1
|
Rathod S, Hoshitsuki K, Zhu Y, Ramsey M, Fernandez CA. Asparaginase-specific basophil recognition and activation predict Asparaginase hypersensitivity in mice. Front Immunol 2024; 15:1392099. [PMID: 38686384 PMCID: PMC11057047 DOI: 10.3389/fimmu.2024.1392099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Background Asparaginase (ASNase) is a crucial part of acute leukemia treatment, but immune responses to the agent can reduce its effectiveness and increase the risk of relapse. Currently, no reliable and validated biomarker predicts ASNase-induced hypersensitivity reactions during therapy. We aimed to identify predictive biomarkers and determine immune cells responsible for anaphylaxis using a murine model of ASNase hypersensitivity. Methods Our preclinical study uses a murine model to investigate predictive biomarkers of ASNase anaphylaxis, including anti-ASNase antibody responses, immune complex (IC) levels, ASNase-specific binding to leukocytes or basophils, and basophil activation. Results Our results indicate that mice immunized to ASNase exhibited dynamic IgM, IgG, and IgE antibody responses. The severity of ASNase-induced anaphylaxis was found to be correlated with levels of IgG and IgE, but not IgM. Basophils from immunized mice were able to recognize and activate in response to ASNase ex vivo, and the extent of recognition and activation also correlated with the severity of anaphylaxis observed. Using a multivariable model that included all biomarkers significantly associated with anaphylaxis, independent predictors of ASNase-induced hypersensitivity reactions were found to be ASNase IC levels and ASNase-specific binding to leukocytes or basophils. Consistent with our multivariable analysis, we found that basophil depletion significantly protected mice from ASNase-induced hypersensitivity reactions, supporting that basophils are essential and can be used as a predictive marker of ASNase-induced anaphylaxis. Conclusions Our study demonstrates the need for using tools that can detect both IC- and IgE-mediated hypersensitivity reactions to mitigate the risk of ASNase-induced hypersensitivity reactions during treatment.
Collapse
Affiliation(s)
| | | | | | | | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Lee SHR, Li Z, Lim EHZ, Chin WHN, Jiang N, Chiew KH, Chen Z, Oh BLZ, Tan AM, Ariffin H, Yang JJ, Yeoh AEJ. Associations of T-Cell Receptor Repertoire Diversity with L-Asparaginase Allergy in Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:cancers15061829. [PMID: 36980715 PMCID: PMC10047007 DOI: 10.3390/cancers15061829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Asparaginase is a critical component of therapy for childhood acute lymphoblastic leukemia (ALL), but it is commonly associated with allergy, which results in morbidity and poorer outcomes. The underlying basis of this allergy is undoubtedly immune-mediated, but the exact components of T-cell immunity have yet to be characterized. We performed longitudinal TCR sequencing of 180 bone marrow samples from 67 children with B-ALL treated as part of the Ma-Spore-ALL-2010 trial, and we evaluated the associations of TCR profile with asparaginase hypersensitivity, with functional validation of asparaginase activity in a separate cohort of 113 children. We found that a more diverse and dynamically changing TCR repertoire was associated with increased risk of clinical hypersensitivity and decreased L-asp activity. Allergic patients had a higher proportion of infrequent clonotypes, as well as a significantly lower degree of shared clonotypes amongst the cohort. Allergic patients also had significantly higher longitudinal variability of clonotypes across timepoints, where a higher dissimilarity between diagnosis and week 5 represented an 8.1-fold increased risk of an allergic event. After an allergy had occurred, there was shaping and convergence of the TCR repertoire towards a common antigen. Understanding the immunological basis of T-cell responses in allergy lays the groundwork for developing predictive biomarkers or strategies to mediate this common toxicity in childhood ALL.
Collapse
Affiliation(s)
- Shawn H R Lee
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore 119074, Singapore
| | - Zhenhua Li
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
| | - Evelyn H Z Lim
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
| | - Winnie H N Chin
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
| | - Nan Jiang
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
| | - Kean Hui Chiew
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
| | - Zhiwei Chen
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
| | - Bernice L Z Oh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore 119074, Singapore
| | - Ah Moy Tan
- Department of Pediatrics, KK Women and Children's Hospital, Singapore 229899, Singapore
| | - Hany Ariffin
- Department of Pediatrics, University of Malaya Medical Centre, Kuala Lumpur 59100, Malaysia
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Allen E J Yeoh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Lower Kent Ridge Road, Tower Block Level 12, Singapore 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
3
|
Iannuzzi A, Annunziata M, Fortunato G, Giacobbe C, Palma D, Bresciani A, Aliberti E, Iannuzzo G. Case Report: Genetic Analysis of PEG-Asparaginase Induced Severe Hypertriglyceridemia in an Adult With Acute Lymphoblastic Leukaemia. Front Genet 2022; 13:832890. [PMID: 35237305 PMCID: PMC8882989 DOI: 10.3389/fgene.2022.832890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 01/19/2023] Open
Abstract
PEG-Asparaginase (also known as Pegaspargase), along with glucocorticoids (predominantly prednisolone or dexamethasone) and other chemotherapeutic agents (such as cyclophosphamide, idarubicin, vincristine, cytarabine, methotrexate and 6-mercaptopurine) is the current standard treatment for acute lymphoblastic leukaemia in both children and adults. High doses of PEG-asparaginase are associated with side effects such as hepatotoxicity, pancreatitis, venous thrombosis, hypersensitivity reactions against the drug and severe hypertriglyceridemia. We report a case of a 28-year-old male who was normolipidemic at baseline and developed severe hypertriglyceridemia (triglycerides of 1793 mg/dl) following treatment with PEG-asparaginase for acute lymphoblastic leukaemia. Thorough genetic analysis was conducted to assess whether genetic variants could suggest a predisposition to this drug-induced metabolic condition. This genetic analysis showed the presence of a rare heterozygous missense variant c.11G > A-p.(Arg4Gln) in the APOC3 gene, classified as a variant of uncertain significance, as well as its association with four common single nucleotide polymorphisms (SNPs; c.*40C > G in APOC3 and c.*158T > C; c.162-43G > A; c.-3A > G in APOA5) related to increased plasma triglyceride levels. To our knowledge this is the first case that a rare genetic variant associated to SNPs has been related to the onset of severe drug-induced hypertriglyceridemia.
Collapse
|
4
|
Rodrigues MAD, Pimenta MV, Costa IM, Zenatti PP, Migita NA, Yunes JA, Rangel-Yagui CO, de Sá MM, Pessoa A, Costa-Silva TA, Toyama MH, Breyer CA, de Oliveira MA, Santiago VF, Palmisano G, Barbosa CMV, Hebeda CB, Farsky SHP, Monteiro G. Influence of lysosomal protease sensitivity in the immunogenicity of the antitumor biopharmaceutical asparaginase. Biochem Pharmacol 2020; 182:114230. [PMID: 32979352 DOI: 10.1016/j.bcp.2020.114230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
L-asparaginase (ASNase) from Escherichia coli (EcAII) is used in the treatment of acute lymphoblastic leukaemia (ALL). EcAII activity in vivo has been described to be influenced by the human lysosomal proteases asparaginyl endopeptidase (AEP) and cathepsin B (CTSB); these hydrolases cleave and could expose epitopes associated with the immune response against EcAII. In this work, we show that ASNase resistance to CTSB and/or AEP influences the formation of anti-ASNase antibodies, one of the main causes of hypersensitivity reactions in patients. Error-prone polymerase chain reaction was used to produce variants of EcAII more resistant to proteolytic cleavage by AEP and CTSB. The variants with enzymatic activity and cytotoxicity levels equivalent to or better than EcAII WT were submitted to in vivo assays. Only one of the mutants presented increased serum half-life, so resistance to these proteases is not the only feature involved in EcAII stability in vivo. Our results showed alteration of the phenotypic profile of B cells isolated after animal treatment with different protease-resistant proteoforms. Furthermore, mice that were exposed to the protease-resistant proteoforms presented lower anti-asparaginase antibodies production in vivo. Our data suggest that modulating resistance to lysosomal proteases can result in less immunogenic protein drugs.
Collapse
Affiliation(s)
- Mariane A D Rodrigues
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela V Pimenta
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Iris M Costa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Natacha A Migita
- Centro Infantil Boldrini, Campinas, São Paulo, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - José A Yunes
- Centro Infantil Boldrini, Campinas, São Paulo, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Carlota O Rangel-Yagui
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Matheus M de Sá
- Heart Institute (InCor), Medical School, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Tales A Costa-Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcos H Toyama
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Carlos A Breyer
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Marcos A de Oliveira
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Veronica F Santiago
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Christiano M V Barbosa
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Cristina B Hebeda
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Genetic inhibition of NFATC2 attenuates asparaginase hypersensitivity in mice. Blood Adv 2020; 4:4406-4416. [PMID: 32931581 DOI: 10.1182/bloodadvances.2020002478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
The family of nuclear factor of activated T cells (NFAT) transcription factors plays a critical role in mediating immune responses. Our previous clinical pharmacogenetic studies suggested that NFATC2 is associated with the risk of hypersensitivity reactions to the chemotherapeutic agent L-asparaginase (ASNase) that worsen outcomes during the treatment of pediatric acute lymphoblastic leukemia. We therefore hypothesized that the genetic inhibition of NFATC2 would protect against the development of anti-ASNase antibodies and ASNase hypersensitivity. Our study demonstrates that ASNase-immunized NFATC2-deficient mice are protected against ASNase hypersensitivity and develop lower antigen-specific and total immunoglobulin E (IgE) levels compared with wild-type (WT) controls. Furthermore, ASNase-immunized NFATC2-deficient mice develop more CD4+ regulatory T cells, fewer CD4+ interleukin-4-positive (IL-4+) cells, higher IL-10/TGF-β1 levels, and lower IL-4/IL-13 levels relative to WT mice. Basophils and peritoneal mast cells from ASNase-immunized, but not naïve, NFATC2-deficient mice had lower FcεRI expression and decreased IgE-mediated mast cell activation than WT mice. Furthermore, ASNase-immunized, but not naïve, NFATC2-deficient mice developed less severe shock than WT mice after induction of passive anaphylaxis or direct histamine administration. Thus, inhibition of NFATC2 protects against ASNase hypersensitivity by impairing T helper 2 responses, which may provide a novel strategy for attenuating hypersensitivity and the development of antidrug antibodies, including to ASNase.
Collapse
|