginine in Circulating Leukocytes in Young People with Type 1 Diabetes Mellitus. Endocr Res 2021; 46:149-159. [PMID: 33944639 DOI: 10.1080/07435800.2021.1920608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Sexual dimorphism in specific biochemical pathways and immune response, underlies the heterogeneity of type 1 diabetes mellitus (T1DM) and affects the outcome of immunotherapy. Arginase and nitric oxide (NO) synthase (NOS) metabolize L-arginine and play opposite roles in the immune response and autoimmune processes.Objective: We hypothesized that the above mentioned enzymes can be involved in sex and age differences in T1DM and its treatment. Based on this, the enzymes have been studied in peripheral blood leukocytes (PBL) and plasma of young people with T1DM.Methods: Patients were recruited from Muratsan University Hospital (Yerevan, Armenia) and were divided into groups: girls and boys by age, from children to adolescents and adolescents/young adults with recent-onset T1DM (RO-T1DM) (0.1-1 years) and long-term T1DM (LT-T1DM) (1.6-9.9 years). Arginase activity was assessed by L-arginine-dependent production of L-ornithine, and the NOS activity was assessed by NO/nitrite production. Glycemic control was assessed using hemoglobin A1c test. Plasma HbA1c concentration below 7.5% (median (range) 6.7 [6.2-7.5]) was taken as good glycemic control (+) and above 7.5% (median (range) 10.5 [7.6-13]) as poor glycemic control (-). Healthy volunteers with corresponding sex and age were used as the control group.Results: All the patients with RO-T1DM, with poor glycemic control, had increased arginase activity in the cytoplasm (cARG) and mitochondria (mARG) in PBL. In girls with RO-T1DM, with good glycemic control, the subcellular arginase activity decreased, and normalized in LT-T1DM, regardless of age. In contrast, boys from both age groups showed high arginase activity, regardless of glycemic control and duration of T1DM along with insulin therapy. At the same time, a significant decrease in the subcellular production of bioavailable NO was observed in children/preadolescents, regardless of glycemic control and duration of diabetes. In adolescents/young adult boys with RO-T1DM, with (-), the subcellular production of NO decreased significantly, and with LT-T1DM, the decrease was attenuated, but even with (+) remained lower than in healthy people. In contrast, in the group of same age girls with RO-T1DM, NO production increased above normal in both cellular compartments, while with LT-T1DM it normalized in the cytoplasm. In adolescents/young adults with LT-T1DM, NO production in PBL mitochondria decreased by almost a half, regardless of glycemic control and gender. Changes in the metabolic pathways of L-arginine in plasma differed and were less substantial than in the PBL cellular compartments in T1DM.Conclusions: Glycemic status and duration of T1DM along with insulin therapy affect the activity of arginase and NOS-dependent production of bioavailable NO in the cytoplasm and mitochondria in PBL of young patients with T1DM, depending on sex and age. Arginase and NOS can directly affect the processes occurring in the pancreas and the outcome of therapy through infiltrated leukocytes. Obtained data can be useful for understanding the heterogeneity of T1DM and using it to develop available criteria for assessing the severity and treatment of autoimmune diabetes.
Collapse
Affiliation(s)
- Nina Alchujyan
- Department of Pathological Biochemistry, Institute of Biochemistryafter H. Buniatyan, NAS RA, Yerevan, Armenia
| | - Margarita Hovhannisyan
- Department of Pathological Biochemistry, Institute of Biochemistryafter H. Buniatyan, NAS RA, Yerevan, Armenia
| | - Nina Movsesyan
- Department of Pathological Biochemistry, Institute of Biochemistryafter H. Buniatyan, NAS RA, Yerevan, Armenia
| | - Arthur Melkonyan
- Department of Endocrinology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Vanuhi Shaboyan
- Department of Endocrinology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Yelena Aghajanova
- Department of Endocrinology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Grigory Minasyan
- Department of Organic Chemistry, Scientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan, Armenia
| | - Guevork Kevorkian
- Department of Pathological Biochemistry, Institute of Biochemistryafter H. Buniatyan, NAS RA, Yerevan, Armenia
| |
Collapse
|
8
|
Shirakura K, Okada Y. Vascular Leakage Prevention by Roundabout 4 under Pathological Conditions. Biol Pharm Bull 2021; 44:1365-1370. [PMID: 34602544 DOI: 10.1248/bpb.b21-00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular permeability is regulated mainly by the endothelial barrier and controls vascular homeostasis, proper vessel development, and immune cell trafficking. Several molecules are involved in regulating endothelial barrier function. Roundabout 4 (Robo4) is a single-pass transmembrane protein that is specifically expressed in vascular endothelial cells. Robo4 is an important regulator of vascular leakage and angiogenesis, especially under pathological conditions. The role of Robo4 in preventing vascular leakage has been studied in various disease models, including animal models of retinopathy, tumors, diabetes, and endotoxemia. The involvement of Robo4 in vascular endothelial growth factor and inflammation-mediated signaling pathways has been well studied, and recent evidence suggests that Robo4 modulates endothelial barrier function via distinct mechanisms. In this review, we discuss the role of Robo4 in endothelial barrier function and the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
9
|
Hepatic Senescence Accompanies the Development of NAFLD in Non-Aged Mice Independently of Obesity. Int J Mol Sci 2021; 22:ijms22073446. [PMID: 33810566 PMCID: PMC8037476 DOI: 10.3390/ijms22073446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
Senescence is considered to be a cardinal player in several chronic inflammatory and metabolic pathologies. The two dominant mechanisms of senescence include replicative senescence, predominantly depending on age-induced telomere shortening, and stress-induced senescence, triggered by external or intracellular harmful stimuli. Recent data indicate that hepatocyte senescence is involved in the development of nonalcoholic fatty liver disease (NAFLD). However, previous studies have mainly focused on age-related senescence during NAFLD, in the presence or absence of obesity, while information about whether the phenomenon is characterized by replicative or stress-induced senescence, especially in non-aged organisms, is scarce. Herein, we subjected young mice to two different diet-induced NAFLD models which differed in the presence of obesity. In both models, liver fat accumulation and increased hepatic mRNA expression of steatosis-related genes were accompanied by hepatic senescence, indicated by the increased expression of senescence-associated genes and the presence of a robust hybrid histo-/immunochemical senescence-specific staining in the liver. Surprisingly, telomere length and global DNA methylation did not differ between the steatotic and the control livers, while malondialdehyde, a marker of oxidative stress, was upregulated in the mouse NAFLD livers. These findings suggest that senescence accompanies NAFLD emergence, even in non-aged organisms, and highlight the role of stress-induced senescence during steatosis development independently of obesity.
Collapse
|
10
|
Xiao H, Fang Z, He X, Ding P, Cao Y, Chan S, Hou S, Liang J. Recombinant ling zhi-8 enhances Tregs function to restore glycemic control in streptozocin-induced diabetic rats. J Pharm Pharmacol 2020; 72:1946-1955. [PMID: 32803752 DOI: 10.1111/jphp.13360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To explore the effect of recombinant LZ-8 (rLZ-8) on streptozocin (STZ)-induced diabetic rats and further illustrate its underlying mechanism. METHODS Rats were intraperitoneally injected with single-dose STZ 50 mg/kg for induction of type 1 diabetes (T1D), and then, the diabetic rats were treated with rLZ-8 for 3 months. The clinical symptoms, fasting blood glucose, insulin, cytokines, histopathology, flow cytometry and immunofluorescence were used to evaluate the therapeutic effect and underlying mechanism of rLZ-8 on alleviating diabetes mellitus (DM). KEY FINDINGS Treatment with rLZ-8 obviously alleviated the clinical symptoms of T1D and dose-dependently reduced the levels of blood glucose, blood lipid and haemoglobin A1c (HbA1c) in diabetic rat model. Meanwhile, rLZ-8 markedly increased insulin secretion and protected against STZ-induced pancreatic tissue injury. Additionally, rLZ-8 dramatically inhibited the levels of TNF-α and IL-1β, and obviously increased the level of IL-10 in serum and pancreas. Further investigation indicated that rLZ-8 treatment significantly increased the number of regulatory T cells (Tregs) and up-regulated the expression of Foxp3 to restore balance between anti-inflammatory and inflammatory cytokines. CONCLUSIONS These data suggest that rLZ-8 can antagonize STZ-induced T1D, and its mechanism may be related to inhibit inflammation and enhance Tregs generation.
Collapse
Affiliation(s)
- Hongyu Xiao
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhi Fang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xueling He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongkai Cao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Shamyuen Chan
- Shenzhen Fan Mao Pharmaceutical Co., Limited, Shenzhen, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Yu J, Deng Y, Han M. Blocking protein phosphatase 2A with a peptide protects mice against bleomycin-induced pulmonary fibrosis. Exp Lung Res 2020; 46:234-242. [PMID: 32584210 DOI: 10.1080/01902148.2020.1774823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Emerging data indicate that endothelial-mesenchymal transition (EndMT) is involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). A previous study noted that blocking the activity of protein phosphatase 2 A (PP2A) could attenuate EndMT. However, the treatment effects of PP2A inhibitors in pulmonary fibrosis remain not investigated. In the present study, we used a PP2A inhibitor, a newly designed peptide named TAT-Y127WT, to determine the role of PP2A in pulmonary fibrosis. Herein, we showed that TAT-Y127WT protected mice against BLM-induced pulmonary fibrosis by attenuating lung injury and fibrosis. Furthermore, a mechanistic study indicated that TAT-Y127WT could alleviate EndMT in the lungs following BLM induction. Overall, our data showed that PP2A might participate in pulmonary fibrogenesis by promoting EndMT, and TAT-Y127WT could be a potential candidate for new anti-fibrotic therapies for IPF patients.
Collapse
Affiliation(s)
- Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanjun Deng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Han
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|