1
|
Tripathi T, Chandra Gupta S, Akhtar Khan Y, Shankar Bhunia S, Gupta A, Sarvendra Kumar K, Ralli T, Singh S, Rao CV, Roy R, Sidhu OP, Kanta Barik S. Metabolomics and anti-inflammatory activity of Commiphora madagascariensis jacq. leaves extract using in vitro and in vivo models. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124214. [PMID: 39032480 DOI: 10.1016/j.jchromb.2024.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/11/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
C. madagascariensis, an unexplored species of Burseraceae is used by local population for the management of inflammation and throat pain. The disease alleviation by this plant could be due to the presence of rich repository of active compounds with various pharmacological importances. In this study, therefore, the profiling of metabolites and isolation of active compounds of C. madagascariensis was performed. Furthermore, the ethanol, ethyl acetate extracts and a selected active compound was subjected for in vitro and in vivo anti-inflammatory activities. Metabolomic analysis identified and quantified 116 metabolites from leaves, young stem and gum-resins of C. madagascariensis (Burseraceae) followed by multivariate PCA analysis. NMR, GC-MS and HPLC were used to analyze primary and secondary metabolites. Subsequently, five main isolated compounds were identified as trimethoxy tetrahydrobenzo dioxolo isochromene (TTDI), butyl phenol, butyl propionate phenol, germacrone and β-elemenone. Amongst them, TTDI was found to be a novel compound. Hence, a process was developed to obtain the enriched fraction of TTDI in ethanol and ethyl acetate extracts of leaves. Furthermore, TTDI and extracts were subjected for their in vitro anti-inflammatory activity in LPS sensitized murine splenocytes. The results showed that TTDI and both extracts significantly suppressed the levels of pro-inflammatorycytokines (TNF-α, IFN-γ). Interestingly, the suppression of pro-inflammatory cytokines was evenmore significant by the similar concentration of TTDI when compared with colchicine. However, the level of anti-inflammatory cytokine (IL-10) was found to be unchanged. Additionally, in vivo anti-inflammatory study revealed a significant reduction in carrageenan induced paw edema by TTDI and both the extracts. In the docking study, TTDI was more active than colchicine with strong binding affinity to COX-2, PLA2, and 5β reductase. Our results highlighted that the presence of metabolites with medicinal and nutraceutical importance in C. madagascariensis, could provide opportunities for the development of a new plant-based therapeutics for inflammation.
Collapse
Affiliation(s)
- Tusha Tripathi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India.
| | - Sateesh Chandra Gupta
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yasir Akhtar Khan
- CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow-226031, UP, India; Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Shome Shankar Bhunia
- CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow-226031, UP, India
| | - Annie Gupta
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India
| | - Kunwar Sarvendra Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India
| | - Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suruchi Singh
- Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, UP, India
| | - Chandana V Rao
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India
| | - Raja Roy
- Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, UP, India.
| | - Om P Sidhu
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Kanta Barik
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India
| |
Collapse
|
2
|
Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology. Front Immunol 2024; 15:1396122. [PMID: 38817601 PMCID: PMC11137183 DOI: 10.3389/fimmu.2024.1396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
3
|
Koroglu M, Ayvaz MA, Bakan SB, Sirin A, Akyuz U. Can quantitative surface antigen levels and systemic immune-inflammation index be predictive as a new indicator for the initiation of treatment in chronic hepatitis b? Eur J Gastroenterol Hepatol 2024; 36:489-497. [PMID: 38407853 DOI: 10.1097/meg.0000000000002737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
OBJECTIVES The natural history of chronic HBV infection (CHB) is generally divided into four phases: HBeAg-positive chronic HBV infection (EPCI) and -hepatitis (EPCH), HBeAg-negative chronic HBV infection (ENCI) and -hepatitis (ENCH). This study aimed to investigate changes in serum quantitative surface antigen (qHBsAg), systemic immune-inflammation index (SII) and systemic inflammatory response index (SIRI) in a large number of CHB patients. METHOD Three hundred seventy-two CHB patients who underwent liver biopsy between January 2015 and February 2020 were evaluated. RESULTS The SII-values were strongly significant between EPCI-EPCH ( P = 0.002), however, there was significant difference between ENCI-ENCH ( P = 0.025). Considering the SIRI results, there was a significant difference between both EPCI-EPCH ( P = 0.009) and ENCI-ENCH ( P = 0.118). In HBeAg-positive patients HBV-DNA, qHBsAg, and SII were found to be predictive ( P = 0.029, P = 0.039, P = 0.027, respectively) while in HBeAg-negative patients, age, AST, HBV-DNA, qHBsAg, SII, and SIRI were found to be predictive ( P = 0.047, P = 0.084, P = <0.001, P = 0.001, P = 0.012, P = 0.002, respectively). In EPCH phase, whereby accuracy rate results of HBV-DNA, qHBsAg, and SII were 75.3%, 73.4%, and 60.4%, respectively, while in the ENCH phase the accuracy rates of age, AST, HBV-DNA, qHBsAg, SII, and SIRI values were 57.8%, 65.6%, 68.3%, 63.8%, 57.3% and 53.2%, respectively. CONCLUSION HBV-DNA, qHBsAg, and SII are predictive in EPCH patients. Age, AST, HBV-DNA, qHBsAg, SII and SIRI are all predictive in ENCH patients. In patients with CHB, we recommend using SII to distinguish between EPCI-EPCH and ENCI-ENCH. Based on its sensitivity and features, we believe that qHBsAg and SII are suitable measuring instruments in discrimination both of EPCI-EPCH and ENCI-ENCH.
Collapse
Affiliation(s)
- Mehmet Koroglu
- University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Department of Gastroenterology, Istanbul, Turkey
| | - Muhammed Ali Ayvaz
- Klinikum Fuessen, Department of Gastroenterology, Teaching hospital of the Ludwig-Maximilian University, Munich, Germany
| | - Suat Baran Bakan
- University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Department of Internal Medicine, Istanbul
| | - Abdullatif Sirin
- Duzce University Hospital, Department of Gastroenterology, Duzce
| | - Umit Akyuz
- University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Department of Gastroenterology, Istanbul, Turkey
| |
Collapse
|
4
|
Buitrago G, Harnett MM, Harnett W. Conquering rheumatic diseases: are parasitic worms the answer? Trends Parasitol 2023; 39:739-748. [PMID: 37487870 DOI: 10.1016/j.pt.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Despite the introduction of novel treatment strategies, management of rheumatic disorders remains associated with substantial unmet clinical need. Of interest therefore, it has recently become apparent that there is a global inverse relationship between the incidence of such conditions and parasitic helminth infection, with striking examples involving rheumatoid arthritis (RA)/systemic lupus erythematosus (SLE) patients and filarial nematode worm infection in studies in India. Such findings reflect that helminths are master manipulators of the immune system, particularly in being able to modulate proinflammatory responses. The aim of this article is thus to consider findings to date on this exciting and intriguing research area to form an opinion on whether parasitic worms may be exploited to generate novel therapies for rheumatic diseases.
Collapse
Affiliation(s)
- Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Margaret M Harnett
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
5
|
Kulkarni C, Sharma S, Porwal K, Rajput S, Sadhukhan S, Singh V, Singh A, Baranwal S, Kumar S, Girme A, Pandey AR, Singh SP, Sashidhara KV, Kumar N, Hingorani L, Chattopadhyay N. A standardized extract of Coleus forskohlii root protects rats from ovariectomy-induced loss of bone mass and strength, and impaired bone material by osteogenic and anti-resorptive mechanisms. Front Endocrinol (Lausanne) 2023; 14:1130003. [PMID: 36926021 PMCID: PMC10011618 DOI: 10.3389/fendo.2023.1130003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION In obese humans, Coleus forskohlii root extract (CF) protects against weight gain owing to the presence of forskolin, an adenylate cyclase (AC) activator. As AC increases intracellular cyclic adenosine monophosphate (cAMP) levels in osteoblasts that has an osteogenic effect, we thus tested the skeletal effects of a standardized CF (CFE) in rats. METHODS Concentrations of forskolin and isoforskolin were measured in CFE by HPLC. CFE and forskolin (the most abundant compound present in CFE) were studied for their osteogenic efficacy in vitro by alkaline phosphatase (ALP), cAMP and cyclic guanosine monophosphate (cGMP) assays. Femur osteotomy model was used to determine the osteogenic dose of CFE. In growing rats, CFE was tested for its osteogenic effect in intact bone. In adult ovariectomized (OVX) rats, we assessed the effect of CFE on bone mass, strength and material. The effect of forskolin was assessed in vivo by measuring the expression of osteogenic genes in the calvarium of rat pups. RESULTS Forskolin content in CFE was 20.969%. CFE increased osteoblast differentiation and intracellular cAMP and cGMP levels in rat calvarial osteoblasts. At 25 mg/kg (half of human equivalent dose), CFE significantly enhanced calcein deposition at the osteotomy site. In growing rats, CFE promoted modeling-directed bone formation. In OVX rats, CFE maintained bone mass and microarchitecture to the level of sham-operated rats. Moreover, surface-referent bone formation in CFE treated rats was significantly increased over the OVX group and was comparable with the sham group. CFE also increased the pro-collagen type-I N-terminal propeptide: cross-linked C-telopeptide of type-I collagen (PINP : CTX-1) ratio over the OVX rats, and maintained it to the sham level. CFE treatment decreased the OVX-induced increases in the carbonate-to-phosphate, and carbonate-to-amide-I ratios. CFE also prevented the OVX-mediated decrease in mineral crystallinity. Nanoindentation parameters, including modulus and hardness, were decreased by OVX but CFE maintained these to the sham levels. Forskolin stimulated ALP, cAMP and cGMP in vitro and upregulated osteogenic genes in vivo. CONCLUSION CFE, likely due to the presence of forskolin displayed a bone-conserving effect via osteogenic and anti-resorptive mechanisms resulting in the maintenance of bone mass, microarchitecture, material, and strength.
Collapse
Affiliation(s)
- Chirag Kulkarni
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Sharma
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Konica Porwal
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vaishnavi Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Akanksha Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Sanjana Baranwal
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand, Gujarat, India
| | - Alka Raj Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Sophisticated Analytical Instrument Facility & Research, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Suriya Pratap Singh
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Sophisticated Analytical Instrument Facility & Research, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Koneni V. Sashidhara
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Sophisticated Analytical Instrument Facility & Research, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand, Gujarat, India
- *Correspondence: Naibedya Chattopadhyay, ; Lal Hingorani,
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Naibedya Chattopadhyay, ; Lal Hingorani,
| |
Collapse
|
6
|
Cheng Y, Yu Y, Zhuang Q, Wang L, Zhan B, Du S, Liu Y, Huang J, Hao J, Zhu X. Bone erosion in inflammatory arthritis is attenuated by Trichinella spiralis through inhibiting M1 monocyte/macrophage polarization. iScience 2022; 25:103979. [PMID: 35281745 PMCID: PMC8914552 DOI: 10.1016/j.isci.2022.103979] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Helminths and helminth-derived products hold promise for treating joint bone erosion in rheumatoid arthritis (RA). However, the mechanisms of helminths ameliorating the osteoclastic bone destruction are incompletely understood. Here, we report that Trichinella spiralis infection or treatment with the excreted/secreted products of T. spiralis muscle larvae (MES) attenuated bone erosion and osteoclastogenesis in mice with collage-induced arthritis (CIA) through inhibiting M1 monocyte/macrophage polarization and the production of M1-related proinflammatory cytokines. In vitro, MES inhibited LPS-induced M1 macrophage activation while promoting IL-4-induced M2 macrophage polarization. Same effects of MES were also observed in monocytes derived from RA patients, wherein MES treatment suppressed LPS-induced M1 cytokine production. Moreover, MES treatment attenuated LPS and RANKL co-stimulated osteoclast differentiation from the RAW264.7 macrophages through inhibiting activation of the NF-κB rather than MAPK pathway. This study provides insight into the M1 subset as a potential target for helminths to alleviate osteoclastic bone destruction in RA.
Collapse
Affiliation(s)
- Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yan Yu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Qinghui Zhuang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Lei Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Bin Zhan
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suqin Du
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yiqi Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Junfeng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, PR China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
7
|
Healy M, Aldridge A, Glasgow A, Mahon BP, English K, O'Neill SM. Helminth antigens modulate human PBMCs, attenuating disease progression in a humanised mouse model of graft versus host disease. Exp Parasitol 2022; 235:108231. [DOI: 10.1016/j.exppara.2022.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
|
8
|
Sonmez G, Demirtas T, Tombul ST, Akgun H, Demirtas A. Diagnostic efficiency of systemic immune-inflammation index in fusion prostate biopsy. Actas Urol Esp 2021; 45:359-365. [PMID: 34088435 DOI: 10.1016/j.acuroe.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the diagnostic efficiency of systemic immune response (SII) in prostate cancer (PCa) in patients with PSA < 10 ng/mL undergoing fusion prostate biopsy. METHODS The prospective study included patients who were planned for fusion prostate biopsy and had PSA < 10 ng/mL and a PI-RADS ≥ 3. All the patients underwent 12-core standard transrectal prostate biopsy followed targeted biopsy (combined biopsy). Based on preoperative complete blood count parameters, SII was calculated using the following formula: SII = platelet × neutrophil-to-lymphocyte ratio. Correlations between PI-RADS score, platelet, neutrophil-to-lymphocyte ratio, PSA, PSA density, SII and PCa were determined using ROC curve analysis. Optimal cut-off values were determined using the maximum Youden Index (defined as: sensitivity + specificity - 1). RESULTS The study included 508 patients with a mean age of 62.49 ± 6.86 years and a median PSA level of 7.28 (5.69-8.70) ng/mL. The overall clinically significant PCa rate was 39.4%. Although SII had no significant diagnostic value in PCa patients with low ISUP grades (grade 1 and 2) (AUC = 0.487, P = 0.622), it was revealed as a significant marker in PCa patients with an ISUP grade ≥ 3 (AUC = 0.811, P < 0.001). The cut-off value of SII was 533.0. While the combination of SII with PI-RADS score is the most effective marker, neutrophil-to-lymphocyte ratio and platelet were also revealed as effective markers in predicting ISUP grade 3-5 PCa, though not as effective as SII. CONCLUSION SII and SII combination with PI-RADS score appear to be a significant diagnostic marker in patients with high-grade PCa (ISUP grade 3-5). These values were found to be higher compared to those of patients with a benign pathology and patients with lower ISUP scores.
Collapse
Affiliation(s)
- G Sonmez
- Assistant Prof., MD, Department of Urology, Erciyes University, Kayseri, Turkey
| | - T Demirtas
- MD, Department of Medical History and Ethics, Erciyes University, Kayseri, Turkey
| | - S T Tombul
- MD, Department of Urology, Erciyes University, Kayseri, Turkey
| | - H Akgun
- Prof., MD, Department of Pathology, Erciyes University, Kayseri, Turkey
| | - A Demirtas
- Prof., MD, Department of Urology, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
9
|
Sonmez G, Demirtas T, Tombul S, Akgun H, Demirtas A. Diagnostic efficiency of systemic immune-inflammation index in fusion prostate biopsy. Actas Urol Esp 2021. [PMID: 33640195 DOI: 10.1016/j.acuro.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the diagnostic efficiency of systemic immune response (SII) in prostate cancer (PCa) in patients with PSA<10ng/ml undergoing fusion prostate biopsy. METHODS The prospective study included patients who were planned for fusion prostate biopsy and had PSA<10ng/ml and a PI-RADS≥3. All the patients underwent 12-core standard transrectal prostate biopsy followed targeted biopsy (combined biopsy). Based on preoperative complete blood count parameters, SII was calculated using the following formula: SII=platelet×neutrophil-to-lymphocyte ratio. Correlations between PI-RADS score, platelet, neutrophil-to-lymphocyte ratio, PSA, PSA density, SII and PCa were determined using ROC curve analysis. Optimal cut-off values were determined using the maximum Youden Index (defined as: sensitivity+specificity-1). RESULTS The study included 508 patients with a mean age of 62.49±6.86 years and a median PSA level of 7.28 (5.69-8.70) ng/ml. The overall clinically significant PCa rate was 39.4%. Although SII had no significant diagnostic value in PCa patients with low ISUP grades (grade 1 and 2) (AUC=0.487, P=.622), it was revealed as a significant marker in PCa patients with an ISUP grade≥3 (AUC=0.811, P<.001). The cut-off value of SII was 533.0. While the combination of SII with PI-RADS score is the most effective marker, neutrophil-to-lymphocyte ratio and platelet were also revealed as effective markers in predicting ISUP grade 3-5 PCa, though not as effective as SII. CONCLUSION SII and SII combination with PI-RADS score appear to be a significant diagnostic marker in patients with high-grade PCa (ISUP grade 3-5). These values were found to be higher compared to those of patients with a benign pathology and patients with lower ISUP scores.
Collapse
|
10
|
Filbey KJ, Mehta PH, Meijlink KJ, Pellefigues C, Schmidt AJ, Le Gros G. The Gastrointestinal Helminth Heligmosomoides bakeri Suppresses Inflammation in a Model of Contact Hypersensitivity. Front Immunol 2020; 11:950. [PMID: 32508831 PMCID: PMC7249854 DOI: 10.3389/fimmu.2020.00950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
Helminths regulate host immune responses to ensure their own long-term survival. Numerous studies have demonstrated that these helminth-induced regulatory mechanisms can also limit host inflammatory responses in several disease models. We used the Heligmosomoides bakeri (Hb) infection model (also known as H. polygyrus or H. polygyrus bakeri in the literature) to test whether such immune regulation affects skin inflammatory responses induced by the model contact sensitiser dibutyl phthalate fluorescein isothiocynate (DBP-FITC). Skin lysates from DBP-FITC-sensitized, Hb-infected mice produced less neutrophil specific chemokines and had significantly reduced levels of skin thickening and cellular inflammatory responses in tissue and draining lymph nodes (LNs) compared to uninfected mice. Hb-induced suppression did not appear to be mediated by regulatory T cells, nor was it due to impaired dendritic cell (DC) activity. Mice cleared of infection remained unresponsive to DBP-FITC sensitization indicating that suppression was not via the secretion of Hb-derived short-lived regulatory molecules, although long-term effects on cells cannot be ruled out. Importantly, similar helminth-induced suppression of inflammation was also seen in the draining LN after intradermal injection of the ubiquitous allergen house dust mite (HDM). These findings demonstrate that Hb infection attenuates skin inflammatory responses by suppressing chemokine production and recruitment of innate cells. These findings further contribute to the growing body of evidence that helminth infection can modulate inflammatory and allergic responses via a number of mechanisms with potential to be exploited in therapeutic and preventative strategies in the future.
Collapse
Affiliation(s)
- Kara J Filbey
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Palak H Mehta
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
11
|
Rui X, Yang Y, Chen Q, Wu J, Chen J, Zhang Q, Ren R, Yin D. Imperative and effective reversion of synovial hyperplasia and cartilage destruction in rheumatoid arthritis through multiple synergistic effects of O 2 and Ca 2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111058. [PMID: 32993999 DOI: 10.1016/j.msec.2020.111058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
Abnormal synovial hyperplasia and cartilage destruction in a joint cavity are the key causes affecting the pain and disability in rheumatoid arthritis (RA) and, unfortunately, there exists no effective treatment for them. This investigation reports an effective reversion of the above pathological characteristics in RA owing to the use of a prolonged O2/Ca2+-supporting phototherapy hydrogel. The performed in vitro and in vivo experiments exhibit that the prolonged O2-supporting not only promotes the direct cell-killing effects of singlet oxygen, but also persistently blocks the pathological feedback between the abnormal proliferation of fibroblast-like synoviocyte and the local oxygen depletion. Furthermore, the Ca2+, which is the other decomposition product of the O2 donor, induces mitochondrial Ca2+ overload and endoplasmic reticulum Ca2+ disorder and triggers Ca2+-associated apoptosis and immunogenic cell death. In addition to these multiple synergistic effects on synovial hyperplasia, the prolonged Ca2+ support can also induce the regeneration of cartilage in RA affected joints. The present study may thus provide an effective therapeutic strategy for the prevention and reversion of joint lesions and the accompanying arthralgia and deformity in RA.
Collapse
Affiliation(s)
- Xue Rui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, PR China; Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui Province 230012, PR China; Key Laboratory of Xin' an Medicine, Ministry of Education, Hefei 230012, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qingqing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Jingjing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Jing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Qingqing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Rongrong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, PR China; Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui Province 230012, PR China; Key Laboratory of Xin' an Medicine, Ministry of Education, Hefei 230012, PR China.
| |
Collapse
|