1
|
Ma B, Shi J, Zhang Y, Li Z, Yong H, Zhou YN, Liu S, A S, Zhou D. Enzymatically Activatable Polymers for Disease Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306358. [PMID: 37992728 DOI: 10.1002/adma.202306358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
The irregular expression or activity of enzymes in the human body leads to various pathological disorders and can therefore be used as an intrinsic trigger for more precise identification of disease foci and controlled release of diagnostics and therapeutics, leading to improved diagnostic accuracy, sensitivity, and therapeutic efficacy while reducing systemic toxicity. Advanced synthesis strategies enable the preparation of polymers with enzymatically activatable skeletons or side chains, while understanding enzymatically responsive mechanisms promotes rational incorporation of activatable units and predictions of the release profile of diagnostics and therapeutics, ultimately leading to promising applications in disease diagnosis and treatment with superior biocompatibility and efficiency. By overcoming the challenges, new opportunities will emerge to inspire researchers to develop more efficient, safer, and clinically reliable enzymatically activatable polymeric carriers as well as prodrugs.
Collapse
Affiliation(s)
- Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sigen A
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Yang W, Chen H, Li G, Zhang T, Sui Y, Liu L, Hu J, Wang G, Chen H, Wang Y, Li X, Tan H, Kong R, Sun B, Li L. Caprin-1 influences autophagy-induced tumor growth and immune modulation in pancreatic cancer. J Transl Med 2023; 21:903. [PMID: 38082307 PMCID: PMC10714642 DOI: 10.1186/s12967-023-04693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by rapid progression and poor prognosis. Understanding the genetic mechanisms that affect cancer properties and reprogram tumor immune microenvironment will develop new strategies to maximize the benefits for cancer therapies. METHODS Gene signatures and biological processes associated with advanced cancer and unfavorable outcome were profiled using bulk RNA sequencing and spatial transcriptome sequencing, Caprin-1 was identified as an oncogenesis to expedite pancreatic cancer growth by activating autophagy. The mechanism of Caprin-1 inducing autophagy activation was further explored in vitro and in vivo. In addition, higher level of Caprin-1 was found to manipulate immune responses and inflammatory-related pathways. The immune profiles associated with increased levels of Caprin-1 were identified in human PDAC samples. The roles of CD4+T cells, CD8+T cells and tumor associated macrophages (TAMs) on clinical outcomes prediction were investigated. RESULTS Caprin-1 was significantly upregulated in advanced PDAC and correlated with poor prognosis. Caprin-1 interacted with both ULK1 and STK38, and manipulated ULK1 phosphorylation which activated autophagy and exerted pro-tumorigenic phenotypes. Additionally, the infiltrated CD4+T cells and tumor associated macrophages (TAMs) were increased in Caprin-1High tissues. The extensive CD4+T cells determined poor clinical outcome in Caprin-1high patients, arguing that highly expressed Caprin-1 may assist cancer cells to escape from immune surveillance. CONCLUSIONS Our findings establish causal links between the upregulated expression of Caprin-1 and autophagy activation, which may manipulate immune responses in PDAC development. Our study provides insights into considering Caprin-1 as potential therapeutic target for PDAC treatment.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Tao Zhang
- Department of General Surgery, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Xina Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China.
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Le Li
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng St, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Kaul A, Short WD, Wang X, Keswani SG. Hyaluronidases in Human Diseases. Int J Mol Sci 2021; 22:ijms22063204. [PMID: 33809827 PMCID: PMC8004219 DOI: 10.3390/ijms22063204] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
With the burgeoning interest in hyaluronic acid (HA) in recent years, hyaluronidases (HYALs) have come to light for their role in regulating catabolism of HA and its molecular weight (MW) distribution in various tissues. Of the six hyaluronidase-like gene sequences in the human genome, HYALs 1 and 2 are of particular significance because they are the primary hyaluronidases active in human somatic tissue. Perhaps more importantly, for the sake of this review, they cleave anti-inflammatory and anti-fibrotic high-molecular-weight HA into pro-inflammatory and pro-fibrotic oligosaccharides. With this, HYALs regulate HA degradation and thus the development and progression of various diseases. Given the dearth of literature focusing specifically on HYALs in the past decade, this review seeks to expound their role in human diseases of the skin, heart, kidneys, and more. The review will delve into the molecular mechanisms and pathways of HYALs and discuss current and potential future therapeutic benefits of HYALs as a clinical treatment.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.W.); (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.)
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.W.); (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.)
| |
Collapse
|