1
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
2
|
Gómez-Benlloch A, Garrell-Salat X, Cobos E, López E, Esteve-Garcia A, Ruiz S, Vázquez M, Sararols L, Biarnés M. Optical Coherence Tomography in Inherited Macular Dystrophies: A Review. Diagnostics (Basel) 2024; 14:878. [PMID: 38732293 PMCID: PMC11083341 DOI: 10.3390/diagnostics14090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Macular dystrophies (MDs) constitute a collection of hereditary retina disorders leading to notable visual impairment, primarily due to progressive macular atrophy. These conditions are distinguished by bilateral and relatively symmetrical abnormalities in the macula that significantly impair central visual function. Recent strides in fundus imaging, especially optical coherence tomography (OCT), have enhanced our comprehension and diagnostic capabilities for MD. OCT enables the identification of neurosensory retinal disorganization patterns and the extent of damage to retinal pigment epithelium (RPE) and photoreceptor cells in the dystrophies before visible macular pathology appears on fundus examinations. It not only helps us in diagnostic retinal and choroidal pathologies but also guides us in monitoring the progression of, staging of, and response to treatment. In this review, we summarize the key findings on OCT in some of the most common MD.
Collapse
Affiliation(s)
- Alba Gómez-Benlloch
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Xavier Garrell-Salat
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Estefanía Cobos
- Hospital Universitari de Bellvitge, c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Elena López
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Anna Esteve-Garcia
- Clinical Genetics Unit, Laboratori Clinic Territorial Metropolitada Sud, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Sergi Ruiz
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Meritxell Vázquez
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Laura Sararols
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Marc Biarnés
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| |
Collapse
|
3
|
Heath Jeffery RC, Lo J, Thompson JA, Lamey TM, McLaren TL, De Roach JN, Ayton LN, Vincent AL, Sharma A, Chen FK. Analysis of the Outer Retinal Bands in ABCA4 and PRPH2-Associated Retinopathy using OCT. Ophthalmol Retina 2024; 8:174-183. [PMID: 37209970 DOI: 10.1016/j.oret.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE To evaluate the outer retinal bands using OCT in ABCA4- and PRPH2-associated retinopathy and develop a novel imaging biomarker to differentiate between these 2 genotypes. DESIGN Multicenter case-control study. PARTICIPANTS Patients with a clinical and genetic diagnosis of ABCA4- or PRPH2-associated retinopathy and an age-matched control group. METHODS Macular OCT was used to measure the thickness of the outer retinal bands 2 and 4 by 2 independent examiners at 4 retinal loci. MAIN OUTCOME MEASURES Outcome measures included the thicknesses of band 2, band 4, and the band 2/band 4 ratio. Linear mixed modeling was used to make comparisons across the 3 groups. Receiver operating characteristic (ROC) analysis determined the optimal cutoff for the band 2/band 4 ratio to distinguish PRPH2- from ABCA4-associated retinopathy. RESULTS We included 45 patients with ABCA4 variants, 45 patients with PRPH2 variants, and 45 healthy controls. Band 2 was significantly thicker in patients with PRPH2 compared with ABCA4 (21.4 vs. 15.9 μm, P < 0.001) variants, whereas band 4 was thicker in patients with ABCA4 variants than those with PRPH2 variants (27.5 vs. 21.7 μm, P < 0.001). Similarly, the band 2/band 4 ratio was significantly different (1.0 vs. 0.6 for PRPH2 vs. ABCA4, P < 0.001). The area under the ROC curve was 0.87 for either band 2 (> 18.58 μm) or band 4 (< 26.17 μm) alone and 0.99 (95% confidence interval: 0.97-0.99) for the band 2/band 4 ratio with a cutoff threshold of 0.79, providing 100% specificity. CONCLUSIONS We report an altered outer retinal band profile whereby the band 2/band 4 ratio was able to discriminate between PRPH2- and ABCA4-associated retinopathy. This may have future clinic utility in predicting the genotype and provide further insight into the anatomic correlate of band 2. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia; Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Johnny Lo
- School of Science, Edith Cowan University, Perth, Western Australia, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Tina M Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - John N De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea L Vincent
- Department of Ophthalmology, FMHS, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Abhishek Sharma
- Ophthalmology Department, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia; Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia; Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Rozanowska M, Edge R, Land EJ, Navaratnam S, Sarna T, Truscott TG. Scavenging of Cation Radicals of the Visual Cycle Retinoids by Lutein, Zeaxanthin, Taurine, and Melanin. Int J Mol Sci 2023; 25:506. [PMID: 38203675 PMCID: PMC10779001 DOI: 10.3390/ijms25010506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
In the retina, retinoids involved in vision are under constant threat of oxidation, and their oxidation products exhibit deleterious properties. Using pulse radiolysis, this study determined that the bimolecular rate constants of scavenging cation radicals of retinoids by taurine are smaller than 2 × 107 M-1s-1 whereas lutein scavenges cation radicals of all three retinoids with the bimolecular rate constants approach the diffusion-controlled limits, while zeaxanthin is only 1.4-1.6-fold less effective. Despite that lutein exhibits greater scavenging rate constants of retinoid cation radicals than other antioxidants, the greater concentrations of ascorbate in the retina suggest that ascorbate may be the main protectant of all visual cycle retinoids from oxidative degradation, while α-tocopherol may play a substantial role in the protection of retinaldehyde but is relatively inefficient in the protection of retinol or retinyl palmitate. While the protection of retinoids by lutein and zeaxanthin appears inefficient in the retinal periphery, it can be quite substantial in the macula. Although the determined rate constants of scavenging the cation radicals of retinol and retinaldehyde by dopa-melanin are relatively small, the high concentration of melanin in the RPE melanosomes suggests they can be scavenged if they are in proximity to melanin-containing pigment granules.
Collapse
Affiliation(s)
- Malgorzata Rozanowska
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff CF10 3AX, UK
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Ruth Edge
- Dalton Cumbrian Facility, The University of Manchester, Westlakes Science Park, Moor Row, Cumbria CA24 3HA, UK;
| | - Edward J. Land
- The Paterson Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK;
| | - Suppiah Navaratnam
- Biomedical Sciences Research Institute, University of Salford, Manchester M5 4WT, UK;
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - T. George Truscott
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
5
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
6
|
Lyu Y, Tschulakow AV, Wang K, Brash DE, Schraermeyer U. Chemiexcitation and melanin in photoreceptor disc turnover and prevention of macular degeneration. Proc Natl Acad Sci U S A 2023; 120:e2216935120. [PMID: 37155898 PMCID: PMC10194005 DOI: 10.1073/pnas.2216935120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Age-related macular degeneration, Stargardt disease, and their Abca4-/- mouse model are characterized by accelerated accumulation of the pigment lipofuscin, derived from photoreceptor disc turnover in the retinal pigment epithelium (RPE); lipofuscin accumulation and retinal degeneration both occur earlier in albino mice. Intravitreal injection of superoxide (O2•-) generators reverses lipofuscin accumulation and rescues retinal pathology, but neither the target nor mechanism is known. Here we show that RPE contains thin multi-lamellar membranes (TLMs) resembling photoreceptor discs, which associate with melanolipofuscin granules in pigmented mice but in albinos are 10-fold more abundant and reside in vacuoles. Genetically over-expressing tyrosinase in albinos generates melanosomes and decreases TLM-related lipofuscin. Intravitreal injection of generators of O2•- or nitric oxide (•NO) decreases TLM-related lipofuscin in melanolipofuscin granules of pigmented mice by ~50% in 2 d, but not in albinos. Prompted by evidence that O2•- plus •NO creates a dioxetane on melanin that excites its electrons to a high-energy state (termed "chemiexcitation"), we show that exciting electrons directly using a synthetic dioxetane reverses TLM-related lipofuscin even in albinos; quenching the excited-electron energy blocks this reversal. Melanin chemiexcitation assists in safe photoreceptor disc turnover.
Collapse
Affiliation(s)
- Yanan Lyu
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Alexander V. Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| | - Kun Wang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520-8040
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT06520-8028
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| |
Collapse
|
7
|
Augustin S, Lam M, Lavalette S, Verschueren A, Blond F, Forster V, Przegralek L, He Z, Lewandowski D, Bemelmans AP, Picaud S, Sahel JA, Mathis T, Paques M, Thuret G, Guillonneau X, Delarasse C, Sennlaub F. Melanophages give rise to hyperreflective foci in AMD, a disease-progression marker. J Neuroinflammation 2023; 20:28. [PMID: 36755326 PMCID: PMC9906876 DOI: 10.1186/s12974-023-02699-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Retinal melanosome/melanolipofuscin-containing cells (MCCs), clinically visible as hyperreflective foci (HRF) and a highly predictive imaging biomarker for the progression of age-related macular degeneration (AMD), are widely believed to be migrating retinal pigment epithelial (RPE) cells. Using human donor tissue, we identify the vast majority of MCCs as melanophages, melanosome/melanolipofuscin-laden mononuclear phagocytes (MPs). Using serial block-face scanning electron microscopy, RPE flatmounts, bone marrow transplantation and in vitro experiments, we show how retinal melanophages form by the transfer of melanosomes from the RPE to subretinal MPs when the "don't eat me" signal CD47 is blocked. These melanophages give rise to hyperreflective foci in Cd47-/--mice in vivo, and are associated with RPE dysmorphia similar to intermediate AMD. Finally, we show that Cd47 expression in human RPE declines with age and in AMD, which likely participates in melanophage formation and RPE decline. Boosting CD47 expression in AMD might protect RPE cells and delay AMD progression.
Collapse
Affiliation(s)
- Sebastien Augustin
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Marion Lam
- Ophthalmology Department, Université de Paris, APHP, Hôpital Lariboisière, 75010 Paris, France
| | - Sophie Lavalette
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Anna Verschueren
- grid.415610.70000 0001 0657 9752Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Valérie Forster
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Lauriane Przegralek
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Zhiguo He
- grid.6279.a0000 0001 2158 1682Laboratory of Biology, Engineering and Imaging for Ophthalmology, BiiO, EA2521, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France
| | - Daniel Lewandowski
- grid.457349.80000 0004 0623 0579Cellules Souches et Radiations, Stabilité Génétique, Université de Paris, Université Paris-Saclay, Inserm, CEA, Fontenay-Aux-Roses, France
| | - Alexis-Pierre Bemelmans
- grid.457349.80000 0004 0623 0579Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-Aux-Roses, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France ,grid.415610.70000 0001 0657 9752Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France
| | - Thibaud Mathis
- grid.7849.20000 0001 2150 7757Service d’Ophtalmologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, UMR CNRS 5510 MATEIS, Université Lyon 1, 103 Grande rue de la Croix Rousse, 69317 Lyon Cedex 04, France
| | - Michel Paques
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France ,grid.415610.70000 0001 0657 9752Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France
| | - Gilles Thuret
- grid.6279.a0000 0001 2158 1682Laboratory of Biology, Engineering and Imaging for Ophthalmology, BiiO, EA2521, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Cécile Delarasse
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
8
|
Kellner S, Weinitz S, Farmand G, Kellner U. Nahinfrarot-Autofluoreszenz: klinische Anwendung und diagnostische Relevanz. AUGENHEILKUNDE UP2DATE 2022. [DOI: 10.1055/a-1810-1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungDie Nahinfrarot-Autofluoreszenz (NIA) ist ein nicht-invasives Verfahren zur Untersuchung des retinalen Pigmentepithels (RPE) basierend auf der Darstellung des antioxidativen Schutzfaktors
Melanin in den RPE-Zellen. Die NIA verbessert die Früherkennung chorioretinaler Erkrankungen, da bei vielen dieser Erkrankungen mit der NIA Strukturveränderungen des RPE nachweisbar sind,
bevor sich in anderen Untersuchungen Krankheitszeichen erkennen lassen.
Collapse
|
9
|
Kellner S, Weinitz S, Farmand G, Kellner U. [Near-infrared Fundus Autofluorescence: Clinical Application and Diagnostic Relevance]. Klin Monbl Augenheilkd 2022; 239:1059-1076. [PMID: 35609811 DOI: 10.1055/a-1857-1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique for examination of the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within the RPE cells, in one of them it serves as a protective antioxidative factor within the RPE cells and is involved in the phagocytosis of photoreceptor outer segments. Disorders that affect the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. Therefore, NIA allows to detect early alterations in inherited and acquired chorioretinal disorders, frequently prior to ophthalmoscopical visualisation and often prior to alterations in lipofuscin associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, findings between both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders (e.g., age-related macular degeneration, retinitis pigmentosa, ABCA4-gene associated Stargardt disease and cone-rod dystrophy, light damage), indicating that NIA detects earlier alterations compared to FAF. In addition, due to the absence of blue-light filtering which limits foveal visualisation in FAF, foveal alterations can be much better detected using NIA. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant BEST1-associated disease, when FAF and OCT are still normal. In other disorders, a normal subfoveal NIA intensity is associated with good visual acuity. This review summarizes the present knowledge on NIA and demonstrates biomarkers for various chorioretinal disorders.
Collapse
|
10
|
Fang Y, Taubitz T, Tschulakow AV, Heiduschka P, Szewczyk G, Burnet M, Peters T, Biesemeier A, Sarna T, Schraermeyer U, Julien-Schraermeyer S. Removal of RPE lipofuscin results in rescue from retinal degeneration in a mouse model of advanced Stargardt disease: Role of reactive oxygen species. Free Radic Biol Med 2022; 182:132-149. [PMID: 35219849 DOI: 10.1016/j.freeradbiomed.2022.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of lipofuscin in the retinal pigment epithelium (RPE) is a hallmark of aging and is associated with retinal degeneration encountered in age-related macular degeneration (AMD) and Stargardt disease (SD). Currently, treatment for lipofuscin-induced retinal degeneration is unavailable. Here, we report that Remofuscin (INN: soraprazan, a tetrahydropyridoether small molecule) reverses lipofuscin accumulation in aged primary human RPE cells and is non-cytotoxic in aged SD mouse RPE cells in vitro. In addition, we show that the removal of lipofuscin after a single intravitreal injection of Remofuscin results in a rescue from retinal degeneration in a mouse model of advanced SD which is even accompanied by an amelioration of the retinal dysfunction. Finally, we demonstrate that the mechanism causing lipofuscinolysis may involve the reactive oxygen species generated via the presence of Remofuscin. These data suggest a possible therapeutic approach to untreatable lipofuscin-mediated diseases like AMD, SD and lipofuscinopathies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany
| | - Peter Heiduschka
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Tobias Peters
- Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany.
| |
Collapse
|
11
|
Różanowska MB, Różanowski B. Photodegradation of Lipofuscin in Suspension and in ARPE-19 Cells and the Similarity of Fluorescence of the Photodegradation Product with Oxidized Docosahexaenoate. Int J Mol Sci 2022; 23:ijms23020922. [PMID: 35055111 PMCID: PMC8778276 DOI: 10.3390/ijms23020922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages of age-related macular degeneration (AMD). The purpose of this study was to investigate the response of lipofuscin isolated from human RPE and lipofuscin-laden cells to visible light, and to determine whether an abundant component of lipofuscin, docosahexaenoate (DHA), can contribute to lipofuscin fluorescence upon oxidation. Exposure of lipofuscin to visible light leads to a decrease in its long-wavelength fluorescence at about 610 nm, with a concomitant increase in the short-wavelength fluorescence. The emission spectrum of photodegraded lipofuscin exhibits similarity with that of oxidized DHA. Exposure of lipofuscin-laden cells to light leads to a loss of lipofuscin granules from cells, while retaining cell viability. The spectral changes in fluorescence in lipofuscin-laden cells resemble those seen during photodegradation of isolated lipofuscin. Our results demonstrate that fluorescence emission spectra, together with quantitation of the intensity of long-wavelength fluorescence, can serve as a marker useful for lipofuscin quantification and for monitoring its oxidation, and hence useful for screening the retina for increased oxidative damage and early AMD-related changes.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: ; Tel.: +44-2920875057
| | - Bartosz Różanowski
- Institute of Biology, Pedagogical University of Kraków, 30-084 Kraków, Poland;
| |
Collapse
|
12
|
Miralles de Imperial-Ollero JA, Gallego-Ortega A, Norte-Muñoz M, Di Pierdomenico J, Valiente-Soriano FJ, Vidal-Sanz M. An in vivo model of focal light emitting diode-induced cone photoreceptor phototoxicity in adult pigmented mice: Protection with bFGF. Exp Eye Res 2021; 211:108746. [PMID: 34450185 DOI: 10.1016/j.exer.2021.108746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop a model of focal injury by blue light-emitting diode (LED)-induced phototoxicity (LIP) in pigmented mouse retinas and to study the effects on cone, Iba-1+ cells and retinal pigment epithelium (RPE) cell populations after administration of basic fibroblast growth factor (bFGF) and minocycline, alone or combined. METHODS In anesthetized dark-adapted adult female pigmented C57BL/6 mice, left pupils were dilated and the eye exposed to LIP (500 lux, 45 s). The retina was monitored longitudinally in vivo with SD-OCT for 7 days (d). Ex vivo, the effects of LIP and its protection with bFGF (0.5 μg) administered alone or combined with minocycline (45 mg/kg) were studied in immunolabeled arrestin-cone outer segments (a+OS) and quantified within a predetermined fixed-size circular area (PCA) centered on the lesion in flattened retinas at 1, 3, 5 or 7d. Moreover, Iba-1+ cells and RPE cell morphology were analysed with Iba-1 and ZO-1 antibodies, respectively. RESULTS LIP caused a focal lesion within the superior-temporal retina with retinal thinning, particularly the outer retinal layers (116.5 ± 2.9 μm to 36.8 ± 6.3 μm at 7d), and with progressive diminution of a+OS within the PCA reaching minimum values at 7d (6218 ± 342 to 3966 ± 311). Administration of bFGF alone (4519 ± 320) or in combination with minocycline (4882 ± 446) had a significant effect on a+OS survival at 7d and Iba-1+ cell activation was attenuated in the groups treated with minocycline. In parallel, the RPE cell integrity was progressively altered after LIP and administration of neuroprotective components had no restorative effect at 7d. CONCLUSIONS LIP resulted in progressive outer retinal damage affecting the OS cone population and RPE. Administration of bFGF increased a+OS survival but did not prevent RPE deterioration.
Collapse
Affiliation(s)
- Juan A Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - María Norte-Muñoz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain.
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain.
| |
Collapse
|
13
|
Dhooge PPA, Runhart EH, Lambertus S, Bax NM, Groenewoud JMM, Klevering BJ, Hoyng CB. Correlation of Morphology and Function of Flecks Using Short-Wave Fundus Autofluorescence and Microperimetry in Patients With Stargardt Disease. Transl Vis Sci Technol 2021; 10:18. [PMID: 34003952 PMCID: PMC7991959 DOI: 10.1167/tvst.10.3.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the functional relevance of longitudinal changes in hyperautofluorescent areas and flecks in Stargardt disease (STGD1) using short-wavelength autofluorescence (SW-AF) imaging. Methods In this prospective, longitudinal study, 31 patients with STGD1 (56 eyes) underwent microperimetry (MP) and SW-AF imaging twice in 3 to 5 years. A total of 760 MP test points were included in the statistical analysis based on stable fixation and accurate alignment of SW-AF and MP. Autofluorescence intensity was qualitatively assessed in all MP test points. Small circumscriptive hyperautofluorescent lesions were defined as flecks. Longitudinal imaging characteristics observed on SW-AF were classified into the following categories: appearing, disappearing, and stable flecks, stable hyperautofluorescent, and stable background autofluorescence. The relationship between SW-AF intensity changes and MP changes was analyzed using a linear mixed model corrected for baseline sensitivity. Results Retinal sensitivity declined most in locations without change in SW-AF intensity. Functional decline per year was significantly larger in flecks that disappeared (−0.72 ± 1.30 dB) compared to flecks that appeared (−0.34 ± 0.65 dB), if baseline sensitivity was high (≥10 dB; P < 0.01). The correlation between the change observed on SW-AF and the sensitivity change significantly depended on the sensitivity at baseline (P = 0.000). Conclusions Qualitative longitudinal assessment of SW-AF poorly reflected the retinal sensitivity loss observed over the course of 3 to 5 years. Translational Relevance When aiming to assess treatment effect on lesion level, a multimodal end point including MP focused on hyperautofluorescent lesions appears essential but needs further studies on optimizing MP grids, eye-tracking systems, and alignment software.
Collapse
Affiliation(s)
- Patty P A Dhooge
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esmee H Runhart
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stanley Lambertus
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nathalie M Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes M M Groenewoud
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Schmitz-Valckenberg S, Pfau M, Fleckenstein M, Staurenghi G, Sparrow JR, Bindewald-Wittich A, Spaide RF, Wolf S, Sadda SR, Holz FG. Fundus autofluorescence imaging. Prog Retin Eye Res 2021; 81:100893. [PMID: 32758681 DOI: 10.1016/j.preteyeres.2020.100893] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Fundus autofluorescence (FAF) imaging is an in vivo imaging method that allows for topographic mapping of naturally or pathologically occurring intrinsic fluorophores of the ocular fundus. The dominant sources are fluorophores accumulating as lipofuscin in lysosomal storage bodies in postmitotic retinal pigment epithelium cells as well as other fluorophores that may occur with disease in the outer retina and subretinal space. Photopigments of the photoreceptor outer segments as well as macular pigment and melanin at the fovea and parafovea may act as filters of the excitation light. FAF imaging has been shown to be useful with regard to understanding of pathophysiological mechanisms, diagnostics, phenotype-genotype correlation, identification of prognostic markers for disease progression, and novel outcome parameters to assess efficacy of interventional strategies in chorio-retinal diseases. More recently, the spectrum of FAF imaging has been expanded with increasing use of green in addition to blue FAF, introduction of spectrally-resolved FAF, near-infrared FAF, quantitative FAF imaging and fluorescence life time imaging (FLIO). This article gives an overview of basic principles, FAF findings in various retinal diseases and an update on recent developments.
Collapse
Affiliation(s)
- Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, USA
| | | | - Giovanni Staurenghi
- Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital University of Milan, Italy
| | - Janet R Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Almut Bindewald-Wittich
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Augenheilkunde Heidenheim MVZ, Heidenheim, Germany
| | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.
| |
Collapse
|